
Third Generation
Internet Revealed

Reinventing Computer Networks with IPv6
—
Lawrence E. Hughes
Foreword by Latif Ladid, President of the
Global IPv6 Forum

Third Generation Internet
Revealed

Reinventing Computer Networks
with IPv6

Lawrence E. Hughes
Foreword by Latif Ladid, President of the Global IPv6 Forum

Third Generation Internet Revealed: Reinventing Computer Networks with IPv6

ISBN-13 (pbk): 978-1-4842-8602-9 ISBN-13 (electronic): 978-1-4842-8603-6
https://doi.org/10.1007/978-1-4842-8603-6

Copyright © 2022 by Lawrence E. Hughes

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Joan Murray
Development Editor: Laura Berendson
Coordinating Editor: Jill Balzano

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1 New York Plaza,
Suite 4600, New York, NY 10004-1562, USA. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@
springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole
member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc
is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub (https://github.com/Apress). For more detailed information, please visit http://www.
apress.com/source- code.

Printed on acid-free paper

Lawrence E. Hughes
Frisco, TX, USA

https://doi.org/10.1007/978-1-4842-8603-6

This book is dedicated to my beautiful wife of 28 years, Remy Hughes.
She has been through thick and thin with me, and we have raised three

children. She has been very supportive of me in my career, including
spending tons of time on this book (as well as my book on AD

Certificate Services, also from Apress). I have had to travel a great deal
teaching PKI and IPv6, in addition to speaking at international IPv6

summits. We are both very proud of our grown kids, both of whom
passed the IPv6 Certified Network Engineer course and are now

working in IT in Texas. Here’s hoping for many more years together as
the world transitions to the Third Internet!

v

About the Author ���xv

About the Technical Reviewer ���xvii

Acknowledgments ��xix

Foreword ��xxi

Introduction ��xxiii

Table of Contents

Chapter 1: Introduction��� 1

History of This Work and the Term “Third Internet” �� 1

Why IPv6 Is Important ��� 6

Wait� How Can the Internet Grow to 75 Billion Nodes? ��� 8

Why Was 2011 a Significant Year for the Second Internet?��� 9

An Analogy: The Amazing Growing Telephone Number ��� 10

So Just What Is It That We Are Running Out Of? �� 11

But You Said There Were 4�3 Billion IPv4 Addresses? ��� 13

Is IPv6 Just an Asian Thing? �� 14

So Exactly What Is This “Third Internet”? ��� 15

Is It the Next-Generation Network (NGN) That Telcos Talk About? ��� 16

Is It Internet2 or National LambdaRail? ��� 20

Is It Web 2.0? ��� 22

Whatever Happened to IPv5? �� 26

Let’s Eliminate the Middleman �� 28

Why Am I the One Writing This Book? Just Who Do I Think I Am, Anyway? �������������������������������� 29

Summary��� 29

vi

Chapter 2: History of Computer Networks Up to IPv4 �� 31

Real Computer Networking ��� 32

Ethernet and Token Ring �� 32

Network Software �� 33

The Beginnings of the Internet (ARPANET) �� 34

UNIX ��� 36

Open System Interconnection (OSI) ��� 37

Email Standardization�� 38

Evolution of the World Wide Web ��� 38

And That Brings Us Up to Today �� 39

Summary and a Look Ahead ��� 40

Chapter 3: Review of IPv4 �� 41

Network Hardware �� 41

RFCs: The Internet Standards Process �� 45

IPv4 ��� 47

Four-Layer (“DoD”) IPv4 Architectural Model �� 48

IPv4: The Internet Protocol, Version 4�� 51

Relevant Standards for IPv4 �� 52

IPv4 Packet Header Structure �� 53

IPv4 Addressing Model �� 57

Network Ports �� 57

IPv4 Subnetting ��� 59

MAC Addresses �� 62

Mapping from IPv4 Addresses to Link Layer Addresses �� 63

Address Resolution Protocol (ARP) �� 63

Inverse ARP (InARP) ��� 65

Types of IPv4 Packet Transmissions ��� 66

IPv4 Broadcast��� 66

IPv4 Multicast �� 67

Relevant Standards for IPv4 Multicast �� 70

Internet Group Management Protocol (IGMP) �� 72

Table of ConTenTs

vii

ICMPv4: Internet Control Message Protocol for IPv4 ��� 73

IPv4 Routing �� 76

Relevant Standard for IPv4 Routing ��� 78

Network Address Translation (NAT) ��� 82

Relevant Standard for IPv4 NAT ��� 83

Connection Without NAT (Inside the LAN) �� 86

Connection Through Hide-Mode NAT ��� 87

BINAT (One-to-One NAT) �� 89

Ramifications of Using NAT ��� 90

Basic IPv4 Routing �� 93

TCP: The Transmission Control Protocol �� 94

Standards Relevant to TCP �� 94

TCP Packet Header �� 97

UDP: The User Datagram Protocol ��� 101

Standards Relevant to UDP �� 102

UDP Packet Header �� 103

DHCPv4: Dynamic Host Configuration Protocol for IPv4 �� 104

The DHCPv4 ��� 106

Useful Commands Related to DHCPv4 ��� 108

IPv4 Network Configuration ��� 109

Manual Network Configuration ��� 110

Auto Network Configuration Using DHCPv4 �� 111

Summary��� 116

Chapter 4: The Depletion of the IPv4 Address Space ��� 119

OECD IPv6 Report, March 2008 ��� 120

OECD Follow-Up Report on IPv6, April 2010 �� 125

OECD Second Follow-Up Report on IPv6, November 2014 �� 127

How IPv4 Addresses Were Allocated in the Early Days ��� 131

Original “Classful” Allocation Blocks ��� 131

Classless Inter-Domain Routing (CIDR) �� 135

Table of ConTenTs

viii

Problems Introduced by Customer Premises Equipment NAT (CPE NAT) ���������������������������������� 137

Implementing NAT at the Carrier: Carrier-Grade NAT (CGN) �� 141

Summary��� 146

Chapter 5: IPv6 Deployment Progress �� 147

Google Statistics ��� 152

Predictions for Future Years �� 155

Summary��� 156

Chapter 6: IPv6 Core Protocols ��� 157

Network Hardware �� 157

RFCs: A Whole Raft of New Standards for IPv6 ��� 162

IPv6 ��� 164

Four-Layer IPv6 Architectural Model ��� 173

Link Layer Issues with IPv6 ��� 175

IPv6: The Internet Protocol, Version 6�� 176

IPv6 Packet Header Structure �� 176

IPv6 Addressing Model �� 181

IPv6 Packet Transmission Types �� 182

IPv6 Address Scopes ��� 183

IPv6 Address Types �� 184

Automatically Generated Interface Identifiers Based on EUI-64 �� 194

Randomized Interface Identifiers �� 195

IPv6 Address Allocation ��� 196

Subnetting in IPv6 ��� 203

Link Layer Addresses �� 204

Neighbor Discovery (ND) Protocol ��� 204

Router Discovery ��� 207

Address Resolution (Mapping IPv6 Addresses to MAC Addresses) ������������������������������������� 208

Prefix Discovery ��� 208

Duplicate Address Detection (DAD) ��� 209

Stateless Address Autoconfiguration (SLAAC) ��� 210

Table of ConTenTs

ix

Next-Hop Determination �� 212

Neighbor Unreachability Detection (NUD) �� 213

Redirect ��� 214

SEcure Network Discovery (SEND) �� 216

Types of IPv6 Packet Transmission ��� 216

IPv6 Broadcast��� 216

IPv6 Multicast �� 217

ICMPv6: Internet Control Message Protocol for IPv6 ��� 223

IPv6 Routing �� 232

Network Address Translation �� 235

TCP: The Transmission Control Protocol in IPv6 �� 237

TCP Packet Header �� 238

UDP: The User Datagram Protocol in IPv6 ��� 238

DHCPv6: Dynamic Host Configuration Protocol for IPv6 �� 238

Relevant RFCs for DHCPv6 �� 240

The DHCPv6 ��� 251

Useful Commands Related to DHCPv6 ��� 253

IPv6 Network Configuration �� 255

Manual Network Configuration for IPv6-Only �� 256

Auto Network Configuration Using Manually Specified (Static) IPv6 Address ��������������������� 258

Summary��� 260

Chapter 7: IPsec and IKEv2 �� 261

Internet Protocol Layer Security (IPsec) �� 262

Relevant Standards for IPsec �� 264

Security Association, Security Association Database, and Security Parameter Index ��������� 270

IPsec Transport Mode and IPsec Tunnel Mode �� 270

IPsec over IPv6 �� 276

IPsec in Multicast Networks �� 277

Using IPsec to Secure L2TP Connections �� 277

Table of ConTenTs

x

Internet Key Exchange (IKE) �� 277

Internet Key Exchange Version 2 (IKEv2) ��� 280

Kerberized Internet Negotiation of Keys: KINK �� 282

Summary��� 282

Chapter 8: Transition Mechanisms ��� 285

Relevant Standards for Transition Mechanisms �� 286

Transition Mechanisms ��� 289

Co-existence (Dual Stack and Dual-Stack Lite) ��� 290

Tunneling ��� 291

Translation ��� 292

Proxies (Application Layer Gateways) ��� 294

Dual Stack ��� 296

Tunneling��� 301

6 in4 Tunneling ��� 304

6 over4 Tunneling ��� 307

6 to4 Tunneling ��� 307

Teredo �� 309

6 rd: IPv6 Rapid Deployment �� 311

Intra-site Automatic Tunnel Addressing Protocol (ISATAP) ��� 311

Softwires (Includes Dual-Stack Lite, MAP-E, MAP-T, and 4in6) �� 312

Relevant Standards for Softwires ��� 314

Dual-Stack Lite �� 316

PET (Prefixing, Encapsulation, and Translation) ��� 318

Translation �� 319

NAT64/DNS64 �� 320

IVI ��� 321

Preferred Network Implementation Going Forward: IPv6-Only ��� 322

Supporting IPv6 for Developers at Sixscape ��� 324

Summary��� 325

Table of ConTenTs

xi

Chapter 9: IPv6 on Mobile Devices ��� 327

Android �� 327

iPhone ��� 330

What Are the Implications of This?�� 333

Decentralized Messaging �� 335

Summary��� 336

Chapter 10: DNS�� 337

How DNS Evolved �� 337

Host Files ��� 337

Network Information Service (NIS) �� 338

DNS Was Invented ��� 338

Domain Names �� 338

Top-Level Domain Names �� 339

Internationalized Domain Names �� 340

NS Resolver ��� 340

DNS Server Configuration ��� 341

DNS Protocol ��� 341

DNS Resource Records ��� 342

DNS Servers and Zones �� 343

Different Types of DNS Servers ��� 345

Authoritative DNS Servers ��� 345

Caching-Only Servers �� 346

Client Access to DNS ��� 346

Recursive DNS Queries �� 346

The Root DNS Servers ��� 347

MX and SRV Resource Records ��� 349

ENUM �� 350

DNSSEC (Secure DNS) ��� 351

Summary��� 354

Table of ConTenTs

xii

Chapter 11: The Future of Messaging with No NAT �� 355

Private IPv4 Addresses �� 355

Public IPv4 Addresses ��� 357

Network Address Translation �� 358

NAT Gateways Can Run Out of Port Numbers �� 359

The Need for Centralized Servers in the IPv4+NAT Internet ��� 360

Carrier-Grade NAT (NAT444) �� 361

Centralization on the IPv4 Internet �� 362

But Doesn’t NAT “Protect” My Network? ��� 364

NAT Traversal: How Skype Fakes Incoming Connections �� 365

What if Everyone Had Public Addresses? ��� 366

IPv6: The NAT-Less Internet �� 367

VoIP and IPv6 �� 368

Skype �� 370

WhatsApp �� 371

Email over IPv6 ��� 371

The Future of Messaging on the Third Internet ��� 372

5 G: The Grand Convergence of the Internet and Telephony �� 375

Summary��� 376

Chapter 12: IPv6-Related Organizations �� 379

Internet Governance Bodies �� 379

Internet Corporation for Assigned Names and Numbers (ICANN) �� 380

Internet Assigned Numbers Authority (IANA) ��� 381

Regional Internet Registries (RIRs) �� 382

The Number Resource Organization (NRO): www�nro�net ��� 388

Internet Architecture Board (IAB): www�iab�org ��� 389

Internet Engineering Task Force (IETF): www�ietf�org �� 389

Internet Research Task Force (IRTF): www�irtf�org �� 389

Internet Society (ISOC): www�isoc�org ��� 390

Table of ConTenTs

xiii

IPv6 Forum Groups �� 390

Local IPv6 Forum Chapters �� 390

IPv6 Ready Logo Program ��� 391

Informal IPv6 Network Administration Certification �� 393

WIDE Project, Japan �� 394

Summary��� 394

Chapter 13: IPv6 Projects ��� 395

Accompanying Website ��� 396

Hurricane Electric IPv6 Certification ��� 396

SixConf �� 397

Conclusion �� 398

 Index ��� 401

Table of ConTenTs

xv

About the Author

Lawrence Hughes received a BS in Mathematics from FSU in 1973 (there was no

computer science major at the time). He worked all four years in college at the FSU

Computing Center, working on a CDC 6400 mainframe. In 1975, he built one of the first

home computers (a MITS Altair 8800) and later bought up CP/80 on it. A few years later,

the Altair was upgraded to an IMSAI 8080, and then he replaced the Z80 CPU board with

an 8086 board.

He founded Mycroft Labs in 1982 and created the MITE communication package for

CP/M-80 and then later for MSDOS and Mac. In 1987 he cofounded Mika LP where he

made a secure version of MITE called Whisper, for the US IRS.

In 1998 he took a position with SecureIT (a white-hat hacking and firewall company

in Atlanta). This company was then bought by VeriSign, where Lawrence created

their training in cryptography and PKI (Public Key Infrastructure) and delivered it

internationally.

In 2000, Lawrence cofounded CipherTrust with Jay Chaudhry. This grew from

six people literally in his basement to 250 people in 2006, when it was sold to Secure

Computing for 273M.

In 2004 Lawrence founded InfoWeapons in Cebu City, Philippines, where he created

the first secure DNS appliance that fully supported IPv6 (even in IPv6-only networks).

This easily passed US DoD JITC certification.

In 2014, Lawrence cofounded Sixscape Communications Pte. Ltd. in Singapore.

It specializes in digital certificate automation, cryptographic authentication, and

secure messaging. All products are fully IPv6 compliant. Sixscape is still going well; see

https://sixscape.com.

In 2019, Lawrence was inducted into the IPv6 Forum’s “IPv6 Hall of Fame.”

He now resides in Frisco, Texas, working in the PKI engineering group at the Bank of

America.

https://en.wikipedia.org/wiki/Public_key_infrastructure
https://sixscape.com

xvii

About the Technical Reviewer

Fabio Claudio Ferracchiati is a senior consultant and a senior analyst/developer

using Microsoft technologies. He works for Bluarancio (www.bluarancio.com).

He is a Microsoft Certified Solution Developer for .NET, a Microsoft Certified

Application Developer for .NET, a Microsoft Certified Professional, and a prolific

author and technical reviewer. Over the past ten years, he’s written articles for Italian

and international magazines and coauthored more than ten books on a variety of

computer topics.

http://www.bluarancio.com

xix

Acknowledgments

I would like to thank Latif Ladid, president of the global IPv6 Forum, for his continued

support and encouragement for my many experiences related to IPv6.

Many other IPv6 experts have provided isights and information. I would especially

like to thank Eric Vyncke, author of IPv6 Security (Cisco Press), for deep insights into

the security aspects of IPv6. I have also learned a lot from Silvia Hagen, author of IPv6

Essentials (O’Reilly), as well as Marc Blanchet, Ciprian Popuviciu, and many others. I

have very much enjoyed meeting you at IPv6 summits and exchanging ideas.

I also would like to offer encouragement to the many engineers whom I have taught

the IPv6 Forum’s “Certified Network Engineer IPv6” training over the years. Keep it up!

You are the cutting edge.

Finally, many thanks to Apress for accepting this book for publication.

xxi

Foreword

On February 5, 1999, I was chartered by the original IETF IPv6 Task Force and the

IPv6 Deployment Working Group led by Jim Bound to promote the global rollout of

IPv6, the successor to the foundation protocol of most networks, including the global

Internet. I established the IPv6 Forum (see https://ipv6forum.com) and many national

councils and chapters in over 90 countries. I have organized and helped present

many international IPv6 summits over the years. This is one of the most important

developments in IT in our time.

I have known Larry (the author of this book) for almost two decades. He has

presented at many of these summits and conferences, run websites explaining IPv6,

certified many telco and network engineers with the IPv6 Forum training, and created

some breakthrough products (such as the first DNS (Domain Name System) appliance

that supported IPv6) and now is pioneering end-to-end direct secure messaging over

IPv6, something that is not possible (at least at the global scale) with the IPv4 + NAT

Internet (which I call the “InterNAT”).

We have identified a need for some 20 million network professionals to understand

this new technology and created the curricula for several courses aimed at in-service

professionals. Larry created courses based on these curricula and certified many telco,

network, and government IT people with them in IPv6.

We also identified a need to certify network equipment and software as being

compliant with the new IETF (Internet Engineering Task Force) standards for IPv6. We

worked with the TAHI group of the WIDE project in Japan to create testing platforms

to verify this compliance. Several testing centers have been deployed around the world

and certified many products. Larry deployed and ran one of these in Cebu, Philippines,

for many years. He also helped some gentlemen from the Indian government to help set

up their own testing center. You can find out more about these programs at https://

ipv6ready.org.

In 2007, Larry released a free PDF book called The Second Internet, which we

published on the IPv6 Forum website. In 2010 he updated that with many changes that

happened in the previous three years. Some 500K people worldwide have downloaded

these free books and discovered the amazing new world of IPv6.

https://ipv6forum.com
https://ipv6ready.org
https://ipv6ready.org

xxii

We recognized Larry’s contributions to the adoption of IPv6 by inducting him into

the “IPv6 Hall of Fame” in 2019.

Since then, Larry realized that ARPANET was really the “First Internet,” making

the IPv4 version the “Second Internet” and the IPv6 version the “Third Internet.” He

understood that this was not a minor change in one Application Layer protocol, such

as HTTP 1.0 to HTTP 1.1, but a change that affected all application protocols. It is a true

generational change, as sweeping as the change from ARPANET to the IPv4 Internet in

1983. He has now updated his free PDF book The Second Internet to the present day,

now that IPv6 is being rapidly deployed globally (many countries now have over 50% of

their traffic over IPv6). We are pleased that Apress/Springer have seen fit to publish this

version and make it available globally.

Welcome to the Third Internet!

Latif Ladid, President of the global IPv6 Forum

https://ipv6forum.com

foreword

https://ipv6forum.com

xxiii

Introduction

This book is the end result of many years’ effort. It covers a lot of territory, starting with

the big picture of the evolution of the Internet, through three generations:

• First generation: ARPANET, 1969–1982, 8-bit addresses, host-to-host

protocol

• Second generation: IPv4 era, 1983–2028?, 32-bit addresses, followed

by NAT (Network Address Translation) and RFC (Request for

Comments) 1918 private addresses

• Third generation: IPv6 era, 2014 (start of major deployment) to

perhaps 2100?, 128-bit addresses, many major improvements from

what we learned from IPv4

There are hundreds of RFCs (Internet standards) from the IETF (Internet

Engineering Task Force) related to IPv6. This book serves as a guide to these RFCs,

broken up into major subtopics including links to the actual standards (available free).

The most important ones are highlighted. Hopefully this will help you find the ones most

relevant to what you are trying to understand, without being overwhelmed by the total

collection. I have tried to explain what the most important ones are about, but the real

details are in the RFCs themselves.

To understand what is important about IPv6, I have presented a history of how

IPv4 address depletion happened and where all those billions of addresses went. This

approach also helps those who already know IPv4 to make the leap to IPv6 with “IPv6 is

like IPv4 with the following improvements and extensions.” I also explain the problems

we are now facing with IPv4 since we are still using it 11 years after IANA (Internet

Assigned Numbers Authority) ran out of public addresses. NAT was only ever supposed

to be a temporary stopgap on the way to pure IPv6. It has made network architecture and

software design far more complex than it should be. IPv6 allows a return to the simple

monolithic IP address space of the early IPv4 Internet, with no need for NAT. IPv6 was

based heavily on the hugely successful IPv4 design. It is IPv4 on steroids. IPv4 subnetting

is very complicated, requiring many chapters or even an entire book to understand. IPv6

subnetting is simplicity itself: all subnets are /64. Period.

xxiv

Many people think that the evolution of HTTP from 1.0 to 1.1 was a big deal. That

was a minor change in one of the thousands of protocols in use on the Internet. A

change in the Internet Layer (IPv4 to IPv6) affects every Application Layer protocol and

will impact business models. Who will need an email account if we can all exchange

email messages directly with each other, with no intermediary servers? DNS was okay

for the IPv4 model with centralized servers, but we need something much better for

billions of highly mobile nodes. The Web will continue to be around for some time,

but IPv6 will make the evolution to true edge computing a reality – finally allowing us

to take advantage of the incredible power of our computers and phones to run native

applications that exchange data, instead of turning them into “dumb terminals” that only

run web browsers.

I have tried to convey some of the amazing things that are now possible with the

elimination of NAT, vast improvements in multicast, etc.:

• Any node (including phones) can now run servers, or do direct end-

to- end connections, with no need for intermediary servers. Most

snooping and hacking happen on intermediary nodes, which break

TLS. S/MIME helps but is difficult for many users to deploy.

• Imagine being able to send emails and files and do chat and voice

directly from one phone to another, with true end-to-end encryption

and mutual strong authentication using client digital certificates –

easy with IPv6 and PeerTLS.

• Since the first phones supported connections to the Internet, there

were not enough public IP addresses for phones to get one, let alone

a block (for hot spots). So they have had to use NAT, even double

NAT (CGN). With IPv6 even phones can have public IP addresses and

accept incoming connections (e.g., run servers).

• The United States, with 5% of the world’s population, wound up with

41% of the public IPv4 addresses. Other countries were not amused.

The IPv6 Internet is the first truly global Internet. Every country can

have as many addresses as they can conceivably ever want. There are

enough /48 blocks (each sufficient for the largest organization) for

every human alive today to get over 5,000 of them. IP address scarcity

is over. Even your phone can get 2 to the 64th addresses (an entire

/64 block).

InTroduCTIon

xxv

• With finally working multicast, we can do mass audio and video

streaming on a practical basis – no more zillions of unicast

connections (the YouTube model). This is as important as Ted

Turner’s insight that a satellite is basically a really tall broadcast

antenna.

We are at a major inflection point in IT, possibly the largest one since the first

computers were sold, or the first networks were created. IPv4 is at end of life. The IETF

even had a working group called “Sunset IPv4” that planned how to shut down IPv4 on

the global backbone without major disruptions.

This book could only have been written by a “silverback” like me, who lived through

the whole time and experienced the changes firsthand. I lived through the mainframe

era, the minicomputer era, early timesharing systems, the personal computer era, and

the growth and evolution of the Internet.

If you want (or have) a job in computer networking, computer security, or network

software design, if you stick with IPv4, you are already obsolete. Adapt or die. The future

is here. I hope this book will encourage you not only to move ahead with technology but

also to understand how to do that.

InTroduCTIon

1

CHAPTER 1

Introduction

 History of This Work and the Term “Third Internet”
This book is an update and expansion of my 2010 ebook, The Second Internet. That

ebook has been available on the main website of the global IPv6 Forum (http://

ipv6forum.com) since 2010 with some 500,000 downloads worldwide. This book is

actually still about the new Internet based on IPv6, but since 2010 I have realized that

the ARPANET1 is not phase 1 of the First Internet; it IS the First Internet. That makes the

Internet based on IPv4 (still what most people are using today) the real Second Internet,

which makes the new Internet being created now, based on IPv6, the Third Internet.

One notable change since 2010 is that IPv6 is no longer just a Draft Proposed

Standard. The Official IETF Standard for IPv6 has finally been released2 – RFC 82003:

“Internet Protocol, Version 6 (IPv6) Specification,” July 2017 (STD 86). This replaces RFC

2460 and several additions to it. So you need to get used to referring to RFC 8200 instead

of RFC 2460!

The leap from the First Internet (ARPANET) to the Second Internet (IPv4 based) was

clearly a generational change:

• The foundation protocol of the First Internet was usually referred

to as NCP,4 but officially was called the “host- host”5 protocol. It was

defined in a few RFCs. Many new RFCs (starting with RFC 7916 in

1981) specified the new IPv4 and related protocols.

1 https://en.wikipedia.org/wiki/ARPANET
2 https://www.internetsociety.org/blog/2017/07/rfc-8200-ipv6-has-been-standardized/
3 https://tools.ietf.org/html/rfc8200
4 https://en.wikipedia.org/wiki/Network_Control_Program
5 https://tools.ietf.org/html/rfc714
6 https://tools.ietf.org/html/rfc791

© Lawrence E. Hughes 2022
L. E. Hughes, Third Generation Internet Revealed, https://doi.org/10.1007/978-1-4842-8603-6_1

http://ipv6forum.com
http://ipv6forum.com
https://www.internetsociety.org/blog/2017/07/rfc-8200-ipv6-has-been-standardized/
https://tools.ietf.org/html/rfc8200
https://en.wikipedia.org/wiki/Network_Control_Program
https://tools.ietf.org/html/rfc714
https://tools.ietf.org/html/rfc791
https://en.wikipedia.org/wiki/ARPANET
https://www.internetsociety.org/blog/2017/07/rfc-8200-ipv6-has-been-standardized/
https://tools.ietf.org/html/rfc8200
https://en.wikipedia.org/wiki/Network_Control_Program
https://tools.ietf.org/html/rfc714
https://tools.ietf.org/html/rfc791
https://doi.org/10.1007/978-1-4842-8603-6_1

2

• An IPv4-only node could not make a connection to, or exchange

information with, an NCP-only node (and vice versa), without a

complex gateway. The inability to interoperate often happens in

generational changes. Translation between NCP and IPv4 was never

accomplished.

• NCP had 8-bit addresses (max 28 or 256 addresses), while IPv4 has

32-bit addresses (max 232 or 4.3 billion addresses). That is four times

as many bits in each address as in NCP, but 224 (16.7 million) times as

many addresses. Each additional bit doubles the number of addresses.

• The First Internet lasted from 1969 until 1982 with significant growth

and evolution during those years. The Second Internet began

operation on January 1, 1983, grew extremely rapidly, and is still

running, although it is developing more and more serious issues

related to exhaustion of the IPv4 public address space.7

• While applications such as email, remote terminal emulation, and

file transfer existed in the First Internet, all such apps had to be

rewritten (significantly) to work over IPv4.

• Engineers familiar only with NCP had to go back to the books (and

training classes) to master the new IPv4. All software and hardware

devices that worked with NCP had to be rewritten to work with IPv4.

There was no “dual-stack” period since that transition was done via

a “flag day” (only NCP before January 1, 1983, only IPv4 from then

on). There were many serious problems with doing such an abrupt

transition, like worldwide email broke for several months. The IETF

wisely decided to do a more gradual transition from IPv4 to IPv6.

• NCP node addresses were represented as a single one- to three-digit

decimal number (e.g., “10”), while IPv4 addresses were represented

using dotted decimal (e.g., “123.45.67.89”), which at the time looked

very alien to NCP users.

7 https://en.wikipedia.org/wiki/IPv4_address_exhaustion

Chapter 1 IntroduCtIon

https://en.wikipedia.org/wiki/IPv4_address_exhaustion
https://en.wikipedia.org/wiki/IPv4_address_exhaustion

3

Figure 1-1. Map of the entire First Internet circa 1982

Chapter 1 IntroduCtIon

4

Figure 1-2. One proposed map of the Second Internet, 2015

The leap from the Second Internet to the Third Internet is of the same magnitude:

• The foundation protocol of the Second Internet (IPv4) was defined

in several RFCs. Many new RFCs (starting with RFC 1881 in 1995)

specified the new IPv6 and related protocols.

• An IPv6-only node cannot make a connection to, or exchange

information with, an IPv4-only node (and vice versa), without a

complex gateway. One solution is “dual stack,” where every node has

Chapter 1 IntroduCtIon

5

both IPv4 and IPv6 and hence can make connections to both the

Second and Third Internets. Another is to run only IPv6 internally

and provide access to external legacy (IPv4-only) nodes via a NAT648

gateway.

• IPv4 has 32-bit addresses (max 4.3 billion values), while IPv6 has

128-bit addresses (max 340 trillion, trillion, trillion values). This is

again four times as many bits as in IPv4, but now 296 times as many

addresses as in IPv4. If you think of the IPv4 address space as the size

of a basketball, the IPv6 address space is a sphere that would not only

include the entire sun but go most of the way out to Venus. That’s a

big ball.

• The Second Internet began operation in 1983 and will probably be

mostly phased out9 by 2028 or so. There are no more public addresses

for the Second Internet to grow with – all growth of the Second

Internet today is in private Internets (networks that use RFC 1918

private addresses and are not directly connected to the public IPv4

Internet). Each of these private Internets is hidden behind an existing

public IPv4 address with NAT10 (or even behind multiple layers

of NAT11).

• While applications such as email, remote terminal emulation, and

file transfer existed in the Second Internet, most applications (aside

from web scripts) must be rewritten to at least some extent to work

over IPv6 (or, more commonly, over both IPv4 and IPv6). Since IPv6

has no NAT but ample global addresses, there are entirely new types

of connections possible, such as servers on phones or end-to-end

direct (e.g., connecting directly from my phone to yours, with no

intermediary server).

8 https://en.wikipedia.org/wiki/NAT64
9 https://datatracker.ietf.org/wg/sunset4/about/
10 https://en.wikipedia.org/wiki/Network_address_translation
11 https://en.wikipedia.org/wiki/Carrier-grade_NAT

Chapter 1 IntroduCtIon

https://en.wikipedia.org/wiki/NAT64
https://datatracker.ietf.org/wg/sunset4/about/
https://en.wikipedia.org/wiki/Network_address_translation
https://en.wikipedia.org/wiki/Carrier-grade_NAT
https://en.wikipedia.org/wiki/Carrier-grade_NAT
https://en.wikipedia.org/wiki/NAT64
https://datatracker.ietf.org/wg/sunset4/about/
https://en.wikipedia.org/wiki/Network_address_translation
https://en.wikipedia.org/wiki/Carrier-grade_NAT

6

• Engineers familiar only with IPv4 are having to go back to the

books and training classes to master the new IPv6. Engineers and

developers who don’t learn IPv6 will find it more and more difficult

to remain employed, like NetWare engineers experienced once

the transition to TCP/IP (Transmission Control Protocol/ Internet

Protocol)–based networks took place. If you know IPv4 today, this

book contains enough technical detail on IPv6 to get you well along

your way to mastering IPv6. I have helped many senior network and

telco engineers make the leap to IPv6 as a gold-certified IPv6 Forum

trainer.

• IPv4 addresses were represented using dotted decimal notation (e.g.,

“123.45.67.89”), while IPv6 addresses are represented with what I call

coloned hex notation (e.g., “2001:db8:ed3a:1000::2:1”), which looks

very strange indeed to IPv4 engineers.

 Why IPv6 Is Important
The Second Internet (aka the Legacy Internet) is now 36 years old. Think about what

kind of CPU, amount of RAM, and which operating system you were using in 1983 –

probably a Z80 8-bit CPU with 64 kilobytes of RAM and CPM/80 or, if you were a

businessman, an 8088 “16-bit” CPU and MSDOS 1.0. If you were really lucky, you

might have had an expensive hard disk drive with a massive 10 megabytes of storage.

What, many of you reading this weren’t even alive then? Ask your father what personal

computing was like in 1983. I’ve been building, programming, and applying personal

computers since my Altair 8800 in 1975. Hard to realize that is 44 years ago. Since 1983,

network speeds have increased from 10 Mbps to 100 Gbps (10,000-fold increase). Access

from home may have been 1200 baud (1.2 kbps) then, but 100 Mbps to 1 Gbps today.

Amazingly we are still using essentially the same Internet Protocol. Think it’s about time

for an upgrade?

The Second Internet has impacted the lives of billions of people. It has led to

unprecedented advances in computing, communications, collaboration, research, and

entertainment (not to mention time-wasting, dating, gossiping, and even less savory

activities). The Internet is now understood to be highly strategic in every modern

country’s economy. There are now people claiming that access to the Internet is a

Chapter 1 IntroduCtIon

https://gizmodo.com/internet-access-is-now-a-basic-human-right-1783081865

7

“human right.”12 It is difficult to conceive of a country that could exist without it. Many

enormous companies (such as Google) would not have been possible (or even needed)

without it. Staggering amounts of wealth have been created (and consumed) by it. It

made “snail mail” (paper mail physically delivered) follow the Pony Express into oblivion

(amazingly, governments everywhere are still trying to keep post offices going, even

though most of them lose gigantic amounts of money every year and they mostly only

deliver advertising circulars). The number of emails sent daily is at least four times the

number of first-class mails sent annually (in the United States).

Estimates are that there are about 26 billion nodes13 (computers, servers, or other

network devices) connected to the Internet as of 2019. Neat trick for a protocol with only

4.3 billion theoretically possible unique addresses, eh?

But wait. There’s more.
If you think that’s impressive, wait until you see what its rapidly approaching

successor, the Third Internet (made possible by IPv6), will be. One estimate (same link

as earlier) predicts some 75 billion nodes by 2025. Entirely new and far more flexible

communication and connectivity paradigms are coming that will make email and texting

seem quaint (e.g., 5G14). Major areas of the economy – such as telephony, entertainment,

and almost all consumer electronic devices (MP3 players, TVs, radios) – will be heavily

impacted or even collapse into the Third Internet as just more network applications (like

email and web did in the First and Second Internets). The Second Internet (the one you

are likely using today, based on IPv4) that you think is so pervasive and so cool is tiny

compared to the potential size of the Third Internet. One of the popular terms being

used to describe it is pervasive computing.15 That means it is going to be everywhere, even

inside your body (embedded sensors communicating via a Personal Area Network (PAN)

using your phone as a relay to the Third Internet).

Flash! The Second Internet is broken!

Most importantly, in the process of keeping IPv4 around way too long, we’ve

already broken the Second Internet badly with something called NAT16 (Network

Address Translation – much more on this later). NAT has turned the Internet into a

12 https://gizmodo.com/internet-access-is-now-a-basic-human-right-1783081865
13 https://www.statista.com/statistics/471264/
iot-number-of-connected-devices-worldwide/
14 https://en.wikipedia.org/wiki/5G
15 https://www.computersciencedegreehub.com/faq/what-is-pervasive-computing/
16 https://en.wikipedia.org/wiki/Network_address_translation

Chapter 1 IntroduCtIon

https://gizmodo.com/internet-access-is-now-a-basic-human-right-1783081865
https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/
https://en.wikipedia.org/wiki/5G
https://en.wikipedia.org/wiki/Network_address_translation
https://gizmodo.com/internet-access-is-now-a-basic-human-right-1783081865
https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/
https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/
https://en.wikipedia.org/wiki/5G
https://www.computersciencedegreehub.com/faq/what-is-pervasive-computing/
https://en.wikipedia.org/wiki/Network_address_translation

8

one-way channel, introduced many major security issues, and is impeding progress

on newer applications like Voice over Internet Protocol (VoIP) and Internet Protocol

Television (IPTV).

NAT has fragmented the old monolithic pre-1995 Second Internet into millions

of private Internets, each hiding behind one public IPv4 address. You can easily make

outgoing connections from your node to servers like www.facebook.com, but it is difficult

or impossible for other people to make connections to your node. NAT has divided the

world into a few producers (like www.facebook.com) and millions of consumers (like

you). You can post some content to their sites, but they own the sites and have complete

control over what you can post and can withdraw your right to post at any time, for

any reason.

In the Third Internet, anyone can be a prosumer (producer and consumer) of

content. You will be able to run any server or even a global TV network from your node.

You will be able to connect directly from your node to anyone else’s node in the world

(assuming no firewalls block that connection). There is no shortage of public addresses –

we can all be first-class netizens. NAT was a necessary evil to keep the Internet on life

support until the Third Internet was ready to be rolled out. The transition to IPv6 was

supposed to be finished by 2010. NAT has now served its purpose and, like crutches

when your broken leg has healed, should be cast aside. Its only purpose was to extend

the life of the IPv4 address space while the engineers were getting IPv6 ready. IPv6 IS

ready and in rapid adoption mode globally now. This book should be a “wake-up call”

for everyone using the Internet.

Using a “horses and cars” metaphor, there is no reason to wait for the last horse

to die (the last IPv4 node to be shut down) before we start driving cars (deploy IPv6).

Another aspect of that is we no longer need horse doctors; we need car mechanics! Good

news, everyone! IPv6 is ready for prime time today. My home is already fully migrated to

dual stack (IPv4 + IPv6). It has been for over a decade.

 Wait. How Can the Internet Grow to 75 Billion Nodes?
If there are only about 7.5 billion people alive, how can the Internet possibly grow to 75

billion nodes? The key here is to understand that the Third Internet (based on IPv6)

is the Internet of Things.17 A human sitting at a keyboard will be a relatively rare thing.

17 https://en.wikipedia.org/wiki/Internet_of_things

Chapter 1 IntroduCtIon

http://www.facebook.com
http://www.facebook.com
https://en.wikipedia.org/wiki/Internet_of_things
https://en.wikipedia.org/wiki/Internet_of_things

9

However, IPv6 will make it far easier and cheaper to bring the next billion humans

online using IPv6’s advanced features and almost unlimited address space. Many Asian

countries and companies (who routinely have 5- to 10-year horizons in their planning)

already consider IPv6 to be one of the most strategic and important technologies

anywhere and are investing heavily in deploying IPv6. 2018 was the tipping point18 for

IPv6. Adoption curves are starting to climb at steep rates reminiscent of the adoption of

the World Wide Web back in the mid-1990s. By 2018, more than 50% of all global traffic

was over IPv6 in many countries. IPv4 will be in decline, with worsening service and

fewer and fewer public addresses, at any price. Also, today, many people have multiple

devices connected to the Internet. In Singapore, 23% of the people have five or more

nodes with Internet connectivity.

 Why Was 2011 a Significant Year for the Second Internet?
There is an entire chapter in this book on the depletion of the IPv4 address space. What

this means (in English) is that we are running out of public IPv4 addresses for the Second

Internet. On February 3, 2011, there was a very important event in the history of the Internet.

I woke my kids up to watch it live-streamed over the Internet, so they could tell their kids

that they saw the beginning of the end of the IPv4 Internet. IANA allocated the final five

unallocated blocks of IPv4 public addresses to the five RIRs (Regional Internet Registries).

In the mid-1990s, the folks in charge of the Internet realized we would soon run out

of public IPv4 addresses and only managed to keep the Internet going through some

clever tricks (NAT and private addresses), kind of like using private extension numbers

in a company PBX phone system. However, even with this trick (which is now causing

major problems), we have pretty much run out for good. All the groups that oversee

the Internet – like the Internet Assigned Numbers Authority (IANA19), the Internet

Corporation for Assigned Names and Numbers (ICANN20), the Internet Society (ISOC21),

the Internet Engineering Task Force (IETF22), and the Regional Internet Registries

(RIRs23) – have been saying for some time that the world has to migrate to IPv6 now.

18 https://en.wikipedia.org/wiki/Tipping_point_(sociology)
19 https://www.iana.org/
20 https://en.wikipedia.org/wiki/ICANN
21 https://en.wikipedia.org/wiki/Internet_Society
22 https://en.wikipedia.org/wiki/Internet_Engineering_Task_Force
23 https://en.wikipedia.org/wiki/Regional_Internet_registry

Chapter 1 IntroduCtIon

https://www.iana.org/
https://en.wikipedia.org/wiki/ICANN
https://en.wikipedia.org/wiki/Internet_Society
https://en.wikipedia.org/wiki/Internet_Engineering_Task_Force
https://en.wikipedia.org/wiki/Regional_Internet_registry
https://en.wikipedia.org/wiki/Tipping_point_(sociology)
https://www.iana.org/
https://en.wikipedia.org/wiki/ICANN
https://en.wikipedia.org/wiki/Internet_Society
https://en.wikipedia.org/wiki/Internet_Engineering_Task_Force
https://en.wikipedia.org/wiki/Regional_Internet_registry

10

The five Regional Internet Registries are ARIN,24 RIPE NCC,25 APNIC,26 LACNIC,27 and

AfriNIC.28 They should know. They are the ones that manage and allocate public IP

addresses to telcos, ISPs (Internet Service Providers), and cloud providers. They know

that the IPv4 barrel is pretty much empty. We’ve got to provide tens of billions more

globally unique Internet addresses, which has some far-reaching consequences. There is

no additional source of IPv4 addresses, so these will have to be IPv6 addresses.

 An Analogy: The Amazing Growing Telephone Number
When I was very young, my family’s telephone had a five-digit phone number (let’s

say it was 5-4573). That covered only my small town (about 10,000 people at the time).

As the number of phones (and hence unique phone numbers within my geographic

region) grew, the telephone company had to increase the length of everyone’s phone

number. Our number became 385-4573 (seven digits), enough for 107 (10 million)

phone numbers. This was enough to give everyone in my part of Florida a unique

number, and we could ask the nice long-distance operator to connect us to people in

other areas when we wanted to talk with them. When the telcos introduced the miracle

of Direct Distance Dialing, our phone number grew to ten digits by adding an area code:

for example, (904) 385-4573. In theory, this could provide unique numbers to 1010 (10

billion) customers. In practice some digit patterns cannot be used, so it is somewhat less

than that, and today many people have multiple phone numbers (landline, cell phone,

fax, modem, VoIP, etc.). Estimates are that the current supply of ten-digit numbers will

last US subscribers at least 50 more years. Increases in the length of phone numbers

may be an inconvenience to end users (and publishers of phone books), but the tricky

problems are mostly in the big telephone company switches. Phone number lengths

have been increased several times over the years, without leading to the collapse of

civilization.

24 https://www.arin.net/
25 https://www.ripe.net/
26 https://www.apnic.net/
27 https://www.apnic.net/
28 https://afrinic.net/

Chapter 1 IntroduCtIon

https://www.arin.net/
https://www.ripe.net/
https://www.apnic.net/
https://www.apnic.net/
https://afrinic.net/
https://www.arin.net/
https://www.ripe.net/
https://www.apnic.net/
https://www.apnic.net/
https://afrinic.net/

11

With 5G, numeric (aka E.16429) phone numbers are going away. In the future, your

“phone number” will look like sip:lhughes@sixscape.com. There are an essentially

unlimited number of SIP URIs (Uniform Resource Identifiers).30 They are also

conveniently organized into the same hierarchy used for email and web.

At the top (IANA) level, the final five unallocated blocks of IPv4 public addresses

(16.7 million each) were given out to the five Regional Internet Registries31 on February

3, 2011.32 Since that date, if the RIRs asked for additional blocks of IPv4 addresses, IANA

would tell them, “Sorry. The cupboard is bare.” The RIRs had enough on hand to last a

while, but those are gone now (except for Africa). I once bought some addresses from

APNIC as a member and reserved a “/22” block of IPv4 addresses (a little over 1000 of

the precious, and increasingly scarce, addresses for the Second Internet). These cost me

about 1000 USD per year, but I could have used those for many things. You can think of

this as staking out some of the last remaining lots in a virtual Oklahoma Land Rush. At

the same time, I got my very own “/32” block of shiny new IPv6 addresses. You can think

of this as getting an enormous spread of prime real estate in the virtual New World of

the Third Internet. A few years ago, I got tired of paying the charges and returned those

blocks to APNIC. I now have one public IPv4 at home, which I had to pay $50 for when

I signed up with my current ISP and can keep so long as I have service with them (very

effective marketing – if I gave this one up, it is unlikely I would ever get another).

There is a flourishing “gray market” for IPv4 addresses today. Going rate is about $16

per public IPv4. That price will go up until IPv6 is widely deployed, at which point that

price will drop to zero quickly.

 So Just What Is It That We Are Running Out Of?
There is a great deal of confusion and misunderstanding about this issue, as important

as it is. Many people think that an “Internet address” is something like www.ipv6.

org. That is not an Internet address; that is a domain-qualified symbolic nodename.

That is an important part of a URI (Uniform Resource Identifier), which adds things

such as a protocol designator (e.g., http:, mailto:, or sip:), possibly a nonstandard port

number (e.g., “:8080”), and often a file path (e.g., “/files/index.html”). There are still a

29 https://en.wikipedia.org/wiki/E.164
30 https://en.wikipedia.org/wiki/SIP_URI_scheme
31 https://en.wikipedia.org/wiki/Regional_Internet_registry
32 https://www.nro.net/icann-nro-live-stream/

Chapter 1 IntroduCtIon

https://en.wikipedia.org/wiki/E.164
https://en.wikipedia.org/wiki/SIP_URI_scheme
https://www.nro.net/icann-nro-live-stream/
https://www.nro.net/icann-nro-live-stream/
http://www.ipv6.org
http://www.ipv6.org
https://en.wikipedia.org/wiki/E.164
https://en.wikipedia.org/wiki/SIP_URI_scheme
https://en.wikipedia.org/wiki/Regional_Internet_registry
https://www.nro.net/icann-nro-live-stream/

12

staggering number of possible domain-qualified nodenames that are easy to remember,

more than could ever be used in the next hundred years. So just what is it that we are

running out of?

The nodenames that you (and most humans) use to specify a particular node on the

Internet, like www.ipv6.org, are made possible by something called the Domain Name

System (DNS33). Those nodenames are not used in the actual packets as source and

destination addresses (see the section on the IPv4 addressing model for the gory details).

The addresses used in the packets in the Second Internet are 32-bit binary numbers.

These are usually represented for us slow and stupid humans in dotted decimal notation

like 123.45.67.89. With a 32-bit address, there are 232 (about 4.3 billion) distinct values.

When you use a symbolic nodename (known technically as a fully qualified domain

name, or FQDN) in an application, that application sends it to a DNS server, which

returns the numeric IP address associated with it. That’s the address that is used in

packets on the wire, for routing the packet to its destination.

The DNS nodenames are like the names of people you call; the IP addresses are like

their phone numbers. DNS is like an online telephone book that looks up the “phone

number” (IP address) for “people” (nodes) you want to “call” (connect to). Did you know

that you can surf to an IP address? Try entering the URL http://15.73.4.75. That’s a

whole lot harder to remember than www.hp.com, which is why DNS was invented. It’s

these 32-bit numeric addresses (that most people never see) that we are running out

of. The good news is that you can keep typing www.hp.com and DNS will return both the

old-style 32-bit IPv4 address and a new-style 128-bit IPv6 address, which will be put into

the network packets. Given the choice, your applications will prefer to use the new IPv6

address. You will hardly notice the difference unless you are a network engineer or a

network software developer, except there’s going to be a whole bunch of cool new stuff

to do and new ways of doing old things. Plus, the Internet is going to work better than it

ever has before.

Can you imagine trying to use telephones today with five-digit telephone numbers?

In a few years, that’s what IPv4 is going to feel like. I’ve been using IPv6 for over a decade,

and IPv4 already looks antiquated to me. It’s amazing we were able to build the current

Second Internet with something so primitive and limited. I’m creating new apps for IPv6

already.

33 https://en.wikipedia.org/wiki/Domain_Name_System

Chapter 1 IntroduCtIon

http://www.ipv6.org
https://en.wikipedia.org/wiki/Domain_Name_System
http://www.hp.com
http://www.hp.com
https://en.wikipedia.org/wiki/Domain_Name_System

13

 But You Said There Were 4.3 Billion IPv4 Addresses?
There are 26 billion nodes connected to the Second Internet, but only 4.3 billion IPv4

addresses? How does THAT work? Well, there are probably around 3 billion usable

IPv4 public addresses (and essentially no new ones to allocate, except in very specific

circumstances, like for IPv6 migration). The bulk of those nodes are not on the public

IPv4 Internet, but in private Internets hiding behind NAT gateways. Pretty much all

new nodes being added (like all those cell phones that can connect to the Internet)

are in private Internets. There is no real shortage of addresses for private Internets. In

theory, every public address could have as many as 16 million nodes (the number of

possible nodes in the 10/8 private subnet) behind it. In practice a single NAT gateway

can’t handle anywhere near that many nodes, but there can still be hundreds or even

thousands of nodes in each private Internet. The problem is that nodes in private

Internets can’t accept incoming connections, except via NAT traversal34 (which

introduces many security issues). NAT also breaks a lot of important protocols, like

VoIP and IPsec. NAT was only ever meant as a temporary stopgap measure during the

transition to IPv6. A lot of people today (including telcos and ISPs) seem to think we can

just go on using IPv4 with NAT forever. We can’t.
How did we get into this situation? Well, when the Second Internet was being

launched, there were about 200 nodes on the First Internet, and 4.3 billion looked a lot

like “infinity” to the people involved. So giant chunks of addresses were generously given

out to early adopter organizations. For example, MIT and HP were given “class A” blocks

of addresses (about 16.7 million addresses each, or 1/256 of the total address space).

Smaller organizations were given “class B” blocks of addresses (each having about

65,535 addresses). Most of these organizations are not using anywhere near all those

addresses, but they have only rarely been willing to turn them back in to be reallocated

to newcomers. As detailed in the Organisation for Economic Co-operation and

Development (OECD) study on IPv4 address space depletion and migration to IPv6, it is

very difficult and time-consuming to recover these “lost” addresses. Also, some blocks of

IPv4 addresses were used for things like multicast (“class D”), experimental use (“class

E”), and other purposes like addresses for private Internets (RFC 191835).

We are getting more efficient in our allocation of blocks of IPv4 addresses, but even

with every trick we know, they are all gone now at the top (IANA) level and four of

34 https://en.wikipedia.org/wiki/NAT_traversal
35 https://tools.ietf.org/html/rfc1918

Chapter 1 IntroduCtIon

https://en.wikipedia.org/wiki/NAT_traversal
https://tools.ietf.org/html/rfc1918
https://en.wikipedia.org/wiki/NAT_traversal
https://tools.ietf.org/html/rfc1918

14

the five RIRs (ARIN, APNIC, RIPE, and LACNIC). There are something like 1.5 billion

smartphones being sold each year (and this doesn’t even count other devices that might

need addresses). There may be tens of billions of IoT nodes. How do we connect all

these? This can only be done by going to longer IP addresses (hence, a larger address

space). This is one of the main things that IPv6 is about.

 Is IPv6 Just an Asian Thing?
Some time ago, I heard some comments from US networking professionals and

venture capitalists that IPv6 was an “Asian thing,” something that is of little interest

or concern to Americans. This shows an unusually provincial view of an extremely

serious situation. This attitude was only partly due to the inequitable distribution of

addresses for the Second Internet (there are over six IPv4 public addresses per American

citizen, compared with only about 0.28 per person for the rest of the world). It has a lot

more to do with a lack of knowledge of how certain parts of the Second Internet really

work, compounded by a limited time horizon compared with Asian businessmen,

who routinely plan 5–10 years ahead. American business schools teach that nothing is

important beyond the next quarter’s numbers. The depletion of IPv4 addresses is already

here. Some American businessmen are now panicking (“Why didn’t you warn us about

this?”).

Since 2010, US mobile telephone service providers have embraced IPv6

enthusiastically, more so than other regions or industries. They realized they could

deploy only IPv6 for a far lower cost than trying to keep IPv4 alive one more year. Also, it

was becoming a challenge to knit together multiple /8 subnets (the largest you can create

with IPv4 private addresses), each of which is 16.7M addresses. Many telcos have far

more than 16.7M customers. With IPv6 there is no such problem. Now that all Android

phones include 464XLAT,36 even legacy IPv4-only mobile apps work just fine. On iOS,

Apple requires that apps work in an IPv6-only environment before they are approved for

the App Store.

Any country or organization that (for whatever reason) doesn’t migrate to IPv6

is going to still be “riding horses” while the rest of us are zipping around in these

newfangled “cars.” When I wrote the 2010 version of this book, I was having nightmares

about the United States being just as reluctant to go to IPv6 as they were to adopt the

36 https://sites.google.com/site/tmoipv6/464xlat

Chapter 1 IntroduCtIon

https://sites.google.com/site/tmoipv6/464xlat
https://sites.google.com/site/tmoipv6/464xlat

15

metric system (the United States is the only industrialized country not to have adopted

the metric system, and I doubt they ever will). They could have decided to stay with IPv4.

If they had, it would have become increasingly difficult for them to connect to non-

US websites or for people in other countries to connect to US websites. It would have

impacted all telephone calls between the United States and anywhere else in the world.

It would have made IT products designed for the US market of little interest outside of

the United States (kind of like automobiles that can’t be maintained with metric tools).

This would have isolated the United States even further and essentially leave leadership

in Information Technology up for grabs. Japan, China, and South Korea are quite serious

about grabbing that leadership, and they are well along their way to accomplishing this,

by investing heavily in IPv6 since the late 1990s. Since then, America has finally “gotten

religion” about IPv6, especially in mobile telephone service providers where IPv6 is

approaching 100%.

Being good engineers, while the IETF has the “streets dug up” increasing the size

of IP addresses, they fixed and enhanced many of the aspects of IPv4 (QoS, multicast,

routing, etc.) that weren’t done quite as well as they might have been (who could have

envisioned streaming video 34 years ago?). IPv6 is not just bigger addresses. It’s a whole

new and remarkably robust platform on which to build the Third Internet.

 So Exactly What Is This “Third Internet”?
Most things in computer technology evolve through various releases or generations, with

significant new features and capabilities in the newer generations, for example, 2G, 3G,

and 4G cell phones. The Internet is no exception. The remarkable thing, though, is that

the Second Internet has lasted for 36 years already. The third generation has been quietly

emerging for some time and is now well underway. 5G phones will be mostly based on

IPv6. There are many technology trends going on right now, and some of them have

been hyped heavily in the press. Some of them sound a lot like they might be the next

generation of the Internet. Let’s see if we can narrow down what I mean by “the Third

Internet” by discussing some of the things that it is not.

Chapter 1 IntroduCtIon

16

 Is It the Next-Generation Network (NGN) That Telcos
Talk About?
Telcos around the world have been moving toward something they call NGN37 for some

time. Is that the same thing as the Third Internet? Well, there is certainly a lot of overlap,

but, no, NGN is something quite different.

Historically, telephone networks have been based on a variety of technologies,

mostly circuit switched, with call setup handled by SS738 (Signaling System 7). The core of

the networks might be digital, but almost the entire last mile (the part of the telco system

reaching from the local telco office into your homes and businesses) is still analog today.

There was some effort at upgrading this last mile to digital with ISDN39 (Integrated

Services Digital Networks), but some terrible decisions regarding tariffs (the cost of

services) pretty much killed ISDN in many countries, including the United States.

The ITU40 (International Telecommunication Union), an agency of the United

Nations that has historically overseen telephone systems worldwide, defines NGN as

packet-switched networks able to provide services, including telecommunications,

over broadband, with Quality of Service (QoS)–enabled transport technologies, and

in which service-related functions are independent from underlying transport-related

technologies. It offers unrestricted access by users to different telecommunication

service providers. It supports generalized mobility, which will allow consistent and

ubiquitous service to users.

In practice, telco NGN has three main aspects:

• In telco core networks, there is a consolidation (or convergence) of

legacy transport networks based on X.25 and Frame Relay into the

data networks based on TCP/IP (some still using IPv4, but more

and more core networks are IPv6 today). It also involves moving

from circuit-switched (mostly analog) voice technology (the Public

Switched Telephone Network, or PSTN41) to Voice over Internet

Protocol (VoIP42). So far, the move to VoIP is mostly internal to the

37 https://en.wikipedia.org/wiki/Next-generation_network
38 https://en.wikipedia.org/wiki/Signalling_System_No._7
39 https://en.wikipedia.org/wiki/Integrated_Services_Digital_Network
40 https://en.wikipedia.org/wiki/International_Telecommunication_Union
41 https://en.wikipedia.org/wiki/Public_switched_telephone_network
42 https://en.wikipedia.org/wiki/Voice_over_IP

Chapter 1 IntroduCtIon

https://en.wikipedia.org/wiki/Next-generation_network
https://en.wikipedia.org/wiki/Signalling_System_No._7
https://en.wikipedia.org/wiki/Integrated_Services_Digital_Network
https://en.wikipedia.org/wiki/International_Telecommunication_Union
https://en.wikipedia.org/wiki/Public_switched_telephone_network
https://en.wikipedia.org/wiki/Voice_over_IP
https://en.wikipedia.org/wiki/Next-generation_network
https://en.wikipedia.org/wiki/Signalling_System_No._7
https://en.wikipedia.org/wiki/Integrated_Services_Digital_Network
https://en.wikipedia.org/wiki/International_Telecommunication_Union
https://en.wikipedia.org/wiki/Public_switched_telephone_network
https://en.wikipedia.org/wiki/Voice_over_IP

17

telcos. What is in your house and company is good old POTS43 (Plain

Old Telephone Service).

• In the “last mile,” NGN involves migration from legacy split voice and

data networks to Digital Subscriber Line (DSL), making it possible to

finally remove the legacy voice switching infrastructure. Today, more

and more telcos are running FTTH44 (Fiber to the Home), which is of

course digital all the way.

• In cable access networks, NGN involves migration of constant bit

rate voice to Packet Cable standards that provide VoIP and Session

Initiation Protocol (SIP) services. These are provided over DOCSIS45

(Data Over Cable Service Interface Specification) as the cable data

layer standard. DOCSIS 3.0 does include good support for IPv6,

though it requires major upgrades to existing infrastructure. There is

also a “DOCSIS 2.0 + IPv6” standard, which supports IPv6 even over

the older DOCSIS 2.0 framework, typically requiring only a firmware

upgrade in equipment. That will likely get rolled out before DOCSIS

3.0 can be. Especially in the United States, DOCSIS 3.0 is finally being

widely deployed, with speeds even above 1 Gbps.

A major part of NGN is IMS46 (the IP Multimedia Subsystem). To understand IMS,

I highly recommend the book The 3G IP Multimedia Subsystem (IMS): Merging the

Internet and the Cellular Worlds, by Gonzalo Camarillo and Miguel A. Garcia-Martin.

This was published by John Wiley & Sons, in 2004. This book says that IMS (which is

the future of all telephony) was designed to work only over IPv6, using DHCPv6, DNS

over IPv6, E.164 Number Mapping (ENUM), and Session Initiation Protocol/Real-Time

Transport Protocol (SIP/RTP) over IPv6. IMS is so IPv6 specific that some of the primary

concerns are how legacy IPv4-only SIP-based user agents (hardphones and softphones)

will communicate with the IPv6 core. One approach is to use dual-stack SIP proxies that

can in effect translate between SIP over IPv4 and SIP over IPv6. Translation of the media

component (RTP) is a bit trickier and will be handled by Network Address Translation

between IPv4 and IPv6. Newer IPv6-compliant user agents will be able to interoperate

43 https://en.wikipedia.org/wiki/Plain_old_telephone_service
44 https://en.wikipedia.org/wiki/Fiber_to_the_x
45 https://en.wikipedia.org/wiki/DOCSIS
46 https://en.wikipedia.org/wiki/IP_Multimedia_Subsystem

Chapter 1 IntroduCtIon

https://en.wikipedia.org/wiki/Plain_old_telephone_service
https://en.wikipedia.org/wiki/Fiber_to_the_x
https://en.wikipedia.org/wiki/DOCSIS
https://en.wikipedia.org/wiki/IP_Multimedia_Subsystem
https://en.wikipedia.org/wiki/Plain_old_telephone_service
https://en.wikipedia.org/wiki/Fiber_to_the_x
https://en.wikipedia.org/wiki/DOCSIS
https://en.wikipedia.org/wiki/IP_Multimedia_Subsystem

18

directly with the IMS core, without any gateways, and solve many problems. They

are beginning to appear. One example is some dual-stack IP phones from the Korean

company Moimstone.47

The first “Internet over telco wireless service” in early 2G networks was WAP48

(Wireless Application Protocol). WAP 1.0 was released in April 1998. WAP 1.1 followed

in 1999, followed by WAP 1.2 in June 2000. The Short Message System (SMS49) was

introduced, but only IPv4 was supported. Speed and capabilities were somewhat

underwhelming.

2.5G systems improved on WAP with GPRS50 (General Packet Radio Service), with

theoretical data rates of 56–114 Kbps. GPRS included “always on” Internet access,

Multimedia Messaging Service (MMS51), and point-to-point service. It increased the

speed of SMS to about 30 messages/second. Even Filipinos can’t text that fast. As with

WAP, only IPv4 was supported.

2.75G systems introduced EDGE52 (Enhanced Data Rates for GSM Evolution), also

known as EGPRS (Enhanced GPRS). EDGE service provided up to 2 Mbps to a stationary

or walking user and 348 Kbps in a moving vehicle. IPv6 service has been demonstrated

over EDGE but is not widely deployed.

3G systems introduced HSPA53 (High-Speed Packet Access), which consisted of two

protocols, HSDPA (High-Speed Downlink Packet Access) with theoretical speeds of up

to 14 Mbps service and HSUPA (High-Speed Uplink Packet Access) with up to 5.8 Mbps

service. Real performance was again somewhat lower, but better than with EDGE. HSPA

had good support for IPv6.

The last gasp for 3G (sometimes called “3.9G”) is LTE54 (Long-Term Evolution).

LTE is completely based on IP and was supposed to be based on IPv6. Early versions of

the specification clearly described it with IPv6 mandatory and IPv4 support optional.

It was later reworded to make most aspects “IPv4v6” (dual stack). The reality is mostly

47 http://moimstone.com/eng/main.php
48 https://en.wikipedia.org/wiki/Wireless_Application_Protocol
49 https://en.wikipedia.org/wiki/SMS
50 https://en.wikipedia.org/wiki/General_Packet_Radio_Service
51 https://en.wikipedia.org/wiki/Multimedia_Messaging_Service
52 https://en.wikipedia.org/wiki/Enhanced_Data_Rates_for_GSM_Evolution
53 https://en.wikipedia.org/wiki/High_Speed_Packet_Access
54 https://en.wikipedia.org/wiki/LTE_(telecommunication)

Chapter 1 IntroduCtIon

http://moimstone.com/eng/main.php
https://en.wikipedia.org/wiki/Wireless_Application_Protocol
https://en.wikipedia.org/wiki/SMS
https://en.wikipedia.org/wiki/General_Packet_Radio_Service
https://en.wikipedia.org/wiki/Multimedia_Messaging_Service
https://en.wikipedia.org/wiki/Enhanced_Data_Rates_for_GSM_Evolution
https://en.wikipedia.org/wiki/High_Speed_Packet_Access
https://en.wikipedia.org/wiki/LTE_(telecommunication)
http://moimstone.com/eng/main.php
https://en.wikipedia.org/wiki/Wireless_Application_Protocol
https://en.wikipedia.org/wiki/SMS
https://en.wikipedia.org/wiki/General_Packet_Radio_Service
https://en.wikipedia.org/wiki/Multimedia_Messaging_Service
https://en.wikipedia.org/wiki/Enhanced_Data_Rates_for_GSM_Evolution
https://en.wikipedia.org/wiki/High_Speed_Packet_Access
https://en.wikipedia.org/wiki/LTE_(telecommunication)

19

just IPv4. 3G was still based on two parallel infrastructures (circuit switched and packet

switched). LTE is packet switched only (“all IP”). There are a few deployments of LTE

(some of which are described incorrectly as “4G”) around the world.

4G systems have been around for some time. These provide even higher-speed

wireless transports. Originally 4G was supposed to be the big change to IP only, but

IPv6 wasn’t widely enough deployed, and vendors wanted to sell the higher speed as

something really different.

So 5G is now being deployed. This will use an all-IP infrastructure for both wired and

wireless. The specification for 5G claims peak downlink rates of as much as 1 Gbps and

uplink rates of several hundred Mbps. 5G requires a “flat” IP infrastructure (no NAT),

which can only be accomplished with IPv6. IPv4 address space depletion happened

some time ago, so IPv4 is not even an option this time around. IPTV55 is a key part of 5G,

which requires fully functional multicast, scalable to very large customer bases. That also

requires IPv6.

So clearly the telco’s NGN is moving more and more toward IPv6. Some deployments

are still mostly IPv4. However, NGN is just as clearly not the Third Internet described in

this book. You might say that NGN (once it reaches 5G) will be just another one of the

major subsystems hosted on the Third Internet, peer to email, the Web, IPTV, etc. 5G

is also called “the Grand Convergence,” referring to the long-awaited merging of “the

Internet” and “telephony” into a single seamless network.

There will be much more to the Third Internet than just telephony, including most

broadcast entertainment, exciting new possibilities for non-telephonic communication

paradigms (fully decentralized instant messaging and peer-to-peer (P2P) collaboration),

smart building sensor and control systems, and ubiquitous connectivity in essentially

all consumer electronics, including MP3 players, electronic book readers, cameras, and

personal health monitoring. It will also impact automotive design. See www.car- to- car.

org56 for some exciting new concepts in “cooperative Intelligent Transport Systems”

that depend heavily on IPv6 concepts such as Networks in Motion (NEMO) defined in

Request for Comments (RFC) 396357 and ad hoc networks. In fact, only IPv6 is being used

in their designs, although it is a slightly modified version of IPv6 that is missing some

55 https://en.wikipedia.org/wiki/IPTV
56 http://www.car-to-car.org/
57 https://tools.ietf.org/html/rfc3963

Chapter 1 IntroduCtIon

https://en.wikipedia.org/wiki/IPTV
http://www.car-to-car.org
http://www.car-to-car.org
https://tools.ietf.org/html/rfc3963
https://en.wikipedia.org/wiki/IPTV
http://www.car-to-car.org/
https://tools.ietf.org/html/rfc3963

20

common functionality such as Duplicate Address Detection (DAD). Their modified IPv6

runs on top of a new, somewhat unusual Link Layer called the C2C Communication

Network, which itself is built on top of IEEE 802.11p,58 also known as Wireless Access in

Vehicular Environments (WAVE).

 Is It Internet2 or National LambdaRail?
Internet259 is an advanced academic and industrial consortium led by the research and

education community, including over 200 higher education institutions and the research

departments of several large corporations. They have deployed a worldwide research

network called the Internet2 network. While IPv6 is definitely being used on Internet2,

they also use a lot of IPv4. Their focus is more on very high performance than which

version of IP is used. The first part of the Internet2 network (called Abilene60) was built in

1998, running at 10 Gbps, even over Wide Area Network (WAN) links. It was associated

with the National LambdaRail61 (NLR) project for some time. Internet2 and NLR have

58 https://tools.ietf.org/html/rfc3963
59 https://en.wikipedia.org/wiki/Internet2
60 https://en.wikipedia.org/wiki/Abilene_Network
61 https://en.wikipedia.org/wiki/National_LambdaRail

Figure 1-3. NGN

Chapter 1 IntroduCtIon

https://en.wikipedia.org/wiki/IEEE_802.11p
https://en.wikipedia.org/wiki/National_LambdaRail
https://tools.ietf.org/html/rfc3963
https://en.wikipedia.org/wiki/Internet2
https://en.wikipedia.org/wiki/Abilene_Network
https://en.wikipedia.org/wiki/National_LambdaRail

21

since split and moved forward along two different paths. Today, most links in the global

Internet2 network are running at 100 Gbps. This is 10–100 times faster than typical WAN

links used by major corporations today.

Internet2 also features advanced research into secure identity and access

management tools, on-demand creation and scheduling of high-bandwidth, high-

performance circuits, layer 2 Virtual Private Networks (VPNs), and dynamic circuit

networks (DCNs).

A recent survey of Internet2 sites showed that only a small percentage of them have

even basic IPv6 functionality deployed, such as IPv6 DNS, email, or VoIP over IPv6.

IPv6 is independent of their goals. Essentially, Internet2 is primarily concerned more

with extreme high-end performance (100 Gbps and up) and very advanced networking

concepts not likely to be used in real-world systems for decades. Although they do

profess support for IPv6, they have not aggressively deployed it, and it is definitely

not central to their efforts. They are doing little or no work on IPv6 itself or in new

commercial applications based on IPv6. I guess those areas are not very exciting to

academicians. They are very exciting to me – actually, more exciting than 100 Gbps links.

The real-world Third Internet I am writing about in this book will be built primarily

with equipment that mostly has the same performance as the current Second Internet

(no more than 1 Gbps on WAN links for some time to come and only that high in

advanced countries). In much of the world today, 5–120 Mbps is considered good.

Maybe 100 Gbps will be widely deployed by 2030–2040, but ultrahigh performance is not

necessary to provide the revolutionary benefits described in this book. To give you an

idea, Standard-Definition (SD) TV requires about 2 Mbps bandwidth per simultaneously

viewed channel, and High-Definition (HD) TV requires about 10 Mbps bandwidth. That

is about the most bandwidth-intensive application you will likely see for most users for

some time to come. Voice only requires about 8–64 Kbps for good quality. In Japan and

Korea today, home Internet accounts typically have about 50–100 Mbps performance.

In my hotel room in Tokyo several years ago, I measured 42 Mbps throughput. That is

enough for almost any use today. I now have 1 Gbps Internet service in my home in SG

(for about S$49 a month). Most users, even in companies, would be really challenged to

make effective use of 100 Gbps bandwidth. With that bandwidth you could download the

entire Encyclopedia Britannica in just a few seconds (including images) or a typical Blu-

ray movie (about 25 gigabytes) in about 2 seconds. With current caps on network traffic

volume, you would go through your entire month’s allowance in a matter of seconds.

That is actually a serious concern even with 5G, with 1 Gbps potential speeds.

Chapter 1 IntroduCtIon

22

The necessary equipment and applications for the Third Internet can in many cases

be created with software or firmware upgrades (except for older and low-end devices

that don’t have enough RAM or ROM to handle the more complex software and in high-

end telco- and Internet Service Provider (ISP)–level products that include hardware

acceleration).

The main technical advantages of the Third Internet will not be higher bandwidth,

but the vastly larger address space, the restoration of the flat address space (elimination

of NAT), and the general availability of working multicast. All these are made possible

by migration to IPv6, which involves insignificant costs compared with supporting 100

Gbps WAN links. Perhaps generally available WAN bandwidth in that range will be what

characterizes the Fourth Internet. I personally would just consider that “faster Third

Internet.”

So Internet2 is not the Third Internet I am writing about. Internet2 and NLR are

primarily academic exercises that will not bear fruit for many decades. What they are

doing is very important in the long run, but it does not address, and will not solve,

the really major problems facing the Second Internet today. The Third Internet is

being rolled out today and accounted for over 50% of global traffic in 2018. That is the

beginning of the end for IPv4. Maybe 100 Gbps service will characterize the Fourth

Internet.

 Is It Web 2.0?
First, if you think that the terms “World Wide Web” and “Internet” are synonymous,

let me expand your worldview a bit, in the same way that Copernicus did for people’s

view of our Solar System back in the mid-1500s. The “World Wide Web” is basically one

Figure 1-4. Logos for Internet2 and National LambdaRail

Chapter 1 IntroduCtIon

23

service that runs on a much larger, more complex thing, which is called the Internet.

The Web is a simple client-server system based on HTTP62 (Hypertext Transfer Protocol)

and HTML63 (Hypertext Markup Language). Due to extremely serious limitations and

inefficiencies of these standards, both have been enhanced and extended numerous

times. The result is still not particularly elegant to real network software designers or

engineers, but it has clearly had a major impact on the world. The technology of the

Web was a refinement and convergence of several ideas and technologies that were

in widespread use before HTML and HTTP were created by Tim Berners-Lee in the

late 1980s, at CERN. But there is a lot to the Internet beyond the Web (email, instant

messaging, video conferencing, VoIP, file transfer, peer-to-peer (P2P), VPNs, IPTV, etc.).

There are thousands of Internet protocols, of which the Web uses one (HTTP).

 Hypertext, WAIS/SGML, and Gopher

The terms Hypertext and Hypermedia were coined by Ted Nelson in 1965, at Brown

University. These terms referred to online text documents (or rich media, including

pictures, sound, and other media content) that contained links that allowed building

paths from any word or phrase in the document to other parts of the same document

or parts of other documents that were also online. In August 1987, Apple Computer

released the first commercial Hypertext-based application, called HyperCard, for the

Macintosh. There were already document storage and retrieval systems on the early

Internet, such as WAIS64 (Wide Area Information Server). WAIS was based on the ANSI

Z39.50:1988 standard and was developed in the late 1980s by a group of companies

including Thinking Machines, Apple Computer, Dow Jones, and KPMG Peat Marwick.

As with the Web, there were both WAIS servers and clients. A later version of WAIS was

based on ANSI Z39.50:1992, which included SGML (Standard Generalized Markup

Language, ISO 8879:1986) for more professional-looking documents. There was another

Internet application called Gopher65 (University of Minnesota, circa 1991) that could

distribute, search for, and retrieve documents. Gopher was also primarily text based and

imposed a very strict hierarchical structure on information.

62 https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
63 https://en.wikipedia.org/wiki/HTML
64 https://en.wikipedia.org/wiki/Wide_area_information_server
65 https://en.wikipedia.org/wiki/Gopher_(protocol)

Chapter 1 IntroduCtIon

https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
https://en.wikipedia.org/wiki/HTML
https://en.wikipedia.org/wiki/Wide_area_information_server
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
https://en.wikipedia.org/wiki/HTML
https://en.wikipedia.org/wiki/Wide_area_information_server
https://en.wikipedia.org/wiki/Gopher_(protocol)

24

 HTML and HTTP

Tim Berners-Lee combined these three concepts (Hypertext, WAIS/SGML, and Gopher

document retrieval) to create HTTP and HTML. HTML was a very watered-down and

limited markup language compared with SGML. SGML is capable of creating highly

sophisticated, professional-looking books. In comparison, HTML allows very limited

control over the final appearance of the document on the client’s screen. HTTP was

a very simple protocol designed to serve HTML documents to HTTP client programs

called web browsers. A basic HTTP server can be written in one afternoon and consists of

about half a page of the C programming language (I’ve done it and retrieved documents

from it with a standard browser). The first browser (Lynx,66 1992) was very limited (text

only, but including Hypertext links). In 1993, at the National Center for Supercomputing

Applications (NCSA) at the University of Illinois, the first Mosaic67 web browser was

created (running on X Windows in UNIX). Because it was created for use on X Windows

(a platform with good support for computer graphics), many graphics capabilities

were added. With the release of web browsers for PC and Macintosh, the number of

servers went from 500 in 1993 to 10,000 in 1994. The World Wide Web has since grown

to millions of servers and many versions of the web client (Internet Explorer, Mozilla

Firefox, Safari, Opera, Chrome, etc.). It’s been so successful that a lot of people today

think that the “World Wide Web” is the Internet. It’s really just one small part of it.

 Web 2.0

The term Web 2.068 was first coined by Darcy DiNucci in 1999, in a magazine article. The

current usage dates from an annual conference that began in 2004, called “Web 2.0,”

organized and run by Tim O’Reilly (owner of O’Reilly Media, publisher of many excellent

books on computing).

Many of the promoters of the term Web 2.0 characterize what came before

(which they call Web 1.0) as being “Web as Information Source.” Web 1.0 is based on

technologies such as PHP, Ruby, ColdFusion, Perl, Python, and ASP (Active Server

Pages). In comparison, Web 2.0 is “Network as Platform,” or the “participatory Web.”

It uses the technologies of Web 1.0, plus new things such as Asynchronous JavaScript,

66 https://en.wikipedia.org/wiki/Lynx_(web_browser)
67 https://en.wikipedia.org/wiki/Mosaic_(web_browser)
68 https://en.wikipedia.org/wiki/Web_2.0

Chapter 1 IntroduCtIon

https://en.wikipedia.org/wiki/Lynx_(web_browser)
https://en.wikipedia.org/wiki/Mosaic_(web_browser)
https://en.wikipedia.org/wiki/Web_2.0
https://en.wikipedia.org/wiki/Lynx_(web_browser)
https://en.wikipedia.org/wiki/Mosaic_(web_browser)
https://en.wikipedia.org/wiki/Web_2.0

25

XML, Ajax, Adobe Flash, and Adobe Flex. Typical Web 2.0 applications are the Wiki69

(and the world’s biggest wiki, the Wikipedia70), blogging sites, social networking sites like

Facebook, video publishing sites like YouTube, photographic snapshot publishing sites

like Flickr, Google Maps, etc.

Andrew Keen (British-American entrepreneur and author) claims that Web 2.0

has created a cult of digital narcissism and amateurism, which undermines the very

notion of expertise. It allows anyone anywhere to share their own opinions and content,

regardless of their talent, knowledge, credentials, or bias. It is “creating an endless

digital forest of mediocrity: uninformed political commentary, unseemly home videos,

embarrassingly amateurish music, unreadable poems, essays and novels.” He also says

that Wikipedia is full of “mistakes, half-truths and misunderstandings.” Perhaps Web

2.0 has made it too easy for the mass public to participate. Tim Berners-Lee’s take on

Web 2.0 is that this is just a “piece of jargon.” In the finest tradition of Web 2.0, these

comments, which were found in the Wikipedia article on Web 2.0, probably include

some mistakes, half-truths, and misunderstandings.

Basically, Web 2.0 does not introduce any revolutionary new technology or

protocols; it is more a minor refinement of what was already being done on the Web, in

combination with a new emphasis on end users becoming not just passive consumers,

but also producers of web content. The Third Internet will actually help make Web 2.0

work better, as it removes the barriers that have existed in the Second Internet since

the introduction of NAT to anyone becoming a producer of content. If anything, on the

Third Internet, these trends will be taken even further by decentralizing things. There

will be no need for centralized sites like YouTube or Flickr to publish your content, just

more sophisticated search engines or directories that will allow people to locate content

that will be scattered all over the world. Perhaps that will be the characterizing feature

of Web 3.0? With IPv6 you can run any server (including a web server) on any computer

you have, including your phone, and anyone in the world (who has IPv6) will be able to

access it. Now that’s a major change.

Web 2.0 is a really minor thing compared with the Third Internet. What isn’t pure

marketing hype is an evolutionary development of one of the major services (the

World Wide Web) out of perhaps a dozen major subsystems that the Third Internet is

capable of hosting. These include global telephony, newer forms of communication

like decentralized instant messaging, major new peer-to-peer applications (not just

69 https://en.wikipedia.org/wiki/Wiki
70 https://en.wikipedia.org/wiki/Main_Page

Chapter 1 IntroduCtIon

https://en.wikipedia.org/wiki/Wiki
https://en.wikipedia.org/wiki/Main_Page
https://en.wikipedia.org/wiki/Wiki
https://en.wikipedia.org/wiki/Main_Page

26

file sharing), global broadcast entertainment via multicast IPTV, connectivity between

essentially all consumer electronic products, personal healthcare sensor nets, smart

building sensor nets, etc.

 Whatever Happened to IPv5?
Two of the common questions people ask when they start learning about IPv6 are “If

it’s the next version after IPv4, why isn’t it called IPv5?” and “What happened to the first

three versions of IP?”

There is a 4-bit field in every IP packet header that contains the IP version number

in binary. In IPv4, that field contains the binary value 0100 (4 in decimal) in every

packet. An earlier protocol (defined in RFC 1190,71 “Experimental Internet Stream

Protocol, Version 2 (ST-II),” October 1990) used the binary pattern 0101 (5 in decimal)

71 https://tools.ietf.org/html/rfc1190

Figure 1-5. Web 2.0 logo

Chapter 1 IntroduCtIon

https://tools.ietf.org/html/rfc1190
https://tools.ietf.org/html/rfc1190

27

in the IP Version field of the packet header. The Internet Stream Protocol was not really

a replacement for IPv4 and isn’t even used today, but unfortunately the binary pattern

0101 was allocated to it. The next available bit pattern was 0110 binary (6 in decimal). It

would be even more embarrassing than explaining that there was no IPv5 to explain why

the IP version number field for IPv5 contained the value 6. Now you know.

So what did happen to IPv1, IPv2, and IPv3? Those never made it out of the lab. The

first version of IP that was released to the general public was IPv4.

ARPANET72 (based on NCP) was the First Internet. It didn’t use any version of the

Internet Protocol – it used NCP. IPv4, the foundation protocol of the Second Internet,

was the first public release of the Internet Protocol. IPv6, the foundation protocol of the

Third Internet, is the second public release of the Internet Protocol. So we could have

been talking about the transition from IPv1 to IPv2!

There have been rumors about an IPv973 protocol in China. A venture capital firm

in Hong Kong actually asked me if China was already that far ahead of the rest of the

world, and shouldn’t we be supporting their version? It seems some researcher in a

university there published a paper on an “IPv9,” but it was never implemented and

wasn’t a replacement for IPv4 (let alone IPv6) anyway. It was a way to use ten-digit

decimal phone numbers in a modified DNS implementation instead of alphanumeric

domain names, for all nodes on the Internet. I guess if you speak only Chinese, a ten-

digit numeric string may seem easier to use than an English domain name using Latin

characters. Fortunately for Chinese speakers, we now have Internationalized Domain

Names74 in Chinese and other languages.

There are even internationalized top-level domains (TLDs) now. For an example, see

https://www.101domain.com/%E4%B8%AD%E5%9B%BD.htm.75

Actually, there is a real RFC about IPv9, which you might enjoy reading. See RFC

1606,76 “A Historical Perspective on the Usage of IP Version 9,” April 1, 1994. This has

nothing to do with the Chinese IPv9 and is much funnier. Please notice the release date

of RFC 1606. There is a tradition of releasing gag RFCs on April 1. Some of them are

hilarious (well, maybe you have to be a geek to see the humor).

72 https://en.wikipedia.org/wiki/ARPANET
73 https://www.telecomasia.net/content/strange-case-chinas-ipv9-0
74 https://en.wikipedia.org/wiki/Internationalized_domain_name
75 https://www.101domain.com/%E4%B8%AD%E5%9B%BD.htm
76 https://www.ietf.org/rfc/rfc1606.txt

Chapter 1 IntroduCtIon

https://en.wikipedia.org/wiki/ARPANET
https://www.telecomasia.net/content/strange-case-chinas-ipv9-0
https://en.wikipedia.org/wiki/Internationalized_domain_name
https://en.wikipedia.org/wiki/Internationalized_domain_name
https://www.101domain.com/中国.htm
https://www.ietf.org/rfc/rfc1606.txt
https://www.ietf.org/rfc/rfc1606.txt
https://en.wikipedia.org/wiki/ARPANET
https://www.telecomasia.net/content/strange-case-chinas-ipv9-0
https://en.wikipedia.org/wiki/Internationalized_domain_name
https://www.101domain.com/%E4%B8%AD%E5%9B%BD.htm
https://www.ietf.org/rfc/rfc1606.txt

28

 Let’s Eliminate the Middleman
One of the things that the Third Internet does better than anything is disintermediation.77

Just as email eliminated the need for a central post office and Amazon.com has mostly

eliminated the need for physical bookstores, the features of the Third Internet will

eliminate the need for many other existing centralized organizations and services. With

a real decentralized end-to-end connectivity model, there is no need for two users to

connect to a central server (such as Skype or Messenger) in order to chat with each other.

They will simply connect directly to each other. That’s hard to do today, because of NAT

and an acute shortage of public IPv4 addresses.

The restoration of the original (pre-NAT) flat address space and the plethora of

public addresses will allow anyone or anything to connect directly to anyone or anything

on the Third Internet. It’s going to be a very different online world. Many business

models will go by the way, and many new ones will explode on the scene and make some

new entrepreneurs very wealthy. Someone will need to provide centralized directory and

presence servers that will let people locate each other, so that they can connect directly

to each other. I am working on that very problem now.

Several years ago, a gentleman in my previous hometown of Atlanta, Georgia (home

to Coca-Cola and UPS), had a small UHF TV station (WTBS, channel 17) that mostly

broadcast old movies and Atlanta Braves baseball games, both of which he loved. He

was one of the first people to realize that he could relay his TV station’s signal through

a transponder on a geostationary satellite (“that’s just a really tall broadcast antenna”),

and the rest is history. The man was Ted Turner,78 and his insight created the Turner

Broadcasting System (TBS), which along the way produced CNN, CNN Headline News,

Cartoon Network, Turner Network Television (TNT), and many other things. His success

allowed him to buy the Braves baseball team and the entire film library of MGM (not

to mention a famous starlet wife, sometimes also called “Hanoi Jane”). When he began

relaying his channel 17 signal, his viewership went from maybe 10,000 to 10,000,000

virtually overnight. That was a world-changing insight.

Some bright entrepreneur is going to realize that global multicast IPTV over IPv6

is the same kind of opportunity. Wonder what they will create with the wealth thereby

generated? What country will they be from? I’m betting on India.

77 https://en.wikipedia.org/wiki/Disintermediation
78 https://en.wikipedia.org/wiki/Ted_Turner

Chapter 1 IntroduCtIon

https://en.wikipedia.org/wiki/Ted_Turner
https://en.wikipedia.org/wiki/Disintermediation
https://en.wikipedia.org/wiki/Ted_Turner

29

I did warn you that this is revolutionary, highly disruptive technology. However, with

great disruption comes great opportunity.

 Why Am I the One Writing This Book? Just Who Do
I Think I Am, Anyway?
I have been personally involved in helping create and deploy the Third Internet for

many years. I’ve spoken at IPv6 summits around the world, including Beijing, Seoul,

Kuala Lumpur, Manila, Taipei, Potsdam, and Washington, DC. I have so far invested 25

years of my life and about $9M of my own personal funds (which came from selling a

previous Internet-based venture called CipherTrust where I was cofounder). I’ve built

a new company in Singapore with lots of expertise in PKI and IPv6. It is called Sixscape

Communications79 – we are “The Netscape for the IPv6 Internet.” The Third Internet is by

far the biggest business and technology opportunity I’ve seen in my 45+ years in IT.

Now, have I gotten your attention? Great! Now let’s explore just what the Third

Internet is all about.

 Summary
This chapter covered the three generations of the global Internet, from ARPANET to IPv4

to IPv6. IPv6 is not just another version of one of the many Application Layer protocols

like HTTP v1.1. It is deep in the network stack (in the Internet Layer), so it affects all

Application Layer protocols.

The First Internet (ARPANET) only served a few thousand people, mostly in the

United States. Most of the users were in the US military, the US government, and a few

research institutions (mostly universities). It had 8-bit addresses and was based on the

host-host protocol. It had many of the applications we still use today, like email, FTP,

chat, etc. It lived from roughly 1969 to 1982.

The Second Internet (IPv4 generation) took over from the ARPANET in 1983 and

grew to serve billions of users, worldwide. It used 32-bit addresses, but we ran out of

unique IPv4 public addresses in 2011 and “broke” the Internet with NAT and private

addresses. Many people are still using this today, but it will eventually be phased out.

79 https://sixscape.com/

Chapter 1 IntroduCtIon

https://sixscape.com/

30

The Third Internet (IPv6 generation) began major deployment in about 2014 and will

probably still be in widespread use in 2100. It uses 128-bit addresses, which means we no

longer need NAT or private addresses. Every node can have a globally unique IP address,

even phones and temperature sensors.

We also presented some analogies to help you understand what IPv6 is and what

it isn’t.

Chapter 1 IntroduCtIon

31

CHAPTER 2

History of Computer
Networks Up to IPv4
A long time ago (in a galaxy not too far away), regular people started connecting

computers together. A few brave souls tried to do this with dial-up 1200-baud modems

over phone lines. Pioneers brought up Bulletin Board Systems (BBSs; message boards

that one person at a time could dial into and exchange short messages, and later small

files, with each other). I brought up the eighth BBS in the world, in Atlanta, in about

1977, using code from the original CBBS in Chicago (created by Ward Christensen

and Randy Suess). I used a modem donated by my friend Dennis Hayes (of Hayes

Microcomputer Products). Later there were thousands of online Bulletin Board

Systems, all over the world. Soon there followed commercial “information utilities” like

CompuServe1 and The Source,2 which were like giant Bulletin Board Systems (BBSs) with

many more features. Tens of thousands of users could connect to these simultaneously.

It was like the first crude approximation to the Internet of today, based on circuit-

switched connections over telephone lines. Everything was text oriented (non-graphical)

and very slow. 1200 bits/second was typical at first, although later modems with speeds

of 2400 bits/second, 9600 bits/second, 14.4 Kbps, 28.8 Kbps, and finally 56 Kbps were

developed and came into widespread use. Later these modems were primarily used to

dial into an ISP to connect to the Internet, and some people are still using them this way.

1 https://en.wikipedia.org/wiki/CompuServe
2 https://en.wikipedia.org/wiki/The_Source_(online_service)

© Lawrence E. Hughes 2022
L. E. Hughes, Third Generation Internet Revealed, https://doi.org/10.1007/978-1-4842-8603-6_2

https://en.wikipedia.org/wiki/CompuServe
https://en.wikipedia.org/wiki/The_Source_(online_service)
https://en.wikipedia.org/wiki/CompuServe
https://en.wikipedia.org/wiki/The_Source_(online_service)
https://doi.org/10.1007/978-1-4842-8603-6_2

32

 Real Computer Networking
While home computer users were playing around with modems and Bulletin Board

Systems, the big computer companies were working on ways to connect “real”

computers at higher speeds and with much more complex software.

 Ethernet and Token Ring
Much of this was based on Ethernet,3 which was created by a team at Xerox Palo Alto

Research Center (PARC4) led by Robert Metcalfe5 between 1973 and 1975. The first

released version (1976) ran at 3 Mbps. Metcalfe left PARC in 1979 to create 3Com6

and create commercial products based on Ethernet. Working together with Digital

Equipment Corporation (DEC), Intel, and Xerox (hence the “DIX”7 standard), 3Com

released the first commercial products running at 10 Mbps. Ethernet was standardized

in 1980 by the IEEE (Institute of Electrical and Electronics Engineers) as 802.3. Early

versions ran on 10base2 (a small-diameter coax cable) or 10base5 (a larger-diameter

coax cable). These used a “multidrop” architecture, which was subject to many reliability

problems. With the introduction of the simpler to deploy and manage “unshielded

twisted pair” (UTP) (actually four-pair, or eight-wire) cables (known as 10baseT,

mid-1980s) and star architectures using “hubs” and later “switches,” Local Area Networks

(LANs) really took off. Today, virtually all Ethernet networks use twisted pair copper wire

(up to gigabit speed) or fiber-optic cable (for higher speed and longer runs). I helped

deploy a 10base2 coax Ethernet network in Hong Kong in 1993. Trust me, twisted pair

cabling is a lot easier to work with.

IBM for many years pushed a competing physical layer network standard called

“Token Ring”8 (later standardized as IEEE 802.5). Token Ring was available in 4 Mbps

and 16 Mbps versions. Later, a 100 Mbps version was created, but by then Ethernet

3 https://en.wikipedia.org/wiki/Ethernet
4 https://en.wikipedia.org/wiki/PARC_(company)
5 https://en.wikipedia.org/wiki/Robert_Metcalfe
6 https://en.wikipedia.org/wiki/3Com
7 http://electronicstechnician.tpub.com/14091/css/Ieee-802-3-Ethernet-Dix-193.htm
8 https://en.wikipedia.org/wiki/Token_ring

Chapter 2 history of Computer Networks up to ipv4

https://en.wikipedia.org/wiki/PARC_(company)
https://en.wikipedia.org/wiki/Robert_Metcalfe
https://en.wikipedia.org/wiki/3Com
http://electronicstechnician.tpub.com/14091/css/Ieee-802-3-Ethernet-Dix-193.htm
https://en.wikipedia.org/wiki/Token_ring
https://en.wikipedia.org/wiki/Ethernet
https://en.wikipedia.org/wiki/PARC_(company)
https://en.wikipedia.org/wiki/Robert_Metcalfe
https://en.wikipedia.org/wiki/3Com
http://electronicstechnician.tpub.com/14091/css/Ieee-802-3-Ethernet-Dix-193.htm
https://en.wikipedia.org/wiki/Token_ring

33

dominated the market, and Token Ring quietly died. FDDI9 (Fiber Distributed Data

Interface) still in use today is based on the Token Ring concept.

 Network Software
Network software quickly evolved once Ethernet and Token Ring hardware became

available. One of the main goals was to “hide” the differences between various hardware-

level technologies (Ethernet, Token Ring, Wi-Fi, etc.) and the higher-level software.

This led to the multiple layers of the network stack. The bottom layer is very hardware

specific, and the upper layers introduce more and more hardware independence, so that

applications can be written once and run over any hardware media.

DEC10 was one of the first companies to create networking software with DECnet11

(1975). IBM had System Network Architecture (SNA,12 1974). Xerox created the PARC

Universal Packet protocol13 (PUP protocol, late 1970s), which eventually evolved into

Xerox Network Services14 (XNS, early 1980s) at PARC. XNS was the basis for the late

Banyan VINES15 network OS, based on “VINES IP” (similar to but incompatible with

IPv4 from TCP/IP). Banyan VINES included the first network directory service, called

“StreetTalk.”16 XNS also was the basis for Novell NetWare17 (IPX/SPX, 1983), which

eventually added its own NetWare Directory Services (NDS,18 1993).

Microsoft worked with 3Com to create their own network OS, called LAN Manager.

It used the SMB19 (Server Message Block) protocol on top of either the NBF (NetBIOS20

Frames) protocol or modified XNS. In 1990, Microsoft added support for TCP/IP as an

alternate protocol (LAN Manager 2.0). With the release of Windows NT Advanced Server

9 https://en.wikipedia.org/wiki/Fiber_Distributed_Data_Interface
10 https://en.wikipedia.org/wiki/Digital_Equipment_Corporation
11 https://en.wikipedia.org/wiki/DECnet
12 https://en.wikipedia.org/wiki/IBM_Systems_Network_Architecture
13 https://en.wikipedia.org/wiki/PARC_Universal_Packet
14 https://en.wikipedia.org/wiki/Xerox_Network_Systems
15 https://en.wikipedia.org/wiki/Banyan_VINES
16 http://banyan-vines.bamertal.com/
17 https://en.wikipedia.org/wiki/NetWare
18 https://en.wikipedia.org/wiki/NetIQ_eDirectory
19 https://en.wikipedia.org/wiki/Server_Message_Block
20 https://en.wikipedia.org/wiki/NetBIOS

Chapter 2 history of Computer Networks up to ipv4

https://en.wikipedia.org/wiki/Fiber_Distributed_Data_Interface
https://en.wikipedia.org/wiki/Digital_Equipment_Corporation
https://en.wikipedia.org/wiki/DECnet
https://en.wikipedia.org/wiki/IBM_Systems_Network_Architecture
https://en.wikipedia.org/wiki/PARC_Universal_Packet
https://en.wikipedia.org/wiki/PARC_Universal_Packet
https://en.wikipedia.org/wiki/Xerox_Network_Systems
https://en.wikipedia.org/wiki/NetWare
https://en.wikipedia.org/wiki/NetIQ_eDirectory
https://en.wikipedia.org/wiki/Server_Message_Block
https://en.wikipedia.org/wiki/NetBIOS
https://en.wikipedia.org/wiki/Fiber_Distributed_Data_Interface
https://en.wikipedia.org/wiki/Digital_Equipment_Corporation
https://en.wikipedia.org/wiki/DECnet
https://en.wikipedia.org/wiki/IBM_Systems_Network_Architecture
https://en.wikipedia.org/wiki/PARC_Universal_Packet
https://en.wikipedia.org/wiki/Xerox_Network_Systems
https://en.wikipedia.org/wiki/Banyan_VINES
http://banyan-vines.bamertal.com/
https://en.wikipedia.org/wiki/NetWare
https://en.wikipedia.org/wiki/NetIQ_eDirectory
https://en.wikipedia.org/wiki/Server_Message_Block
https://en.wikipedia.org/wiki/NetBIOS

34

in 1993, Microsoft finally phased out LAN Manager. By Windows NT v3.5121 (May 1995),

Microsoft encouraged users to deploy only TCP/IP (4 years ahead of Novell’s support for

TCP/IP). This lead time allowed Microsoft to take over leadership in personal computer

networks from Novell. Microsoft introduced their version of network directory services in

Windows Server 2000, now known as Active Directory.22 The SMB protocol still survives

as Microsoft’s “File and Printer Sharing” protocol (now layered on TCP/IP, instead of

NetBIOS or XNS). An open source implementation of this is available as SAMBA.23

 The Beginnings of the Internet (ARPANET)
While all this commercial activity was going on, the US military (at their Defense

Advanced Research Projects Agency, or DARPA24), with the help of Bolt, Beranek, and

Newman (BBN25) and Mitre,26 were designing a new, decentralized communication

system based on packet switching. Existing communication systems (telephone, radio,

etc.) were centralized and hence subject to being completely disabled due to the failure

or loss of a few central nodes. Packet-switched networks were highly decentralized and

had a fascinating new property, which is that you could lose large parts of a network

and the remaining parts would still work (assuming at least some links connected the

working parts).

The first network protocol developed as part of ARPANET was called the 182227

protocol (named after BBN Report 1822) and was implemented by a Network Control

Program,28 so the protocol was often referred to as NCP. The first email was sent over

NCP in 1971, and the File Transfer Protocol followed in 1973. On January 1, 1983 (“flag

day”), NCP was turned off officially, leaving only IPv4 on the Internet. I consider the

NCP era to be the First Internet and the IPv4 era as the Second Internet. That makes

the evolving IPv6 era the Third Internet. Fortunately, there is no need for a flag day to

go from IPv4 to IPv6, as they can coexist (and probably will for perhaps 5–10 years).

21 https://en.wikipedia.org/wiki/Windows_NT_3.51
22 https://en.wikipedia.org/wiki/Active_Directory
23 https://en.wikipedia.org/wiki/Samba_(software)
24 https://en.wikipedia.org/wiki/DARPA
25 https://en.wikipedia.org/wiki/BBN_Technologies
26 https://en.wikipedia.org/wiki/Mitre_Corporation
27 www.networksorcery.com/enp/rfc/rfc878.txt
28 https://en.wikipedia.org/wiki/Network_Control_Program

Chapter 2 history of Computer Networks up to ipv4

https://en.wikipedia.org/wiki/Windows_NT_3.51
https://en.wikipedia.org/wiki/Active_Directory
https://en.wikipedia.org/wiki/Samba_(software)
https://en.wikipedia.org/wiki/DARPA
https://en.wikipedia.org/wiki/BBN_Technologies
https://en.wikipedia.org/wiki/Mitre_Corporation
http://www.networksorcery.com/enp/rfc/rfc878.txt
https://en.wikipedia.org/wiki/Windows_NT_3.51
https://en.wikipedia.org/wiki/Active_Directory
https://en.wikipedia.org/wiki/Samba_(software)
https://en.wikipedia.org/wiki/DARPA
https://en.wikipedia.org/wiki/BBN_Technologies
https://en.wikipedia.org/wiki/Mitre_Corporation
http://www.networksorcery.com/enp/rfc/rfc878.txt
https://en.wikipedia.org/wiki/Network_Control_Program

35

We learned not to do that from the NCP to IPv4 transition. They broke global email for

months in that process.

In May 1974, Vint Cerf29 and Bob Kahn30 released the paper “A Protocol for Packet

Network Interconnection.”31 This described a monolithic protocol called TCP that

combined the features of both modern TCP and IPv4. Later Jon Postel32 was instrumental

in splitting apart TCP and IP as we know them today. Vint Cerf is today considered the

“father of TCP/IP” and is now an “Evangelist” at Google. He understands very well the

problems with the current implementation of IPv4 (and why these things were done).

He advocates for users to migrate to IPv6, which restores his original concept of a flat

address space (no NAT), where any node can connect directly to any other node. One of

my proudest possessions is a copy of RFC 791 (IPv4) autographed in person by Vint Cerf.

If you’d like to read about the creation of the Second Internet, I recommend the book

Where Wizards Stay Up Late: The Origins of the Internet,33 by Katie Hafner and Matthew

Lyon. It is of considerable interest to those of us creating the Third Internet, as we are

facing some of the same problems they did. Only this time around, we’ve got over a

billion legacy users (and staggering investments in hardware and software) to worry

about. On the other hand, we’ve got three decades of operational experience with IPv4 to

draw upon.

Higher-level software protocols were built on top of the TCP and IP layers, called

“application protocols,” such as SMTP34 and IMAP35 (for email), FTP36 (for file transfer),

Telnet37 (for terminal emulation), and more recently HTTP38 (used in the World Wide

Web) and SIP39 and RTP40 (used in VoIP). The resulting suite of protocols became known

29 https://en.wikipedia.org/wiki/Vint_Cerf
30 https://en.wikipedia.org/wiki/Bob_Kahn
31 https://ieeexplore.ieee.org/document/1092259
32 https://en.wikipedia.org/wiki/Jon_Postel
33 www.amazon.com/Where-Wizards-Stay-Up-Late/dp/0684832674
34 https://en.wikipedia.org/wiki/Simple_Mail_Transfer_Protocol
35 https://en.wikipedia.org/wiki/Internet_Message_Access_Protocol
36 https://en.wikipedia.org/wiki/File_Transfer_Protocol
37 https://en.wikipedia.org/wiki/Telnet
38 https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
39 https://en.wikipedia.org/wiki/Session_Initiation_Protocol
40 https://en.wikipedia.org/wiki/Real-time_Transport_Protocol

Chapter 2 history of Computer Networks up to ipv4

https://en.wikipedia.org/wiki/Vint_Cerf
https://en.wikipedia.org/wiki/Bob_Kahn
https://ieeexplore.ieee.org/document/1092259
https://ieeexplore.ieee.org/document/1092259
https://en.wikipedia.org/wiki/Jon_Postel
https://www.amazon.com/Where-Wizards-Stay-Up-Late/dp/0684832674
https://en.wikipedia.org/wiki/Simple_Mail_Transfer_Protocol
https://en.wikipedia.org/wiki/Internet_Message_Access_Protocol
https://en.wikipedia.org/wiki/File_Transfer_Protocol
https://en.wikipedia.org/wiki/Telnet
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
https://en.wikipedia.org/wiki/Session_Initiation_Protocol
https://en.wikipedia.org/wiki/Real-time_Transport_Protocol
https://en.wikipedia.org/wiki/Vint_Cerf
https://en.wikipedia.org/wiki/Bob_Kahn
https://ieeexplore.ieee.org/document/1092259
https://en.wikipedia.org/wiki/Jon_Postel
http://www.amazon.com/Where-Wizards-Stay-Up-Late/dp/0684832674
https://en.wikipedia.org/wiki/Simple_Mail_Transfer_Protocol
https://en.wikipedia.org/wiki/Internet_Message_Access_Protocol
https://en.wikipedia.org/wiki/File_Transfer_Protocol
https://en.wikipedia.org/wiki/Telnet
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
https://en.wikipedia.org/wiki/Session_Initiation_Protocol
https://en.wikipedia.org/wiki/Real-time_Transport_Protocol

36

for its two most important protocols, TCP and IP, or TCP/IP41 (its formal name is “the

Internet Protocol Suite”).

 UNIX
About this time (1973), Bell Labs (a research group within AT&T) created an interesting

new operating system (called PWB- UNIX42) and a new language (in which UNIX was

written) called “C.”43 Because of a 1958 consent decree, AT&T as a regulated monopoly

was not allowed to market or sell UNIX commercially. They licensed it (complete with

source code) to several universities. One of these was the University of California at

Berkeley44 (UCB; also famous for being the center of campus-based communist student

activities at the time). The team at UCB extended UNIX in several very important

ways such as adding Virtual Memory. They also integrated the new network protocol

from ARPA as the first commercial implementation of TCP/IP. The “Berkeley System

Distribution”45 of UNIX became a main branch. Over time, they rewrote most of it and

wanted to release it for free. AT&T sued them in court, and it seems most of the examples

of “stolen code” AT&T cited had actually been written at UCB. The judge ruled that if

UCB rewrote the remaining 10% or so (so there was zero original AT&T code), they could

release that. That rewrite became 386BSD,46 the starting point for FreeBSD47 (the first

open source operating system). Later FreeBSD was chosen by Japan’s Kame48 project to

deploy the first version (the “reference” implementation) of a IPv6 network stack, in an

eerie echo of BSD UNIX’s choice for the first commercial IPv4 implementation.

UNIX and TCP/IP became very popular on college campuses, and with high-end

workstation vendors, such as Sun, Silicon Graphics, and Intergraph. Personal computers

were not powerful enough to run UNIX until the Intel 386, at which point UCB ported

the BSD version to the 386. However, as documented above, most personal computer

networking was already moving to TCP/IP.

41 https://en.wikipedia.org/wiki/Internet_protocol_suite
42 https://en.wikipedia.org/wiki/PWB/UNIX
43 https://en.wikipedia.org/wiki/C_(programming_language)
44 https://en.wikipedia.org/wiki/University_of_California,_Berkeley
45 https://en.wikipedia.org/wiki/Berkeley_Software_Distribution
46 https://en.wikipedia.org/wiki/386BSD
47 https://en.wikipedia.org/wiki/FreeBSD
48 https://en.wikipedia.org/wiki/Kame

Chapter 2 history of Computer Networks up to ipv4

https://en.wikipedia.org/wiki/Internet_protocol_suite
https://en.wikipedia.org/wiki/PWB/UNIX
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/University_of_California,_Berkeley
https://en.wikipedia.org/wiki/University_of_California,_Berkeley
https://en.wikipedia.org/wiki/Berkeley_Software_Distribution
https://en.wikipedia.org/wiki/Berkeley_Software_Distribution
https://en.wikipedia.org/wiki/386BSD
https://en.wikipedia.org/wiki/FreeBSD
https://en.wikipedia.org/wiki/Internet_protocol_suite
https://en.wikipedia.org/wiki/PWB/UNIX
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/University_of_California,_Berkeley
https://en.wikipedia.org/wiki/Berkeley_Software_Distribution
https://en.wikipedia.org/wiki/386BSD
https://en.wikipedia.org/wiki/FreeBSD
https://en.wikipedia.org/wiki/Kame

37

 Open System Interconnection (OSI)
While all this was going on, the ISO49 (International Organization for Standardization)

in Europe was creating a very thoroughly engineered suite of network protocols called

Open System Interconnection50 (OSI), or more formally X.20051 (July 1994).

Because “International Organization for Standardization” would

have different acronyms in different languages (IOS in English,

OIN in French for Organisation internationale de normalisation),

our founders decided to give it the short form ISO. ISO is derived

from the Greek isos, meaning equal.

This is where the famous “seven-layer” network model comes from (TCP/IP is really

based on a “four-layer” model, which has caused no end of confusion among young

network engineers). At one point the US government decided to officially adopt OSI for

its networking (this was called GOSIP,52 or Government Open Systems Interconnection

Profile, defined in FIPS 146-1, 1990). Unfortunately, OSI was really more of an academic

specification, not a real working network system, like TCP/IP was. After many years,

GOSIP was finally abandoned, and IPv4 was deployed, but GOSIP’s legacy has hindered

the adoption of IPv6 in the United States (“Here we go again – GOSIP phase 2!”). X.40053

email and X.50054 directory systems were built on top of OSI and will not run on TCP/

IP without substantial compatibility layers. One small part of X.500 (called X.509,55

“The Authentication Framework”) was the source of digital certificates56 and Public Key

Infrastructure,57 still used today. Lightweight Directory Access Protocol (LDAP58) was an

attempt to create an X.500-like directory system for TCP/IP-based networks. That’s about

all that is left of the mighty OSI effort today, outside of computer science textbooks and

Cisco Press books.

49 https://en.wikipedia.org/wiki/International_Organization_for_Standardization
50 https://en.wikipedia.org/wiki/Open_Systems_Interconnection
51 www.itu.int/rec/t-rec-x.200-199407-i
52 https://en.wikipedia.org/wiki/Government_Open_Systems_Interconnection_Profile
53 https://en.wikipedia.org/wiki/X.400
54 https://en.wikipedia.org/wiki/X.500
55 https://en.wikipedia.org/wiki/X.509
56 https://en.wikipedia.org/wiki/Public_key_certificate
57 https://en.wikipedia.org/wiki/Public_key_infrastructure
58 https://en.wikipedia.org/wiki/Lightweight_Directory_Access_Protocol

Chapter 2 history of Computer Networks up to ipv4

https://en.wikipedia.org/wiki/International_Organization_for_Standardization
https://en.wikipedia.org/wiki/Open_Systems_Interconnection
https://www.itu.int/rec/t-rec-x.200-199407-i
https://en.wikipedia.org/wiki/Government_Open_Systems_Interconnection_Profile
https://en.wikipedia.org/wiki/X.400
https://en.wikipedia.org/wiki/X.500
https://en.wikipedia.org/wiki/X.509
https://en.wikipedia.org/wiki/Public_key_certificate
https://en.wikipedia.org/wiki/Public_key_infrastructure
https://en.wikipedia.org/wiki/Public_key_infrastructure
https://en.wikipedia.org/wiki/Lightweight_Directory_Access_Protocol
https://en.wikipedia.org/wiki/International_Organization_for_Standardization
https://en.wikipedia.org/wiki/Open_Systems_Interconnection
http://www.itu.int/rec/t-rec-x.200-199407-i
https://en.wikipedia.org/wiki/Government_Open_Systems_Interconnection_Profile
https://en.wikipedia.org/wiki/X.400
https://en.wikipedia.org/wiki/X.500
https://en.wikipedia.org/wiki/X.509
https://en.wikipedia.org/wiki/Public_key_certificate
https://en.wikipedia.org/wiki/Public_key_infrastructure
https://en.wikipedia.org/wiki/Lightweight_Directory_Access_Protocol

38

IPv6 was based heavily on IPv4 and was defined by the same group that defined IPv4

(the IETF59). It is the “natural” and straightforward evolutionary step after IPv4. At this

point everyone has decided that IPv6 is inevitable, although there were many battles and

brave resistance for years.

 Email Standardization
By this time, essentially all computer vendors had standardized on TCP/IP, but there

were still a lot of competing standards for email, including Microsoft’s MS-Mail, Lotus’s

cc:Mail, and MCI Mail. The Internet folks used a much simpler email standard called

SMTP60 (Simple Mail Transfer Protocol). It first became the connecting backbone

between various email products (everyone had their email to SMTP gateways, so users

could exchange messages across organizations). Soon, everyone started using SMTP

(together with POP3 and later IMAP) all the way to the end user. Today virtually all

email worldwide is based on SMTP and TCP/IP. However, Microsoft is forcing their own

proprietary protocols (EWS and now Graph) into this space with Office 365. By the way,

most of Office 365 works fine over IPv6. Teams and Azure are still IPv4-only (at least VMs

in Azure are IPv4-only).

 Evolution of the World Wide Web
Several other Internet applications evolved, including WAIS (Wide Area Information

Server, for storing and retrieving documents) and Archie61 (the very first search engine).

In turn, these efforts were merged with the idea of Hypertext (documents with multilevel

links) and evolved into HTML (Hypertext Markup Language) and HTTP (Hypertext

Transfer Protocol). The World Wide Web was off and running. The first web browser

and web server were created at the National Center for Supercomputing Applications62

(NCSA) at the University of Illinois, Urbana-Champaign campus. The people who

created those software projects (primarily Marc Andreessen63 and Eric Bina64) were

59 https://en.wikipedia.org/wiki/Internet_Engineering_Task_Force
60 https://en.wikipedia.org/wiki/Simple_Mail_Transfer_Protocol
61 https://en.wikipedia.org/wiki/Archie_search_engine
62 https://en.wikipedia.org/wiki/National_Center_for_Supercomputing_Applications
63 https://en.wikipedia.org/wiki/Marc_Andreessen
64 https://en.wikipedia.org/wiki/Eric_Bina

Chapter 2 history of Computer Networks up to ipv4

https://en.wikipedia.org/wiki/Internet_Engineering_Task_Force
https://en.wikipedia.org/wiki/Simple_Mail_Transfer_Protocol
https://en.wikipedia.org/wiki/Archie_search_engine
https://en.wikipedia.org/wiki/National_Center_for_Supercomputing_Applications
https://en.wikipedia.org/wiki/Marc_Andreessen
https://en.wikipedia.org/wiki/Eric_Bina
https://en.wikipedia.org/wiki/Internet_Engineering_Task_Force
https://en.wikipedia.org/wiki/Simple_Mail_Transfer_Protocol
https://en.wikipedia.org/wiki/Archie_search_engine
https://en.wikipedia.org/wiki/National_Center_for_Supercomputing_Applications
https://en.wikipedia.org/wiki/Marc_Andreessen
https://en.wikipedia.org/wiki/Eric_Bina

39

soon hired by Jim Clark,65 one of the founders of Silicon Graphics, to start Netscape,66

one of the most successful and important companies in the Second Internet. They

created a new and more powerful web server (Netscape Application Server67) and web

browser (Netscape Navigator68). As an interesting aside, the original browser created by

Andreessen at NCSA (Mosaic69) later became the starting point for Microsoft’s Internet

Explorer web browser.

 And That Brings Us Up to Today
That pretty much brings us up to the present day where the entire world has

standardized on IPv4 for both LANs (Local Area Networks) and WANs (Wide Area

Networks). Multiprotocol Label Switching (MPLS) is not a competitor to TCP/IP; it

is one more alternative at the Link Layer, peer to Ethernet and Wi-Fi. More and more

companies and organizations built TCP/IP networks and connected them together to

create the Internet. Major telcos provided “backbone” WAN connections and dial-up

access service (soon known as ISPs or Internet Service Providers70). As the number of

users (and the amount of traffic) on the Internet grew exponentially, Internet Exchange

Points (IXPs)71 were created around the world. These are places where ISPs connect

to each other so that traffic from a user of any provider can reach users of any other

provider, worldwide.

If you’d like to understand more about the physical implementation of the

Internet, see Tubes: A Journey to the Center of the Internet,72 by Andrew Blum. Highly

recommended.

65 https://en.wikipedia.org/wiki/Jim_Clark
66 https://en.wikipedia.org/wiki/Netscape
67 https://en.wikipedia.org/wiki/Netscape_Application_Server
68 https://en.wikipedia.org/wiki/Netscape_Navigator
69 https://en.wikipedia.org/wiki/Mosaic_(web_browser)
70 https://en.wikipedia.org/wiki/Internet_service_provider
71 https://en.wikipedia.org/wiki/Internet_exchange_point
72 www.amazon.com/Tubes-Journey-Internet-Andrew-Blum/dp/0061994952

Chapter 2 history of Computer Networks up to ipv4

https://en.wikipedia.org/wiki/Jim_Clark
https://en.wikipedia.org/wiki/Netscape
https://en.wikipedia.org/wiki/Netscape_Application_Server
https://en.wikipedia.org/wiki/Netscape_Navigator
https://en.wikipedia.org/wiki/Mosaic_(web_browser)
https://en.wikipedia.org/wiki/Internet_exchange_point
https://en.wikipedia.org/wiki/Internet_exchange_point
https://www.amazon.com/Tubes-Journey-Internet-Andrew-Blum/dp/0061994952
https://en.wikipedia.org/wiki/Jim_Clark
https://en.wikipedia.org/wiki/Netscape
https://en.wikipedia.org/wiki/Netscape_Application_Server
https://en.wikipedia.org/wiki/Netscape_Navigator
https://en.wikipedia.org/wiki/Mosaic_(web_browser)
https://en.wikipedia.org/wiki/Internet_service_provider
https://en.wikipedia.org/wiki/Internet_exchange_point
http://www.amazon.com/Tubes-Journey-Internet-Andrew-Blum/dp/0061994952

40

 Summary and a Look Ahead
In this chapter, we covered the history of computer networking from the early days

of modems and BBSs then to “real” early computer networking (DECnet, XNS, SNA,

NetBIOS, NetWare, etc.) up to the consolidation of multiple network protocols into a

single standard, which was TCP/IP (with version 4 of IP, or IPv4). We also covered the

“precursor” to the IPv4-based Internet, which was called ARPANET, based on the host-

host protocol (or NCP).

We covered some of the key participants (Bob Kahn, Vint Cerf) who created the

technology used in the Second Internet and companies who pioneered the most widely

used protocols, hardware, and applications (e.g., 3Com, Netscape).

Today, the most widely used application on the Second Internet is the World Wide

Web. This evolved due to the widespread deployment of NAT and private addresses.

These limited most users to only being able to make outgoing connections to a small

number of centralized serves (that have public IP addresses), thereby centralizing

functionality. This is comparable to dumb terminals (browsers) being used to access

central mainframes (web servers) where the actual computing takes place.

In the Third Internet, there is no shortage of public IP addresses or need for NAT –

even phones can now have public IP addresses and host servers or do end-to-end direct

connections. This will lead to extensive decentralization. Now people can take advantage

of the amazing computing power in their desktops, laptops, and even phones, rather

than centralized computing on web servers. Rather than sending the entire GUI over

the network (HTTP/HTML), we will run native GUI applications on our devices and

exchange only data over the network. There will still be a need for shared databases, but

web browsers and servers will decrease in importance. Zero-Trust Networks are a start in

this direction. This is a major paradigm shift made possible by IPv6.

The original concept of the Internet was “complexity at the edge, simplicity at

the core” – the World Wide Web has stood that on its head, primarily because of the

limitation of IPv4 with NAT and private addresses.

Chapter 2 history of Computer Networks up to ipv4

41

CHAPTER 3

Review of IPv4
This chapter is a brief review of IPv4,1 the foundation protocol of the Second Internet.

I am covering it in this chapter to help you understand what is new and different in

IPv6. It is not intended to be comprehensive. There are many great books listed in the

bibliography if you wish to understand IPv4 at a deeper level. The reason IPv4 is relevant

in this book is because the design of IPv6 is based heavily on that of IPv4. First, IPv4

can be considered one of the great achievements in IT history, based on its worldwide

success, so it was a good model to copy from. Second, there were several attempts to do a

new design “from the ground up” with IPv6 (a “complete rewrite”). These involved really

painful migration and interoperability issues. You need to understand what the strengths

and weaknesses of IPv4 are to see why IPv6 evolved the way it did. You can think of IPv6

as “IPv4 on steroids,” which takes into account the radical differences in the way we do

networking today and fixing problems that were encountered in the first three decades

of the IP-based Internet, as network bandwidth and the number of nodes increased

exponentially. We are doing things over networks today that no one could have foreseen

a quarter of a century ago, no matter how visionary they were.

 Network Hardware
There are many types of hardware devices used to construct an Ethernet network

running TCP/IP. These include nodes, Network Interface Cards (NICs), cables, hubs,

switches, routers, and firewalls.

A node is a device (usually a computer) that can do processing and has some kind of

wired or wireless connection(s) to a network. Examples of nodes are desktop computers,

1 https://en.wikipedia.org/wiki/IPv4

© Lawrence E. Hughes 2022
L. E. Hughes, Third Generation Internet Revealed, https://doi.org/10.1007/978-1-4842-8603-6_3

https://en.wikipedia.org/wiki/IPv4
https://en.wikipedia.org/wiki/IPv4
https://doi.org/10.1007/978-1-4842-8603-6_3

42

notebook computers, netbooks, smartphones, hubs,2 switches,3 routers,4 wireless access

points,5 network printers, network-aware appliances, and so on. A node could be as

simple as a temperature sensor, with no display and no keyboard, just a connection

to a network. It could have a display and keyboard or be a “headless node” with a

management interface accessed via the network with Telnet, Secure Shell6 (SSH), or a

web browser. All nodes connected to a TCP/IP network must have at least one valid IP

address7 (per interface). If a node has only one network interface, such as a workstation

computer, it is called a host. If a node has multiple interfaces connected to different

networks, and the ability to forward packets between them, it is called a gateway or

a router. Routers and firewalls are special types of gateways that can forward packets

between networks and/or control traffic in various ways as it is forwarded. Gateways

make it possible to build internetworks.8 They are described in more detail under the

“IPv4 Routing” section in this chapter.

A NIC9 (or Network Interface Controller) is the physical interface that connects a

node to a network. It may also be called an Ethernet adapter if the network is based on

Ethernet. It should have a female RJ-4510 connector on it (or possibly a coax or fiber-

optic connector). It could be an actual add-in Peripheral Computer Interconnect (PCI11)

card. It could be integrated on the device’s motherboard. It could also be something

that makes a wireless connection to a network, using Wi-Fi, WiMAX, or similar

standard. Typically, all NICs have a globally unique, hard-wired MAC address12 (48 bits

long, assigned by the manufacturer). A node can have one or more NICs (also called

interfaces). Each interface can be assigned one or more IP addresses and various other

relevant network configuration items, such as the address of the default gateway and the

addresses of the DNS servers.

2 https://en.wikipedia.org/wiki/Ethernet_hub
3 https://en.wikipedia.org/wiki/Network_switch
4 https://en.wikipedia.org/wiki/Router_(computing)
5 https://en.wikipedia.org/wiki/Wireless_access_point
6 https://en.wikipedia.org/wiki/Secure_Shell
7 https://en.wikipedia.org/wiki/IP_address
8 https://en.wikipedia.org/wiki/Internetworking
9 https://en.wikipedia.org/wiki/Network_interface_controller
10 https://en.wikipedia.org/wiki/Registered_jack#RJ45
11 https://en.wikipedia.org/wiki/Conventional_PCI
12 https://en.wikipedia.org/wiki/MAC_address

Chapter 3 review of ipv4

https://en.wikipedia.org/wiki/Ethernet_hub
https://en.wikipedia.org/wiki/Network_switch
https://en.wikipedia.org/wiki/Router_(computing)
https://en.wikipedia.org/wiki/Wireless_access_point
https://en.wikipedia.org/wiki/Wireless_access_point
https://en.wikipedia.org/wiki/Secure_Shell
https://en.wikipedia.org/wiki/IP_address
https://en.wikipedia.org/wiki/IP_address
https://en.wikipedia.org/wiki/Internetworking
https://en.wikipedia.org/wiki/Network_interface_controller
https://en.wikipedia.org/wiki/Conventional_PCI
https://en.wikipedia.org/wiki/MAC_address
https://en.wikipedia.org/wiki/Ethernet_hub
https://en.wikipedia.org/wiki/Network_switch
https://en.wikipedia.org/wiki/Router_(computing)
https://en.wikipedia.org/wiki/Wireless_access_point
https://en.wikipedia.org/wiki/Secure_Shell
https://en.wikipedia.org/wiki/IP_address
https://en.wikipedia.org/wiki/Internetworking
https://en.wikipedia.org/wiki/Network_interface_controller
https://en.wikipedia.org/wiki/Registered_jack#RJ45
https://en.wikipedia.org/wiki/Conventional_PCI
https://en.wikipedia.org/wiki/MAC_address

43

Network cables today are typically unshielded twisted pair13 (UTP) cables that actually

have four pairs of plastic-coated wires, with each pair forming a twisted coil. They have

RJ-45 male connectors on each end. They could also be fiber-optic cables for very high-

speed or long-run connections. Often today, professional contractors install UTP cables

through the walls and bring them together at a central location (sometimes called the

wiring closet) where they are connected together with a hub or a switch to form a star

network.14 Cables typically are limited to 100 meters or less in length, but the maximum

acceptable length is a factor of several things, such as network speed and cable design.

Modern cables rated as “CAT5”15 or “CAT5E” are good up to 100 Mbps, while cables rated

as “CAT6”16 are good up to a gigabit per second (1 Gbps). Today, you can get CAT7 cables

for speeds up to 10 Gbps. Above that speed, you should be using optical fiber17 NICs

and cables. It is also possible for twisted pair cables to be shielded if required to prevent

interference from (or with) other devices.

An Ethernet hub18 is a device that connects multiple Ethernet cables together so

that any packet transmitted by any node connected to that hub is relayed to all the

other nodes connected to the hub. It typically has a bunch of female RJ-45 connectors

in parallel (called ports). In effect it ties together the network cables plugged into it into

a star network. Hubs have a speed rating, based on what speed Ethernet they support.

Older hubs might be only 10 Mbps. More recent ones might be “fast Ethernet,” which

means they support 100 Mbps. If you have five nodes (A, B, C, D, and E) connected

together with a hub and node B sends a packet to node D, all nodes, including A, C,

and E, will see the traffic. The nodes not involved in the transaction will typically just

discard the traffic. This dropping of packets not addressed to a node is often done by

the hardware in the NIC, so that it never interrupts the software driver. Many NICs have

the ability to be configured in promiscuous mode.19 When in this mode, they will accept

packets (and make them available to any network application) whether those packets

are addressed to this node or not. If this mode is selected, the dropping of packets not

addressed to you must be done in software. However, sometimes you want to see all

13 https://en.wikipedia.org/wiki/Twisted_pair
14 https://en.wikipedia.org/wiki/Star_network
15 https://en.wikipedia.org/wiki/Category_5_cable
16 https://en.wikipedia.org/wiki/Category_6_cable
17 https://en.wikipedia.org/wiki/Optical_fiber_cable
18 https://en.wikipedia.org/wiki/Ethernet_hub
19 https://en.wikipedia.org/wiki/Promiscuous_mode

Chapter 3 review of ipv4

https://en.wikipedia.org/wiki/Twisted_pair
https://en.wikipedia.org/wiki/Star_network
https://en.wikipedia.org/wiki/Star_network
https://en.wikipedia.org/wiki/Category_5_cable
https://en.wikipedia.org/wiki/Category_6_cable
https://en.wikipedia.org/wiki/Optical_fiber_cable
https://en.wikipedia.org/wiki/Ethernet_hub
https://en.wikipedia.org/wiki/Twisted_pair
https://en.wikipedia.org/wiki/Star_network
https://en.wikipedia.org/wiki/Category_5_cable
https://en.wikipedia.org/wiki/Category_6_cable
https://en.wikipedia.org/wiki/Optical_fiber_cable
https://en.wikipedia.org/wiki/Ethernet_hub
https://en.wikipedia.org/wiki/Promiscuous_mode

44

traffic on the subnet. For instance, this would be useful with intrusion detection, for

diagnostic troubleshooting, or for collecting network statistics. Hubs come in various

sizes, from 4 ports up to 48 ports, and can even be coupled with other hubs to make

large network “backbones.” You can also have a hierarchy of hubs, where several hubs

distributed around a company actually connect into a larger (and typically faster) central

hub. Hubs do no processing of the packets; they are really just a cluster of Ethernet

extenders20 (repeaters) that clean up and relay any incoming signals from any port to

all the other ports. Hubs are quite rare today. Most such devices today are now actually

switches.

A network switch21 is similar to a network hub but has some control logic that

minimizes unnecessary traffic. It partitions a LAN into multiple collision domains22 (one

per switch port). Again, say you have a switch with cables connected to nodes A, B, C,

D, and E. If B sends a packet to D, that packet will be sent out only to the port to which

D is connected. Switches learn what nodes are connected to what ports by maintaining

a table of MAC addresses vs. port number. When a switch is first powered on, this table

is empty. As the nodes send packets through the switch, it learns what port each node is

connected to.

If node A (connected to port 1) sends a packet to node B (connected to port 2),

the switch adds the MAC address of A and the port it was seen on (1) to its table. In

the future, when packets for A’s MAC address come in any port, they will only be sent

out port 1. Since the switch hasn’t previously seen the MAC address of B (as a source

address), it doesn’t know where B is located, so it sends this first packet out to all ports.

If B replies to A’s packet, the switch adds B’s MAC address and port (2) to the table. In the

future, packets sent to B’s MAC address will only be sent out port 2. Each addition to the

table expires after a certain amount of time, to allow nodes to be moved to other ports.

An incoming packet sent to a broadcast address will always be sent out to all ports. This

behavior holds down excessive traffic that would normally just be dropped anyway by

the unaddressed nodes (not to mention unnecessary packet collisions). It also provides a

small degree of privacy, even if someone enables their NIC in promiscuous mode. If your

LAN is built using switches instead of hubs, you can typically only sniff traffic originating

from or terminating on the network segment connected to your port of the switch. Most

switches are oblivious to IP addresses – they work only with MAC addresses. Because of

20 https://en.wikipedia.org/wiki/Ethernet_extender‘
21 https://en.wikipedia.org/wiki/Network_switch
22 https://en.wikipedia.org/wiki/Collision_domain

Chapter 3 review of ipv4

https://en.wikipedia.org/wiki/Ethernet_extender
https://en.wikipedia.org/wiki/Ethernet_extender
https://en.wikipedia.org/wiki/Network_switch
https://en.wikipedia.org/wiki/Ethernet_extender
https://en.wikipedia.org/wiki/Network_switch
https://en.wikipedia.org/wiki/Collision_domain

45

this, they are IP version agnostic. This means they will carry IPv4 or IPv6 traffic (or even

other kinds of Ethernet traffic) so long as that traffic uses Ethernet frames with MAC

addresses.

If you are using a switch, but one of your connected nodes really does want to see

traffic from other network segments, some switches have a mirror port function that

will allow all traffic from any combination of ports to be copied to one port, to which

you connect the node that wants to monitor that traffic. This must be configured,

which requires a management interface of some kind. Like hubs, switches come in

various speeds, from 10 Mbps up to 1000 Mbps (1 Gbps). Unlike hubs, you can mix

different speed nodes (10 Mbps, 100 Mbps, and even 1000 Mbps) on a single switch,

so the speed rating is the maximum speed for nodes connected to it. Switches also

come in sizes from 4 ports up to 48 ports, and better ones can be “stacked” (linked

together) to effectively build a single giant switch. Lower-end (cheaper) switches

may have few if any configuration options and may not even have a user interface.

Smart (or managed) switches typically have a sophisticated GUI management

interface (accessible via the network, usually over HTTP) or Command Line Interface

(accessible either via a serial port, Telnet, or SSH) that allows you to configure various

things and/or monitor traffic. Switches also typically include support for monitoring

or control using SNMP (Simple Network Monitoring Protocol). Very advanced

switches allow you to configure VLANs (Virtual Local Area Networks23), which allow

you to effectively create multiple sub-switches that are not logically connected

together, on a single physical switch. Some of these advanced functions process IP

addresses (layer 3 functionality) and hence are IP version specific (an IPv4-only smart

switch cannot process IPv6 addresses, but the basic layer 2 switch functionality may

work fine). Very recent smart switches do support both IPv4 and IPv6 (dual stack), for

layer 3 functionality with both IP versions.

 RFCs: The Internet Standards Process
Anyone studying the Internet, or developing applications for it, must understand the

RFC24 system. RFC stands for Request for Comments. These are the documents that

define the Internet Protocol Suite (the official name for TCP/IP) and many related

23 https://en.wikipedia.org/wiki/Virtual_LAN
24 https://en.wikipedia.org/wiki/Request_for_Comments

Chapter 3 review of ipv4

https://en.wikipedia.org/wiki/Request_for_Comments
https://en.wikipedia.org/wiki/Virtual_LAN
https://en.wikipedia.org/wiki/Request_for_Comments

46

topics. Anyone can submit an RFC. Ones that are part of the Standards Track are usually

produced by the IETF (Internet Engineering Task Force) working groups. Anyone

can start or participate in a working group. Submitted RFCs begin life as a series of

Internet Drafts, each of which has a lifespan of 6 months or less. Most drafts go through

considerable peer review, and possibly quite a few revisions, before they are either

abandoned or approved and issued an official RFC number (e.g., 793) and become part

of the official RFC collection. There are other kinds of documents in addition to the

Standards Track, including information memos (FYI), humor (primarily ones issued on

April 1), and even one obituary, for Jon Postel, the first RFC editor and initial allocator of

IP addresses, RFC 2468,25 “I Remember IANA,” October 1998. There is even an RFC about

RFCs, RFC 2026,26 “The Internet Standards Process, Revision 3,” October 1996. That is a

good place to start if you really want to learn how to read RFCs.

The Internet Standards Process is quite different from the standards process of the

ISO (International Organization for Standardization) that created the Open System

Interconnection (OSI) network specification. The ISO typically develops large, complex

standards with multiple four-year cycles, with hundreds of engineers and much political

wrangling. This was adequate for creating the standards for the worldwide telephony

system but is far too slow and hidebound for something as freewheeling and rapidly

evolving as the Internet. The unique standards process of the IETF is one of the main

reasons that TCP/IP is now the dominant networking standard worldwide. By the

time OSI was specified, TCP/IP was already created, deployed, and being revised and

expanded. OSI never knew what hit it.

Learning to read RFCs is an acquired skill, one that anyone serious about

understanding the Internet, and most developers creating things for it, should master.

There are certain “terms of art” (terms that have precise and very specific meanings),

like the usage of MUST, SHOULD, MAY, and NOT RECOMMENDED. As an example, the

IPv6-ready tests examine all the MUST (mandatory) and SHOULD (optional) items from

relevant RFCs.

RFCs are readily available to anyone for free. Compare this with the ISO standards,

which can cost over $1000 for a complete set of “fascicles” for something like X.500.

Today you can obtain RFCs easily in various formats by use of a search engine such as

Google or Yahoo. The “official” source is the URL:

25 www.ietf.org/rfc/rfc2468.txt
26 www.ietf.org/rfc/rfc2026.txt

Chapter 3 review of ipv4

https://www.ietf.org/rfc/rfc2468.txt
https://www.ietf.org/rfc/rfc2026.txt
http://www.ietf.org/rfc/rfc2468.txt
http://www.ietf.org/rfc/rfc2026.txt

47

www.rfc-editor.org/rfc/rfcXXXX.txt (where XXXX is the

RFC number)

There is also an official RFC search page, where you can search for phrases (like

“TCP”) in different tracks, such as RFC, STD, BCP, FYI, or all tracks. You can retrieve

ASCII or PDF versions. It is at

www.rfc-editor.org/rfcsearch.html

There are over 8000 RFCs today. I have included many references to the relevant

RFCs in this book. If you want to see all the gory details on any subject, go right to the

source and read it. You may find it somewhat tough going until you learn to read “RFC-

ese.” A number of books on Internet technology are either just a collection of RFCs, or

RFCs make up a large part of the content. There is no reason today to do that – anyone

can download all the RFCs you want and have them in soft (searchable) form. I have

not included the text of even a single RFC in this book (warning: if you try to read this

book somewhere without Internet access like on a plane, you may want to look ahead

and download any relevant RFCs while you have Internet access). The casual reader

should not need to reference the actual RFCs. The complete set of RFCs is easily tens of

thousands of pages and growing daily.

Most of the topics covered in this book also have considerable coverage on the

Internet outside of the RFCs, such as in Wikipedia. Again, if you want to drill deeper in

any of these topics, crank up your favorite search engine and have at it. The information

is out there. What I’ve done is to try to collect together the essential information in a

logical sequence, with a lot of explanations and examples, plus all the references you

need to drill as deep as you like. I taught cryptography and Public Key Infrastructure for

VeriSign for two years, so I have a lot of experience trying to explain complex technical

concepts in ways that reasonably intelligent people can easily follow. Hopefully you will

find my efforts worthwhile.

 IPv4
The software that made the Second Internet (and virtually all Local Area Networks)

possible has actually been around for quite some time. It is technically a suite (family) of

protocols. The core protocols of this suite are TCP (the Transmission Control Protocol)

and IP (Internet Protocol), which gave it its common name, TCP/IP. Its official name is

the Internet Protocol Suite.

Chapter 3 review of ipv4

http://www.rfc-editor.org/rfc/rfcXXXX.txt
http://www.rfc-editor.org/rfcsearch.html

48

TCP was first defined officially in RFC 675, “Specification of Internet Transmission

Control Program,” December 1974 (yes, 45 years ago). The protocol described in this

document does not look much like the current TCP, and in fact, the Internet Protocol (IP)

did not even exist at the time. Jon Postel was responsible for splitting the functionality

described in RFC 675 into two separate protocols: (the new) TCP and IP. RFC 675 is

largely of historical interest now. The modern version of TCP was defined in RFC 795,

“Transmission Control Protocol – DARPA Internet Program Protocol Specification,”

September 1981 (7 years later). It was later updated by RFC 1122, “Requirements for

Internet Hosts – Communication Layers,” October 1989, which covers the Link Layer, IP

Layer, and Transport Layer. It was also updated by RFC 3168, “The Addition of Explicit

Congestion Notification (ECN) to IP,” September 2001, which adds ECN to TCP and IP.

Both of these core protocols, and many others, will be covered in considerable detail

in the rest of this chapter.

 Four-Layer (“DoD”) IPv4 Architectural Model
Unlike the OSI network stack, which really does have seven layers, the DoD network

model has four layers, as shown in the following.

Figure 3-1. Four-layer DoD model for IPv4

Chapter 3 review of ipv4

49

Figure 3-2. Data flow in the four-layer model

It just confuses the issue to try to figure out which of the seven OSI layers the various

protocols of TCP/IP fit into. It is simply not applicable. It’s like trying to figure out what

color “sweet” is. The OSI seven-layer model did not even exist when TCP/IP was defined.

Unfortunately, many people use terms like “layer 2” switches vs. “layer 3” switches.

These refer to the OSI model. Books from Cisco Press and the Cisco certification exams

are particularly adamant about using OSI terminology. I would be surprised if there is

even a single actual OSI network running today. In this book we will try to consistently

use the four-layer model terminology while referring to the OSI terminology when

necessary for you to relate the topic to actual products or other books.

Note: outgoing data begins in the application and is passed down the layers of the
stack (adding headers at each layer) until it is written to the wire. incoming data is
read off the wire and travels up the layers of the stack (processing and removing
headers at each layer) until it is accepted by the application. in the following
discussion, for simplicity, i describe only the outgoing direction.

The Application Layer27 implements the protocols most people are familiar with (e.g.,

HTTP, SMTP, FTP). The software routines for these are typically contained in application

programs such as browsers or web servers that make “system calls” to subroutines (or

27 https://en.wikipedia.org/wiki/Application_layer

Chapter 3 review of ipv4

https://en.wikipedia.org/wiki/Application_layer
https://en.wikipedia.org/wiki/Application_layer

50

“functions” in C terminology) in the “socket API”28 (an API is an Application Program

Interface, or a collection of related subroutines, typically supplied with the operating

system or C programming language compiler). The application code creates outgoing

data streams and then calls routines in the socket API to actually send the data via

TCP (Transmission Control Protocol) or UDP (User Datagram Protocol). Output to the

Transport Layer is [DATA] using IP addresses.

The Transport Layer29 implements TCP30 (the Transmission Control Protocol) and

UDP31 (the User Datagram Protocol). These routines are internal to the socket API

(hence live in Kernel Space32). In the case of TCP, packet sequencing, plus error detection

and retransmission, is handled. The Transport Layer prepends a TCP or UDP packet

header to the data passed down from the Application Layer and then passes the resulting

packet down to the Internet Layer for further processing. Output to the Internet Layer is

[TCP HDR[DATA]], using IP addresses.

The Internet Layer33 implements IP34 (the Internet Protocol) and various other related

protocols such as ICMP35 (which includes the “ping” function among other things). The

IP routine takes the data passed down from the Transport Layer routines, adds an IP

packet header onto it, and then passes the now complete IPv4 packet down to routines in

the Link Layer. Output to the Link Layer is [IP HDR[TCP HDR[DATA]]] using IP addresses.

The Link Layer36 implements protocols such as ARP37 (Address Resolution Protocol)

that map IP addresses to MAC addresses for transmission between nodes in a single

network link. It contains protocols such as Ethernet, Wi-Fi, and MPLS. It also contains

routines that actually read and write data (as fed down to it by routines in the Internet

Layer) onto the network wire, in compliance with Ethernet or other standards. Output to

wire: Ethernet frame containing the IP packet, using MAC addresses (or other Link Layer

addresses for non-Ethernet networks).

28 www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.hali001/
thesocketapi.htm
29 https://en.wikipedia.org/wiki/Transport_layer
30 https://en.wikipedia.org/wiki/Transmission_Control_Protocol
31 https://en.wikipedia.org/wiki/User_Datagram_Protocol
32 www.linfo.org/kernel_space.html
33 https://en.wikipedia.org/wiki/Internet_layer
34 https://en.wikipedia.org/wiki/Internet_Protocol
35 https://en.wikipedia.org/wiki/Internet_Control_Message_Protocol
36 https://en.wikipedia.org/wiki/Link_layer
37 https://en.wikipedia.org/wiki/Address_Resolution_Protocol

Chapter 3 review of ipv4

https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.hali001/thesocketapi.htm
https://en.wikipedia.org/wiki/Transport_layer
https://en.wikipedia.org/wiki/Transmission_Control_Protocol
https://en.wikipedia.org/wiki/User_Datagram_Protocol
http://www.linfo.org/kernel_space.html
https://en.wikipedia.org/wiki/Internet_layer
https://en.wikipedia.org/wiki/Internet_Protocol
https://en.wikipedia.org/wiki/Internet_Control_Message_Protocol
https://en.wikipedia.org/wiki/Link_layer
https://en.wikipedia.org/wiki/Address_Resolution_Protocol
http://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.hali001/thesocketapi.htm
http://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.hali001/thesocketapi.htm
https://en.wikipedia.org/wiki/Transport_layer
https://en.wikipedia.org/wiki/Transmission_Control_Protocol
https://en.wikipedia.org/wiki/User_Datagram_Protocol
http://www.linfo.org/kernel_space.html
https://en.wikipedia.org/wiki/Internet_layer
https://en.wikipedia.org/wiki/Internet_Protocol
https://en.wikipedia.org/wiki/Internet_Control_Message_Protocol
https://en.wikipedia.org/wiki/Link_layer
https://en.wikipedia.org/wiki/Address_Resolution_Protocol

51

Each layer “hides” the details (and/or hardware dependencies) from the higher

layers. This is called “levels of abstraction.” An architect thinks in terms of abstractions

such as roofs, walls, windows, etc. The next layer down (the builder) thinks in terms of

abstractions such as bricks, glass, mortar, etc. Below the level of the builder, an industrial

chemist thinks in terms of formulations of clay or silicon dioxide to create bricks and

glass. If the architect tried to think at the chemical or atomic level, it would be very

difficult to design a house. Their job is made possible by using levels of abstraction.

Network programming is analogous. If application programmers had to think in terms of

writing bits to the actual hardware, applications such as web browsers would be almost

impossible. Each Network Layer is created by specialists who understand the details at

their level, and lower layers can be treated as “black boxes” by people working at the

higher layers.

Another important thing about Network Layers is that you can make major changes

to one layer, without impacting the other layers much at all. The connections between

layers are well defined and don’t change (much). This provides a great deal of separation

between the layers. In the case of IPv6, the Internet Layer is almost completely

redesigned internally, while the Link Layer and Transport Layer are not affected much at

all (other than providing more bytes to store the larger IPv6 addresses). If your product

is “IPv6-only,” that’s about the only change you would need to make to your application

software (unless you display or allow entry of IP addresses). If your application is “dual

stack” (can send and receive data over IPv4 or IPv6), then a few more changes are

required in the Application Layer (e.g., to accept multiple IPv4 and IPv6 addresses from

DNS and try connecting to one or more of them based on various factors or to accept

incoming connections over both IPv4 and IPv6). This makes it possible to migrate (or

“port”) network software (created for IPv4) to IPv6 or even dual stack with a fairly minor

effort. In comparison, changing network code written for TCP/IP to use OSI instead

would probably involve a complete redesign and major recoding effort.

 IPv4: The Internet Protocol, Version 4
IPv4 is the foundation protocol of the Second Internet and accounts for many of its

distinguishing characteristics, such as its 32-bit address size, its addressing model, and

its packet header structure and routing. IPv4 was first defined in RFC 791 “Internet

Protocol,” September 1981.

Chapter 3 review of ipv4

52

 Relevant Standards for IPv4
RFC 791, “Internet Protocol,” September 1981
(Standards Track)

RFC 792, “Internet Control Message Protocol,” September 1981
(Standards Track)

RFC 826, “An Ethernet Address Resolution Protocol,”
November 1982 (Standards Track)

RFC 1256, “ICMP Router Discovery Messages,” September 1991

(Standards Track)

RFC 2390, “Inverse Address Resolution Protocol,” September 1998

(Standards Track)

RFC 2474, “Definition of the Differentiated Services Field
(DS Field) in the IPv4 and IPv6 Headers,” December 1998
(Standards Track)

RFC 4650, “HMAC-Authenticated Diffie-Hellman for Multimedia

Internet KEYing (MIKEY),” September 2006 (Standards Track)

RFC 4884, “Extended ICMP to Support Multi-Part Messages,” April

2007 (Standards Track)

RFC 4950, “ICMP Extensions for Multiprotocol Label Switching,”

August 2007 (Standards Track)

RFC 5494, “IANA Allocation Guidelines for the Address Resolution

Protocol (ARP),” April 1009 (Standards Track)

RFC 5735, “Special Use IPv4 Addresses,” January 2010 (Best
Current Practices)

Chapter 3 review of ipv4

https://www.ietf.org/rfc/rfc791.txt
https://www.ietf.org/rfc/rfc792.txt
https://www.ietf.org/rfc/rfc792.txt
https://www.ietf.org/rfc/rfc1256.txt
https://www.ietf.org/rfc/rfc2390.txt
https://www.ietf.org/rfc/rfc2474.txt
https://www.ietf.org/rfc/rfc4650.txt
https://www.ietf.org/rfc/rfc4884.txt
https://www.ietf.org/rfc/rfc4950.txt
https://www.ietf.org/rfc/rfc5494.txt
https://www.ietf.org/rfc/rfc5735.txt

53

 IPv4 Packet Header Structure
So what are these packet headers mentioned previously? In IPv4 packets, there is an

IPv4 packet header,38 then a TCP (or UDP) packet header, and then the packet data. Each

header is a structured collection of data, including things such as the IPv4 address of the

sending node and the IPv4 address of the destination node. Why are we getting down to

this level of detail? Because some of the big changes from IPv4 to IPv6 have to do with

the new and improved IP packet header architecture in IPv6. In this chapter, we’ll cover

the IPv4 packet header. Here it is.

The IP Version field (4 bits) contains the value 4, which in binary is “0100” (you’ll

never guess what goes in the first 4 bits of an IPv6 packet header!).

The Header Length field (4 bits) indicates how long the header is, in 32-bit “words.”

The minimum value is “5,” which would be 160 bits, or 20 bytes. The maximum length is

15, which would be 480 bits, or 60 bytes. If you skip that number of words from the start

of the packet, that is where the data starts (this is called the “offset” to the data). This

will only ever be greater than 5 if there are options before the data part (which is not

common).

38 https://en.wikipedia.org/wiki/IPv4#Header

Figure 3-3. IPv4 packet header

Chapter 3 review of ipv4

https://en.wikipedia.org/wiki/IPv4#Header

54

The Type of Service field (8 bits) is defined in RFC 2474,39 “Definition of the

Differentiated Services Field (DS Field) in the IPv4 and IPv6 headers,” December

1998. This is used to implement a fairly simple QoS (Quality of Service). QoS involves

management of bandwidth by protocol, by sender, or by recipient. For example, you

might want to give your VoIP connections a higher priority than your video downloads

or the traffic from your boss higher priority than your co-worker’s traffic. Without QoS,

bandwidth is on a first come–first served basis. 8 bits are not really enough to do a good

job on QoS, and DiffServ is not widely implemented in current IPv4 networks. QoS is

greatly improved in IPv6.

The Total Length field (16 bits) contains the total length of the packet (including

the packet header) in bytes. The minimum length is 20 (20 bytes of header plus 0 bytes

of data), and the maximum is 65,535 bytes (since only 16 bits are available to specify

this). All network systems must handle packets of at least 576 bytes, but a more typical

packet size is 1508 bytes. With IPv4, it is possible for some devices (like routers) to

fragment packets40 (break them apart into multiple smaller packets) if required to get

them through a part of the network that can’t handle packets that big. Packets that are

fragmented must be reassembled at the other end. Fragmentation and reassembly is one

of the messy parts of IPv4 that got cleaned up a lot in IPv6. A lot of hacking attacks exploit

the messy scheme in IPv4.

The Identification (Fragment ID) field (16 bits) identifies which fragment of a once

larger packet this one is, to help in reassembling the fragmented packet later. In IPv6

packet fragmentation is not done by intermediate nodes, so all the header fields related

to fragmentation are no longer needed.

The next three bits are flags related to fragmentation. The first is reserved and must

be zero (an April Fool’s RFC41 once defined this as the “evil” bit, which the sender should

set if they are doing something malicious). The next bit is the DF (Don’t Fragment) flag.

If DF is set, the packet cannot be fragmented (so if such a packet reaches a part of the

network that can’t handle one that big, that packet is dropped). The third bit is the MF

(More Fragments) flag. If MF is set, there are more fragments to come. Unfragmented

packets of course have the MF flag set to zero.

39 https://tools.ietf.org/html/rfc2474
40 https://en.wikipedia.org/wiki/IP_fragmentation
41 www.ietf.org/rfc/rfc3514.txt

Chapter 3 review of ipv4

https://tools.ietf.org/html/rfc2474
https://en.wikipedia.org/wiki/IP_fragmentation
https://en.wikipedia.org/wiki/IP_fragmentation
https://www.ietf.org/rfc/rfc3514.txt
https://tools.ietf.org/html/rfc2474
https://en.wikipedia.org/wiki/IP_fragmentation
http://www.ietf.org/rfc/rfc3514.txt

55

The Fragment Offset field (13 bits) is used in reassembly of fragmented packets. It is

measured in 8-byte blocks. The first fragment of a set has an offset of 0. If you had a 2500-

byte packet, and were fragmenting it into chunks of 1020 bytes, you would have three

fragments as follows:

The Time-To-Live (TTL) field (8 bits) is to prevent packets from being shuttled

around indefinitely on a network. It was originally intended to be lifetime in seconds

(hence the name), but it has come to be implemented as “hop count.” This means that

every time a packet crosses a switch or router, the hop count is decremented by one. If

that count reaches zero, the packet is dropped. Typically, if this happens, an ICMPv4

message (“Time Exceeded”) is returned to the packet sender. This mechanism is how the

traceroute command works. The primary purpose of TTL is to prevent looping (packets

running around in circles).

The Protocol field (8 bits) defines the type of data found in the data portion of the packet.

Protocol numbers are not to be confused with ports. Some common protocol numbers are

The Header Checksum field (16 bits) is the 16-bit one’s complement of the one’s

complement sum of all 16-bit words in the header. When computing, the checksum

field itself is taken as zero. To validate the checksum, add all 16-bit words in the header

together including the transmitted checksum. The result should be 0. If you get any

other value, then at least 1 bit in the packet was corrupted. There are certain multiple bit

errors that can cancel out, and hence bad packets can go undetected. Note that since the

hop count (TTL) is decremented by one on each hop, the IP header checksum must be

recalculated at each hop. The IP header Checksum was eliminated in IPv6.

The Source IP Address field (32 bits) contains the IPv4 address of the sender (may be

modified by NAT).

Chapter 3 review of ipv4

56

The Destination IP Address field (32 bits) contains the IPv4 address of the recipient

(may be modified by NAT in a reply packet).

Options (0–40 bytes) is not often used. These are not relevant to this book. If you

want the details, read the RFCs.

Data (variable number of bytes) is the data part of the packet – not really part of the

header. This is not included in the IP header checksum. The number of bytes in the Data

field is the value of “Total Length” minus the value of “Header Length.”

Figure 3-4. IPv4 and IPv6 packet headers side by side

Chapter 3 review of ipv4

57

 IPv4 Addressing Model
In IPv4, addresses are 32 bits in length. They are really just integer numbers from 0 to

4,294,967,295. For the convenience of humans, these numbers are typically represented

in dotted decimal notation. This splits the 32-bit addresses into four 8-bit fields and

then represents each 8-bit field with a decimal number from 0 to 255. These decimal

numbers cover all possible 8-bit binary patterns from 0000 0000 to 1111 1111. The

decimal numbers are separated by “dots” (periods). Leading zeros can be eliminated.

The following are all valid IPv4 addresses represented in dotted decimal:

Originally there were five classes of IPv4 addresses, as defined in RFC 791,42 “Internet

Protocol,” September 1981:

Class A: First bit 0 (0.0.0.0–127.255.255.255), 8-bit network number, 24-bit node

within network number, subnet mask 255.0.0.0. There are 128 class A networks, each

containing 16.7M addresses.

Class B: First 2 bits “10” (128.0.0.0–191.255.255.255), 16-bit network number, 16-

bit node within network number, subnet mask 255.255.0.0. There are 16,384 class B

networks, each containing 65,536 addresses.

Class C: First 3 bits “110” (192.0.0.0–223.255.255.255), 24-bit network number,

8-bit node within network number, subnet mask 255.255.255.0. There are 2M class C

networks, each containing 256 addresses.

Class D: First 4 bits “1110” (224.0.0.0–239.255.255.255), used for multicast.

Class E: First 4 bits “1111” (240.0.0.0–255.255.255.255), experimental/reserved (not

forwarded by most routers).

 Network Ports
Each IP address on a network node has 65,536 ports associated with it (the port number

is a 16-bit value, and 2 to the 16th is 65,536). Any of those ports can either be used to

make an outgoing connection or to accept incoming connections. There is a list of

42 https://tools.ietf.org/html/rfc791

Chapter 3 review of ipv4

https://tools.ietf.org/html/rfc791
https://tools.ietf.org/html/rfc791

58

well-known ports43 that associates particular ports with certain protocols. For example,

port 25 is associated with SMTP. There is nothing magical (or email-ish) about port 25.

SMTP will work just as well on any other port, for example, 10025. Use of port 25 for

SMTP is simply a convention that many people adopt. Such conventions make it easier

to locate the SMTP server on a node you might not be familiar with. To be specific, ports

are a Transport Layer thing, and there are really 65,536 TCP ports and another 65,536

UDP ports for each address. IP and ICMP, which are Internet Layer things, do not have

any port(s) associated with them.

Anyone can reserve port numbers44 with IANA. I happen to have been awarded two

port numbers, 4604 for my Identity Registration Protocol (IRP) and 4605 for my SixChat

protocol. IANA reviewed both requests and determined that they were innovative

(did not duplicate any other protocols) and viable (did something useful) and met all

requirements for a modern protocol (e.g., support for Explicit TLS).

When you deploy an Internet server (e.g., an SMTP server for sending and receiving

email), the software opens a socket (a programming abstraction) in listen mode on a

particular port (in the case of SMTP, port 25). An email client that wants to connect

to it creates its own socket in connect mode and tells it to connect to a particular IP

address (that of the SMTP server) using a particular port (in this case 25). When the

connection attempt reaches the server, the server detects the attempt and accepts the

connection (actually the port on the server that the connection is accepted on will be

any available port, typically higher than 1024). A well-written server would then make

a clone of itself (this is called forking in UNIX speak) and then go back to listening for

further connections, while its clone went ahead and processed the connection. When

the processing is complete on a given connection, the sockets used would be closed

(on both server and client), and the clone of the server will quietly commit suicide. In

43 https://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers
44 www.iana.org/assignments/service-names-port-numbers/service-names-port-
numbers.xhtml

Figure 3-5. IRP port number registration

Chapter 3 review of ipv4

https://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml

59

theory you could have thousands of clones of the server all simultaneously handling

email connections on a single server (given sufficient memory and other resources).

Busy web servers (like those at Google) often have many thousands of connections being

processed at any given time (but never more than 65,000 on a given interface – each

connection uses up one port).

If threads are used instead of processes, the scheme is similar but has far less

overhead.

In UNIX, ports with numbers under 1024 are special, and only software that has root

privilege can use them. Most common Internet services use ports in that range. There

are many well-known ports, but here are a few of the more common ones:

 IPv4 Subnetting
This leads us naturally into the topic of IPv4 subnetting.45 This is one of the more difficult

areas of networking for people learning to work with IPv4. All addresses have two “parts,”

the first part being the address of the network (e.g., 192.168.0.0) and the second being

the node within that network (e.g., 0.0.2.5). These two parts can be split apart at some

“bit boundary.” In this case, the address of the network is in the first 16 bits, and the node

within the network is in the last 16 bits. The addresses of all nodes in such a network

share the same first 16 bits, but each has a unique last 16 bits. So such a network might

have nodes with addresses 192.168.2.5, 192.168.3.7, and 192.168.200.12, but not one with

the address 192.169.2.1 (that address is in network 192.169.0.0, not network 192.168.0.0).

A subnet46 mask is a 32-bit value in which the first n bits (n=1–32) have the value 1

and the remaining 32-n bits have the value 0. It is used to split an IPv4 address into its

two parts (the first n bits and the last 32-n bits). In the network just described, the subnet

45 www.cisco.com/c/en/us/support/docs/ip/routing-information-protocol-
rip/13788-3.html
46 https://en.wikipedia.org/wiki/Subnetwork

Chapter 3 review of ipv4

https://www.cisco.com/c/en/us/support/docs/ip/routing-information-protocol-rip/13788-3.html
https://en.wikipedia.org/wiki/Subnetwork
http://www.cisco.com/c/en/us/support/docs/ip/routing-information-protocol-rip/13788-3.html
http://www.cisco.com/c/en/us/support/docs/ip/routing-information-protocol-rip/13788-3.html
https://en.wikipedia.org/wiki/Subnetwork

60

mask is 255.255.0.0 (the first 16 bits have the value 1; the last 16 bits have the value 0).

You do a Boolean “AND” function of the address with the subnet mask to get the address

of the network and a Boolean “AND” of the address with the one’s complement of the

subnet mask (in this case 0.0.255.255) to get the node within subnet. This is difficult

to visualize in dotted decimal. It is rather more obvious in binary. The Boolean “AND”

function produces a 1 if both inputs are 1; else, it produces a 0. The “one’s complement”

(Boolean “NOT”) function changes each 0 to a 1 and each 1 to a 0. With the “AND”

function, where there is a 1 in the mask, the corresponding bit of the address “flows

through” to the result. Where there is a 0 in the mask, the corresponding bit of the

address is blocked (forced to the value 0). The following example (with addresses and

mask shown in both dotted decimal and binary) should make this clear.

For subnet mask 255.0.0.0 (class A), the first 8 bits are the network address, and the

last 24 are the node within subnet.

For subnet mask 255.255.0.0 (class B), the first 16 bits are the network address, and

the last 16 are the node within subnet.

For subnet mask 255.255.255.0 (class C), the first 24 bits are the network address, and

the last 8 are the node within subnet.

Subnetting was easy when the three IP address classes (A, B, and C) were used.

The first few bits of the address determined the subnet mask. If the first bit of the 32-bit

address was “0,” then the address was class A, and the subnet mask was 255.0.0.0. If the

first 2 bits of the address were “10,” then the address was class B, and the subnet mask

was 255.255.0.0. If the first 3 bits of the address were “110,” then the address was class C,

and the subnet mask was 255.255.255.0. This could actually be done automatically, so no

one worried about subnet masks.

Figure 3-6. IP addresses and subnet masks

Chapter 3 review of ipv4

61

One of the changes made in the IPv4 addressing model in the mid-1990s was to

introduce Classless Inter-domain Routing,47 in RFC 1519,48 “Classless Inter-domain

Routing (CIDR),” September 1993. It was later replaced by RFC 463249, “Classless Inter-

domain Routing (CIDR),” August 2006.

When CIDR was introduced, there were two consequences. First, the split between

the two parts of the address could come at any bit boundary, not just after 8, 16, and 24

bits. Second, several small blocks (e.g., /28 blocks) could be carved out of a bigger block

anywhere in the address space (perhaps from an old class A block, such as 7.x.x.x), so

you could no longer determine the correct subnet mask by looking at the first few bits

of an address. For example, a “/8” (class A) block might be carved up into 65,536 “/24”

(class C) subnets, which could be allocated to different organizations.

Let’s say your ISP, instead of giving you a class C block, only gives you a “/28” block

of real (routable) IPv4 addresses, which would be 16 real IPv4 addresses, for example,

123.45.67.0 through 123.45.67.15. First, two of these addresses are not usable (may not

be assigned to nodes). 123.45.67.0 is the “network address,” and 123.45.67.15 is the

“broadcast address.” That leaves 14 usable addresses (123.45.67.1 through 12.45.67.14).

So what is your subnet mask? If you check the preceding table of useful CIDR block sizes,

a /28 subnet has a subnet mask of 255.255.255.240. In binary that is 1111 1111 1111 1111

1111 1111 1111 0000 (first 28 bits are 1; last 4 bits are 0). However, by the old rules (first

bit is a 0), these are really from a “class A” block, so the automatically generated subnet

mask would have been 255.0.0.0, which is not correct.

Now, what if your organization really has 100 nodes that need IP addresses? How

do you give each of them unique addresses if you only have 14 usable addresses to work

with? That’s where Network Address Translation (NAT) comes in (covered in the next

chapter). If you think CIDR made your life more “interesting,” wait until you see what

NAT does to it! Getting rid of CIDR and NAT is one of the big wins in IPv6. In fact, you will

find that the entire subject of subnets has become totally trivial.

47 https://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing
48 https://tools.ietf.org/html/rfc1519
49 https://tools.ietf.org/html/rfc4632

Chapter 3 review of ipv4

https://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing
https://tools.ietf.org/html/rfc1519
https://tools.ietf.org/html/rfc4632
https://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing
https://tools.ietf.org/html/rfc1519
https://tools.ietf.org/html/rfc4632

62

 MAC Addresses
IPv4 addresses are not actually used at the lowest layer of the IPv4 network stack (the

Link Layer). Each network hardware interface actually has a 48-bit “MAC address”

burned into it by the manufacturer. The first 24 bits of this (called the “Organizationally

Unique Identifier50” or OUI) specify the manufacturer and are purchased by vendors

from the IEEE51 (Institute of Electrical and Electronics Engineers). A given vendor may

have multiple OUIs, but a given OUI is associated only with one vendor. The last 24 bits

of this (called the “Network Interface Controller–Specific” part) are assigned by each

manufacturer, to be unique within a given OUI. This means that the entire 48-bit value

is globally unique. For example, Dell Computer has a number of OUIs assigned to them

by the IEEE, including 00-06-5B, 00-08-74, and 00-18-8B. If you encounter a NIC with a

MAC address that has one of those sets of 24 bits, it was made by Dell Computer. When

you use the command “ipconfig /all” in Windows, you get a list of network configuration

information for all your interfaces (some of which are “virtual”). If you look for “Local

Area Connection,” that is information about your main (or only) network connection

to your LAN. Under that, you will see an item labeled “Physical Connection,” followed

by six pairs of hex digits, separated by dashes. That is the MAC address of your Network

Interface Controller (NIC). Mine is 00-18-8B-78-DA-1A. This means my NIC was made

by Dell (my whole computer was, but the MAC address doesn’t tell you that). Actually,

since the NIC I’m using is on the motherboard (not an add-on PCI card), this does tell

me the motherboard was made by Dell.

You can look up the vendor of any device based on its OUI (or MAC-48 address). See

www.whatsmyip.org/mac-address-lookup/

This site tells me that the Ethernet adapter in my desktop computer (MAC address

9C-5C-8E-8F-2F-B0) was created by ASUSTek Computer Inc.

Network switches come in two varieties. “Layer 2” switches (which I would call Link

Layer switches) only work with MAC addresses. They don’t even “see” IP addresses.

Hence, “Layer 2” switches are IP version agnostic; they work equally well with IPv4 or

IPv6 or a mixture of the two (dual stack). “Layer 3” switches (sometimes called “smart”

switches) work with MAC addresses, but they also understand and can see IP addresses

(these work at both the Link Layer and the Internet Layer, in terms of the four-layer

Model). They can do things like create VLANs (Virtual LANs) to segregate traffic based

50 https://en.wikipedia.org/wiki/Organizationally_unique_identifier
51 https://en.wikipedia.org/wiki/Institute_of_Electrical_and_Electronics_Engineers

Chapter 3 review of ipv4

https://en.wikipedia.org/wiki/Institute_of_Electrical_and_Electronics_Engineers
http://www.whatsmyip.org/mac-address-lookup/
https://en.wikipedia.org/wiki/Organizationally_unique_identifier
https://en.wikipedia.org/wiki/Institute_of_Electrical_and_Electronics_Engineers

63

on IP addresses. An IPv4-only “layer 3 switch” cannot work with IPv6 traffic (or at least

none of its “higher-level” functions will affect IPv6 traffic). There are now a few dual-

stack “layer 3” switches on the market, such as the SMC 8848M, which I happen to be

running in my home network. I can even manage it over IPv6 (via Web and SNMP) and

create VLANs52 based on IPv6 addresses.

 Mapping from IPv4 Addresses to Link Layer Addresses
The software in the Application Layer, the Transport Layer, and the Internet Layer of the

IPv4 stack work with IP addresses. But the Link Layer (and the hardware) works with

MAC addresses (or other Link Layer addresses). How do IPv4 addresses get mapped

onto Link Layer addresses?

 Address Resolution Protocol (ARP)
There are two protocols in IPv4 (that don’t even exist in IPv6) called ARP53 (Address

Resolution Protocol) and InARP54 (Inverse Address Resolution Protocol). These

protocols live in the Link Layer. ARP maps IP addresses onto Link Layer addresses. This

is kind of like the mapping between FQDNs and IP addresses done in the Application

Layer by DNS, but down in the Link Layer. InARP maps Link Layer addresses onto IP

addresses (kind of like a reverse DNS lookup).

ARP is defined in RFC 826,55 “An Ethernet Address Resolution Protocol,” November

1982. ARP operates only within the network segment (routing domain) that a host is

connected to. It does not cross routers. It is used to determine the necessary Link Layer

addresses to get a packet from one node in a subnet to another node in the same subnet

(which could be a “default gateway” node that knows how to relay it on further). But for

the hop from the sender to the default gateway, it is the same problem as getting the

packet to any other local node. When the sender goes to send a packet, if the recipient’s

address is on the local link, an ARP request is done for the recipient’s address, and the

packet is sent to the recipient. If the recipient’s address is not on the local link, an ARP

52 https://en.wikipedia.org/wiki/Virtual_LAN
53 https://en.wikipedia.org/wiki/Address_Resolution_Protocol
54 www.oreilly.com/library/view/internet-core-protocols/1565925726/
ch03s01s03s01.html
55 https://tools.ietf.org/html/rfc826

Chapter 3 review of ipv4

https://en.wikipedia.org/wiki/Virtual_LAN
https://www.oreilly.com/library/view/internet-core-protocols/1565925726/ch03s01s03s01.html
https://tools.ietf.org/html/rfc826
https://en.wikipedia.org/wiki/Virtual_LAN
https://en.wikipedia.org/wiki/Address_Resolution_Protocol
http://www.oreilly.com/library/view/internet-core-protocols/1565925726/ch03s01s03s01.html
http://www.oreilly.com/library/view/internet-core-protocols/1565925726/ch03s01s03s01.html
https://tools.ietf.org/html/rfc826

64

request is done instead for the sender’s default gateway address, and the packet is sent to

the default gateway node, which will then worry about forwarding it on toward the real

recipient.

Say Alice (one IPv4 node) wants to send a packet to Bob (another IPv4 node, on the

same Ethernet network segment). Assume Alice does not currently know Bob’s MAC

address. Each machine has a table of IP addresses and MAC addresses (called an ARP

table). At this time, there is no entry in Alice’s ARP table with Bob’s IP address and MAC

address. So Alice first sends an Ethernet ARP request to all machines on the network

segment (using the Ethernet broadcast address), with the following info:

All machines on the network segment will receive the packet, but everyone other

than Bob will ignore it (“Not for me – IGNORE!”). Bob understands Ethernet protocol

and IPv4. He recognizes his own IPv4 address (“It’s for ME!”). He adds Alice’s IPv4

address and Alice’s MAC address into his ARP table (for future reference) and then sends

a response Ethernet ARP packet back to Alice, using her MAC address (which he now

knows) instead of the broadcast address, with the following info:

Only Alice gets the response (this was not a broadcast). Alice sees that this is a

RESPONSE, and the sender’s address tells her whom the response was from. Alice then

adds Bob’s IP address and MAC address into her ARP table. Now that she knows how to

send things to Bob, she goes ahead with sending the packet that she originally was trying

to send. This process is called address resolution, hence the name Address Resolution

Protocol.

Chapter 3 review of ipv4

65

The ARP table has expiration times (TTL), and when an entry becomes “stale,” it will

be discarded, and the next time a packet is sent to that address, a new fresh entry will be

added to the ARP table.

In Windows, you can view your ARP table at any time, in a DOS window, with the

command “arp –a”. The results might look something like the following.

 Inverse ARP (InARP)
There is another protocol called Inverse ARP (InARP) that maps Link Layer addresses

onto IP addresses. InARP is defined in RFC 2390,56 “Inverse Address Resolution

Protocol,” September 1998.

InARP is needed only by a few network hardware devices (like ATM). It works almost

exactly like ARP, except different opcodes are used and the sender sends the recipient’s

MAC address (which it knows), but zero fills the recipient’s IP address (which it wants

to know). The recipient recognizes its own MAC address and responds with the same

information that it does to an ARP. The older RARP (Reverse ARP) protocol is now

deprecated.

56 https://tools.ietf.org/html/rfc2390

Figure 3-7. Reverse ARP listing

Chapter 3 review of ipv4

https://tools.ietf.org/html/rfc2390
https://tools.ietf.org/html/rfc2390

66

 Types of IPv4 Packet Transmissions
The most common type of packet transmission is unicast.57 This is when one node

(A) sends a packet to just one other node (B). A and B can be in the same local link or

halfway around the world. So long as routable IP addresses are used and a routing path

is available between A and B, it is still called unicast.

Another kind of transmission is broadcast58 (covered in more detail in the following).

Here a node can transmit a packet to all nodes in the local link. Any node not interested

in a broadcast packet will just drop it. If the packet was an ICMP Echo Request (ping), all

nodes on the local link might reply to it, which could cause a lot of excess traffic.

There is another kind of transmission called anycast.59 Here a node can transmit a

packet to a single node out of a set of some collection of nodes (e.g., the “nearest” DNS

server). Usually only a single node will accept the transmission and reply to the sender.

This mechanism is somewhat limited in IPv4 but works really well in IPv6. DNS anycast

is used with the root DNS servers to allow multiple copies of each root server, to handle

the load and minimize turnaround on root server requests. DNS anycast is usually done

at the BGP routing level.

There is one more kind of transmission called multicast.60 Here one node can send a

single stream of packets, such as a digitized radio program, and any number of recipient

nodes can subscribe to that multicast and receive it. Usually listening is a passive act;

no responses are sent to the sender. The sender has no knowledge of which or even

how many nodes are receiving the transmission. It is efficient because other nodes

further along the network handle replication of the traffic to nodes beyond them. This

is analogous to many radios receiving a transmission from a single radio transmitting

station. This is covered in more detail in the following. This is supported in IPv4 but

works far better in IPv6.

 IPv4 Broadcast
Any node can send a packet to a special IPv4 address (255.255.255.255), and all nodes on

the local link will receive it. Any destination address that has all ones in the “node within

57 https://en.wikipedia.org/wiki/Unicast
58 https://en.wikipedia.org/wiki/Broadcasting_(networking)
59 https://en.wikipedia.org/wiki/Anycast
60 https://en.wikipedia.org/wiki/Multicast

Chapter 3 review of ipv4

https://en.wikipedia.org/wiki/Unicast
https://en.wikipedia.org/wiki/Anycast
https://en.wikipedia.org/wiki/Unicast
https://en.wikipedia.org/wiki/Broadcasting_(networking)
https://en.wikipedia.org/wiki/Anycast
https://en.wikipedia.org/wiki/Multicast

67

subnet” field is broadcast (e.g., 172.16.255.255 in 172.16/16). Usually, there is some

kind of information in the packet that allows most nodes to realize that packet does not

concern them (e.g., if a broadcast packet contains a DHCPv4 request, all nodes that don’t

have a DHCPv4 server will ignore it). This mechanism can help locate servers or solve

other problems (like not yet having a valid IP address), but it can put unnecessary loads

on all nodes that aren’t involved. It can also lead to broadcast storms, which involve

massive amounts of useless traffic clogging or totally shutting down an IPv4 network.

As an example, a “smurf attack”61 sends zillions of pings to the broadcast address with

the source address containing the spoofed address of the node under attack (not the

address of the actual sender). All nodes on the local link “respond” to the poor node

under attack, which amplifies the attack. There are certain kinds of misconfigurations or

hardware failures in network switches that can cause broadcast storms as well.

Packets sent to the broadcast address do not cross routers (or VLAN boundaries), so

appropriate use of these can limit the extent of disruption due to excessive broadcasts

or storms. The set of nodes that a broadcast will reach is called a broadcast domain.

Switches do not block broadcasts – they relay packets with a broadcast destination

address out all ports (unlike packets with a unicast destination address).

Broadcast is used in the DHCPv4, to allow a node to find and communicate with the

DHCPv4 server before it even gets an address.

Broadcast does not exist in IPv6, because it can be so trouble-prone. Other

mechanisms (e.g., multicast or solicited node multicast) are used to locate DHCPv6

servers or solve other problems for which broadcast may be used in IPv4.

 IPv4 Multicast
Multicast allows a node to transmit a stream of data to one of a number of special

“multicast” addresses. Multicast supports only UDP, not TCP. Any number of other

nodes can subscribe to that address and receive the datagrams. As one example, this

could be used to send “broadcast” (in the media sense) radio or television programs.

Multicast packet transmission differs from broadcast packet transmission in that only

nodes that have subscribed to that multicast address receive the packets.

Sites like YouTube, and services like “on-demand” television, use traditional unicast

(one sender connecting to one recipient) transmissions to each user. This requires a

61 https://en.wikipedia.org/wiki/Smurf_attack

Chapter 3 review of ipv4

https://en.wikipedia.org/wiki/Smurf_attack
https://en.wikipedia.org/wiki/Smurf_attack

68

great deal of bandwidth and a powerful network infrastructure at the transmission site,

especially if there are a large number of recipients (potentially millions). Multicast is

necessary to bring costs and network bandwidth requirements low enough to make it

competitive with media “broadcast” over satellite or cable systems.

There are several mechanisms and protocols involved in IPv4 multicast:

• An IP multicast group address (one of the IPv4 “class D” addresses

described previously)

• A sending node that can convert some kind of data such as audio

and/or video into digital form and transmit the resulting UDP packets

to that multicast group address

• A multicast distribution tree, where every router crossed supports

multicast operation

• A new protocol called IGMP (Internet Group Management Protocol)

that allows clients to subscribe to a particular multicast transmission

• Another new protocol called PIM (Protocol Independent Multicast)

that sets up multicast distribution trees

• Clients that can “subscribe” to specific multicast addresses (receive

the data being transmitted by the sender) and process the received

digital data into some kind of service, such as audio or video

Assuming there is a multicast program available on a particular multicast address

(e.g., 239.1.2.3), a consumer can use a multicast client application to extend the

distribution tree associated with that address to reach their computer. This corresponds

to selecting a channel on a television. There may be multiple routers between the

sender and this subscriber. All those routers must support multicast and be informed

to replicate packets from the sender to that recipient. IGMP62 is used to subscribe to a

specific multicast address, and PIM63 is used to inform all intervening routers to extend

the distribution tree to this client. The multicast server does not need to know anything

about the recipients and does not get any response from them. The creation of the

distribution tree and subscriptions to particular multicast addresses are handled by the

clients and intervening multicast routers, not by the multicast server.

62 https://en.wikipedia.org/wiki/Internet_Group_Management_Protocol
63 https://en.wikipedia.org/wiki/Protocol_Independent_Multicast

Chapter 3 review of ipv4

https://en.wikipedia.org/wiki/Internet_Group_Management_Protocol
https://en.wikipedia.org/wiki/Protocol_Independent_Multicast
https://en.wikipedia.org/wiki/Internet_Group_Management_Protocol
https://en.wikipedia.org/wiki/Protocol_Independent_Multicast

69

Unlike unicast routers, a multicast router does not need to know how to reach all

possible distribution trees, only those for which it is passing traffic from a sender to a

recipient. If there is no recipient subscribed to a given channel “downstream” from a

router (from the sender to recipient), there is no need for it to replicate packets and

forward them downstream. If a recipient downstream from that router subscribes

to a particular address, then that router will start replicating incoming upstream

packets from the multicast address and relay them downstream toward that recipient

(or recipients). This is called adding a “graft” onto the tree. If there are recipients

downstream on a particular path from a multicast router and the last one “tunes out,”

then the last router in the path between the server and that node is informed to stop

replicating packets along that path. This is called “pruning” the distribution tree. It is

possible that one subscriber “tuning out” could result in an entire chain of multicast

routers being pruned if there are no other subscribers down that path.

Multicast is often used for services such as IPTV, including applications such as

distance learning. Not all IPv4 routers support multicast and the related protocols, so

IPv4 multicast works best in “walled garden” networks, for example, within a single ISP’s

network (e.g., Comcast subscriber accessing multicast content from Comcast). In such

a situation, it is possible to ensure that all intervening routers support the necessary

protocols (which are optional in IPv4).

It is possible to build a fully IPv4 multicast-compliant router using open source

operating systems and an open source package called XORP64 (eXtensible Open Router

Platform, at www.xorp.org). XORP was first developed for FreeBSD, but is available

on Linux, OpenBSD, NetBSD, and Mac OS X. The XORP technology and team was

transferred to a commercial startup backed by VCs (called XORP Inc.65). Many modern

enterprise-class routers support Ipv4 multicast, but not all do. Not many small office/

home office (SOHO)–class routers do. In IPv6, multicast is an integral part of the

standard, and support is mandatory in all IPv6-compliant devices. It also works in a very

different way and is much more scalable.

Internet Relay Chat66 (IRC) uses a different approach to multicast (not the standard

multicast protocols) and creates a spanning tree across its overlay network to all nodes

that subscribe to a given chat channel. Unlike multicast-delivered media content, IRC is

a two-way channel.

64 https://en.wikipedia.org/wiki/XORP
65 www.xorp.org/
66 https://en.wikipedia.org/wiki/Internet_Relay_Chat

Chapter 3 review of ipv4

https://en.wikipedia.org/wiki/XORP
http://www.xorp.org
http://www.xorp.org/
https://en.wikipedia.org/wiki/Internet_Relay_Chat
https://en.wikipedia.org/wiki/XORP
http://www.xorp.org/
https://en.wikipedia.org/wiki/Internet_Relay_Chat

70

 Relevant Standards for IPv4 Multicast
RFC 1112, “Host Extensions for IP multicasting,” August 1989

(Standards Track)

RFC 2236, “Internet Group Management Protocol, Version 2,”

November 1997 (Standards Track)

RFC 2588, “IP Multicast and Firewalls,” May 1999 (Informational)

RFC 2908, “The Internet Multicast Address Allocation

Architecture,” September 2000 (Informational)

RFC 3376, “Internet Group Management Protocol, Version 3,”

October 2002 (Standards Track)

RFC 3559, “Multicast Address Allocation MIB,” June 2003

(Standards Track)

RFC 3973, “Protocol Independent Multicast – Dense Mode (PIM-

DM),” January 2005 (Experimental)

RFC 4286, “Multicast Router Discovery,” December 2005

(Standards Track)

RFC 4541, “Considerations for Internet Group Management

Protocol (IGMP) and Multicast Listener Discovery Protocol (MLD)

Snooping Switches,” May 2006 (Informational)

RFC 4601, “Protocol Independent Multicast – Sparse Mode

(PIM-SM): Protocol Specification (Revised),” August 2006

(Standards Track)

RFC 4604, “Using Internet Group Management Protocol

Version 3 (IGMPv3) and Multicast Listener Discovery Protocol

Version 2 (MLDv2) for Source-Specific Multicast,” August 2006

(Standards Track)

RFC 4605, “Internet Group Management Protocol (IGMP)/

Multicast Listener Discovery (MLD)–Based Multicast Forwarding

(IGMP/MLD Proxying),” August 2006 (Standards Track)

Chapter 3 review of ipv4

https://www.ietf.org/rfc/rfc1112.txt
https://www.ietf.org/rfc/rfc2236.txt
https://www.ietf.org/rfc/rfc2588.txt
https://www.ietf.org/rfc/rfc2908.txt
https://www.ietf.org/rfc/rfc3376.txt
https://www.ietf.org/rfc/rfc3559.txt
https://www.ietf.org/rfc/rfc3973.txt
https://www.ietf.org/rfc/rfc4286.txt
https://www.ietf.org/rfc/rfc4541.txt
https://www.ietf.org/rfc/rfc4601.txt
https://www.ietf.org/rfc/rfc4604.txt
https://www.ietf.org/rfc/rfc4605.txt

71

RFC 4607, “Source-Specific Multicast for IP,” August 2006

(Standards Track)

RFC 4610, “Anycast-RP Using Protocol Independent Multicast

(PIM),” August 2006 (Standards Track)

RFC 5015, “Bidirectional Protocol Independent Multicast (BIDIR-

PIM),” October 2007 (Standards Track)

RFC 5060, “Protocol Independent Multicast MIB,” January 2008

(Standards Track)

RFC 5110, “Overview of the Internet Multicast Routing

Architecture,” January 2008 (Informational)

RFC 5135, “IP Multicast Requirements for a Network Address

Translation (NAT) and a Network Address Port Translator

(NAPT),” February 2008 (Best Current Practices)

RFC 5332, “MPLS Multicast Encapsulations,” August 2008

(Standards Track)

RFC 5374, “Multicast Extensions to the Security Architecture for

the Internet Protocol,” November 2008 (Standards Track)

RFC 5384, “The Protocol Independent Multicast (PIM) Join

Attribute Format,” November 2008 (Standards Track)

RFC 5401, “Multicast Negative-Acknowledgement (NACK)

Building Blocks,” November 2008 (Standards Track)

RFC 5519, “Multicast Group Membership Discovery MIB,” April

2009 (Standards Track)

RFC 5740, “NACK-Oriented Reliable Multicast (NORM) Transport

Protocol,” November 2009 (Standards Track)

RFC 5771, “IANA Guidelines for IPv4 Multicast Address

Assignments,” March 2010 (Best Current Practice)

RFC 5790, “Lightweight Internet Group Management Protocol

Version 3 (IGMPv3) and Multicast Listener Discovery Version 2

(MLDv2) Protocols,” February 2010 (Standards Track)

Chapter 3 review of ipv4

https://www.ietf.org/rfc/rfc4607.txt
https://www.ietf.org/rfc/rfc4610.txt
https://www.ietf.org/rfc/rfc5015.txt
https://www.ietf.org/rfc/rfc5060.txt
https://www.ietf.org/rfc/rfc5110.txt
https://www.ietf.org/rfc/rfc5135.txt
https://www.ietf.org/rfc/rfc5332.txt
https://www.ietf.org/rfc/rfc5374.txt
https://www.ietf.org/rfc/rfc5384.txt
https://www.ietf.org/rfc/rfc5401.txt
https://www.ietf.org/rfc/rfc5519.txt
https://www.ietf.org/rfc/rfc5740.txt
https://www.ietf.org/rfc/rfc5771.txt
https://www.ietf.org/rfc/rfc5790.txt

72

 Internet Group Management Protocol (IGMP)
IGMP67 is an Internet Layer protocol that supports IPv4 multicast. It manages the

membership of IPv4 multicast groups and is used by network hosts and adjacent

multicast routers to establish multicast group membership. There are three versions of

it so far. IGMPv1 is defined in RFC 1112, “Host Extensions for IP Multicasting,” August

1989. IGMPv2 is defined in RFC 2236, “Internet Group Management Protocol, Version

2,” November 1997. IGMPv3 is defined in RFC 3376,68 “Internet Group Management

Protocol, Version 3,” October 2002.

Some “layer 2” switches have a feature called “IGMP snooping,” which allows

them to look at the “layer 3” packet content, to enable multicast traffic to go only to

those ports that have subscribers on them while blocking it (and thereby reducing

unnecessary traffic) on ports with no subscribers. A switch without IGMP snooping will

flood all connected nodes in the broadcast domain with all multicast traffic. This can

be used by hackers to “deny service” to clients who are too busy receiving and ignoring

multicast traffic to handle useful traffic. This is called a Denial of Service, or DoS,

attack. Active IGMP snooping is described in RFC 4541,69 “Considerations for Internet

Group Management Protocol (IGMP) and Multicast Listener Discovery Protocol (MLD)

Snooping Switches,” May 2006.

 Protocol Independent Multicast (PIM)

PIM70 supports IPv4 multicast. It is called “protocol independent” because it does not

include its own network topology discovery mechanism. PIM does not include routing,

but provides multicast forwarding by using static IPv4 routes, or routing tables created by

IPv4 routing protocols, such as RIP, RIPv2, OSPF, IS-IS or BGP.

PIM Dense Mode is defined in RFC 3973,71 “Protocol Independent Multicast – Dense

Mode (PIM-DM),” January 2005. This uses dense multicast routing, which builds

shortest-path trees by flooding multicast traffic domain-wide and then pruning branches

where no receivers are present. It does not scale well.

67 https://en.wikipedia.org/wiki/Internet_Group_Management_Protocol
68 https://tools.ietf.org/html/rfc3376
69 https://tools.ietf.org/html/rfc4541
70 https://en.wikipedia.org/wiki/Protocol_Independent_Multicast
71 https://tools.ietf.org/html/rfc3973

Chapter 3 review of ipv4

https://en.wikipedia.org/wiki/Internet_Group_Management_Protocol
https://tools.ietf.org/html/rfc3376
https://tools.ietf.org/html/rfc4541
https://en.wikipedia.org/wiki/Protocol_Independent_Multicast
https://tools.ietf.org/html/rfc3973
https://en.wikipedia.org/wiki/Internet_Group_Management_Protocol
https://tools.ietf.org/html/rfc3376
https://tools.ietf.org/html/rfc4541
https://en.wikipedia.org/wiki/Protocol_Independent_Multicast
https://tools.ietf.org/html/rfc3973

73

PIM Sparse Mode is defined in RFC 4601,72 “Protocol Independent Multicast – Sparse

Mode (PIM-SM),” August 2006. PIM-SM builds unidirectional shared trees routed at a

rendezvous point per group and can create shortest-path trees per source. It scales fairly

well for wide-area use.

Bidirectional PIM is defined in RFC 5015,73 “Bidirectional Protocol Independent

Multicast (BIDIR-PIM),” October 2007. It builds shared bidirectional trees. It never builds

a shortest-path tree, so there may be longer end-to-end delays, but it scales very well.

 ICMPv4: Internet Control Message Protocol for IPv4
ICMPv474 is a key protocol in the Internet Layer that complements version 4 of the

Internet Protocol (IPv4). It was originally defined in RFC 792,75 “Internet Control

Message Protocol,” September 1981. There are several ICMPv4 messages defined. Some

of these are generated by the network stack in response to errors in datagram delivery.

Some are used for diagnostic purposes (to check for network connectivity). Others are

used for flow control (source quench) or routing (redirect).

72 https://tools.ietf.org/html/rfc4601
73 https://tools.ietf.org/html/rfc5015
74 https://en.wikipedia.org/wiki/Internet_Control_Message_Protocol
75 https://tools.ietf.org/html/rfc792

Chapter 3 review of ipv4

https://tools.ietf.org/html/rfc4601
https://tools.ietf.org/html/rfc5015
https://en.wikipedia.org/wiki/Internet_Control_Message_Protocol
https://tools.ietf.org/html/rfc792
https://tools.ietf.org/html/rfc4601
https://tools.ietf.org/html/rfc5015
https://en.wikipedia.org/wiki/Internet_Control_Message_Protocol
https://tools.ietf.org/html/rfc792

74

An ICMPv4 message consists of an IPv4 packet header, followed by 8 bytes that

specify the details for each ICMPv4 message, followed by 32 or more bytes of data

(depending on implementation).

The IP header Version field contains the value 4 (for IPv4).

The IP header Type of Service contains the value 0.

The IP header Length field contains the sum of 20 (header length) + 8 (ICMPv4

header length) + number of bytes of data to be sent in message.

The IP header Time To Live field is set to some reasonable count (or very specific

counts if used to implement the traceroute function).

The IP header Protocol field contains the value 1 (ICMPv4).

The IP header Source IP Address field contains the IPv4 address of the sending node.

The IP header Destination IP Address field contains the IPv4 address of the intended

target node.

The ICMPv4 header Type of Message field (8 bits) specifies the ICMPv4 message

type, such as 8 for Echo Request. See the following for the most possible ICMPv4

message types.

Figure 3-8. ICMPv4 message syntax

Chapter 3 review of ipv4

75

The ICMPv4 header Code field (8 bits) specifies options for the specified ICMPv4

message. For example, with Message Type 3, the code defines what failed, for example,

0 means “Destination network unreachable,” while 1 means “Destination host

unreachable.”

The ICMPv4 header Checksum (16 bits) field is defined the same way as for an IPv4

header but covers the bytes in the ICMPv4 message (not including the IP header bytes).

The ICMPv4 header Identifier field (16 bits) can contain an ID, used only in Echo

messages.

The ICMPv4 header Sequence Number field (16 bits) contains a sequence number,

also used only in Echo messages.

For a ping diagnostic, the sending node transmits an ICMPv4 Echo Request message

(Type = 8). The ID can be set to any value (0–65,535), and the sequence number is set

initially to 0 and then is incremented by one for each ping in a sequence. The Data field

(following the ICMPv4 header) can contain any data (typically some ASCII string). When

the receiving node gets an ICMPv4 Echo Request, it sends an ICMPv4 Echo Reply (Type

= 0). The Identifier, Sequence Number, and Data fields in the reply must contain exactly

what were sent in the request.

If the destination of a packet is unreachable, your TCP/IP stack will return a

Destination Unreachable ICMPv4 packet, with the code explaining what could not be

reached.

Figure 3-9. ICMPv4 header Sequence Number field options

Chapter 3 review of ipv4

76

If a packet cannot be sent by the preferred path (e.g., due to a link specified in a

static route being down), an ICMPv4 Redirect message will be sent to the packet sender

(typically the previous router), which should then try other paths.

If the TTL in a packet header is decremented all the way to zero, the packet is

discarded, and a Time Exceeded ICMPv4 message will be sent to the packet sender.

If a node is receiving packets faster than it can handle them, it can send an ICMPv4

Source Quench message to the sender, who should slow down.

According to the standards, all nodes should always respond to an Echo Request

with an Echo Reply. Due to use of this function by many hackers and worms (for network

mapping), many sites now violate the standard and do not reply to Echo Requests.

Many ISPs now actually block Echo Requests. Note that in IPv6, you cannot just block all

ICMPv6 messages, as it is a far more integral part of the protocol.

 IPv4 Routing
TCP/IP was designed from the beginning to be an internetworking76 protocol. This term

is where the name “Internet” comes from. TCP/IP supports ways to get packets from one

node to another, even across multiple networks, by various routes through a possibly

complex series of interconnections. If one or more links go down, the packets may

travel by another route. Even within a given group of packets (say, ones that constitute

a long email message), some of the packets may go by one route and others by another.

The process of determining a viable route (or routes) to get traffic from A to B is called

routing. This is one of the most complex areas of TCP/IP. There are entire long books on

the subject. We will be covering only the simplest details, in order to show how routing

differs between IPv4 and IPv6.

Some simpler network protocols (such as Microsoft’s NetBIOS or NetBEUI) are

non-routing. They will work only within a single LAN. TCP/IP and NetWare’s IPX/SPX77

support routing. You can connect multiple networks together with them and any node

in any network can (in general) exchange data with any other node in any connected

network. The Internet is simply the largest set of interconnected networks in the world.

TCP/IP’s flexible routing capabilities are one of the things that make it possible.

76 https://en.wikipedia.org/wiki/Internetworking
77 https://en.wikipedia.org/wiki/IPX/SPX

Chapter 3 review of ipv4

https://en.wikipedia.org/wiki/Internetworking
https://en.wikipedia.org/wiki/IPX/SPX
https://en.wikipedia.org/wiki/Internetworking
https://en.wikipedia.org/wiki/IPX/SPX

77

There are many components used to create IP-based networks, including NICs,

cables, bridges, switches, and gateways. Of these, only gateways (network devices that

can forward packets from one network segment to another) do routing. There are

several kinds of gateways. The simplest case is a router, which uses various protocols,

such as RIP, OSPF, and BGP, to determine where to forward packets, depending on

their destination address. It is possible to build a router from a generic PC (or another

computer) if it has multiple network interfaces (NICs), connected to multiple networks

and the ability to forward packets between two or more interfaces. Most operating

systems with network support can be configured to do packet forwarding (accepting

a packet from one network, via one NIC, and then forwarding it on to another

network, via a different NIC). Typically, no changes are made to the IP packet other

than decrementing the hop count in the IP packet header. If NAT is being performed,

numerous changes may be made to the IP packet header. If the packet is layered over

Ethernet, there may be a new Ethernet frame78 wrapped around the IP packet for each

stage of its journey.

It is also possible for a gateway node to do other processing as the packets flow

through it, such as filtering packets on certain criteria (e.g., allow traffic using port 25 to

node 172.20.0.11 to pass, but block port 25 traffic to all other nodes). These are called

packet filtering firewalls. They are really just routers that allow more control over the

flow of traffic and can help protect the network from various attacks. Even in a packet

filtering firewall, all processing still takes place at the Internet Layer. More sophisticated

packet filtering firewalls can “inspect” the contents of the packets and maintain a record

(“state”) of things that really are associated with higher levels of the network stack

(e.g., Transport or Application Layer). This is called deep packet inspection, or stateful

inspection.

It is also possible to have a bastion host that doesn’t just forward traffic; it receives

protocol connections on behalf of nodes on the Internet network and relays them

onward if they are acceptable. They act as a proxy for the internal servers. Processing

here takes place at the Application Layer. Proxy firewalls are much more secure, but also

more complex and slower. Typically, a proxy server must be created for each protocol

handled by the firewall (e.g., SMTP, HTTP, FTP). There can be both incoming proxies (as

described previously) and outgoing proxies (your node makes an outgoing connection

to a proxy in your firewall, and it makes a further outgoing connection to the node you

78 https://en.wikipedia.org/wiki/Ethernet_frame

Chapter 3 review of ipv4

https://en.wikipedia.org/wiki/Ethernet_frame
https://en.wikipedia.org/wiki/Ethernet_frame

78

really want to connect to). These allow better control than a simple packet filtering

firewall. If a firewall both does packet forwarding with stateful inspection and has proxy

servers (incoming and/or outgoing) for at least some protocols, it is called a hybrid

firewall and can provide the best of both worlds.

 Relevant Standard for IPv4 Routing
• RFC 1058, “Routing Information Protocol,” June 1988 (Historic)

• RFC 1142, “OSI IS-IS Intra-domain Routing Protocol,” February 1990

(Informational)

• RFC 1195 “Use of OSI IS-IS for Routing in TCP/IP and Dual

Environments,” December 1990 (Standards Track)

• RFC 2328, “OSPF Version 2,” April 1998 (Standards Track)

• RFC 2453, “RIP Version 2,” November 1998 (Standards Track)

• RFC 4271, “A Border Gateway Protocol 4 (BGP-4),” January 2006
(Standards Track)

In Windows, you can view all currently known routes with the “route print”

command.

Chapter 3 review of ipv4

https://tools.ietf.org/html/rfc1058
https://tools.ietf.org/html/rfc1142
https://tools.ietf.org/html/rfc1195
https://tools.ietf.org/html/rfc2328
https://tools.ietf.org/html/rfc2453
https://tools.ietf.org/html/rfc4271

79

Figure 3-10. Output of the IPv4 route print command

There are several routing protocols for IPv4 that are typically handled only in the

core or where a customer network meets the core, the edge router. These include RIP,

RIPv2, EIGRP, IS-IS, OSPF, and BGP.

TCP/IP routing is a very deep, complex subject, and we will be touching only on

the most obvious aspects in this book, to give a rough idea of the differences in routing

between IPv4 and IPv6.

RIP: Routing Information Protocol,79 version 1. Defined in RFC 1058,80 “Routing

Information Protocol,” June 1988. This protocol is very old and of primarily historic

interest, since it does not support address blocks based on CIDR81 (it is a classful routing

protocol). It is used to exchange routing information with gateways and other hosts. It

is based on the distance vector algorithm,82 which was first used in the ARPANET, circa

1967. RIP is a UDP-based protocol, using port 520.

79 https://en.wikipedia.org/wiki/Routing_Information_Protocol
80 https://tools.ietf.org/html/rfc1058
81 https://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing
82 https://en.wikipedia.org/wiki/Distance-vector_routing_protocol

Chapter 3 review of ipv4

https://tools.ietf.org/html/rfc1058
https://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing
https://en.wikipedia.org/wiki/Distance-vector_routing_protocol
https://en.wikipedia.org/wiki/Distance-vector_routing_protocol
https://en.wikipedia.org/wiki/Routing_Information_Protocol
https://tools.ietf.org/html/rfc1058
https://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing
https://en.wikipedia.org/wiki/Distance-vector_routing_protocol

80

RIPv2: Routing Information Protocol, version 2.83 Defined in RFC 2453,84 “RIP

Version 2,” November 1998. Although OSPF and IS-IS are superior, there were so

many implementations of RIP in use it was decided to try to improve on it. Extensions

were made to incorporate the concepts of autonomous systems (ASs), IGP/EGP

interactions, subnetting and authentication, as well as address blocks based on CIDR

(it is a “classless” routing protocol). The lack of subnet masks in RIPv1 was a particular

problem. RIPv2 is limited to networks whose longest routing path is 15 hops. It also uses

fixed “metrics” to compare alternative routes, which is an oversimplification. However,

RIPv2 becomes unstable if you try to account for different metrics. See RFC for details.

EIGRP: Enhanced Interior Gateway Routing Protocol.85 This is not an IETF protocol,

but a Cisco proprietary routing protocol based on their earlier IGRP.86 EIGRP is able to

deal with addresses allocated via CIDR (it is a classless routing protocol), including use of

variable-length subnet masks. It can run separate routing processes for IPv4, IPv6, IPX,

and AppleTalk protocols, but does not support translation between protocols. For details,

see Cisco documentation. There is an RFC that covers a subset of the full Cisco EIGRP, RFC

7868,87 “Cisco’s Enhanced Interior Gateway Routing Protocol (EIGRP),” May 2016.

IS-IS: Intermediate System to Intermediate System routing protocol.88 IS-IS

(pronounced “eye-sys”) was originally developed by Digital Equipment Corporation

(DEC) as part of DECnet Phase V and formally defined as part of ISO/IEC 10589:2002

for the Open System Interconnection reference design. It is not an Internet standard,

although the details are published as Informational RFC 1142,89 “OSI IS-IS Intra-domain

Routing Protocol,” February 1990 (since reclassified as historic by RFC 714290 in 2014).

Another RFC specifies how to use IS-IS for routing in TCP/IP and/or OSI environments:

RFC 1195,91 “Use of OSI IS-IS for Routing in TCP/IP and Dual Environments,” December

1990. IS-IS is an Interior Gateway Protocol, for use within an administrative domain or

network. It is not intended for routing between autonomous systems, which is the role

83 https://community.cisco.com/t5/networking-documents/
ripv2-routing-information-protocol/ta-p/3117425
84 https://tools.ietf.org/html/rfc2453
85 https://en.wikipedia.org/wiki/Enhanced_Interior_Gateway_Routing_Protocol
86 https://en.wikipedia.org/wiki/Interior_Gateway_Routing_Protocol
87 https://tools.ietf.org/html/rfc7868
88 https://en.wikipedia.org/wiki/IS-IS
89 https://tools.ietf.org/html/rfc1142
90 https://tools.ietf.org/html/rfc7142
91 https://tools.ietf.org/html/rfc1195

Chapter 3 review of ipv4

https://community.cisco.com/t5/networking-documents/ripv2-routing-information-protocol/ta-p/3117425
https://tools.ietf.org/html/rfc2453
https://en.wikipedia.org/wiki/Interior_Gateway_Routing_Protocol
https://tools.ietf.org/html/rfc7868
https://tools.ietf.org/html/rfc7868
https://tools.ietf.org/html/rfc1142
https://tools.ietf.org/html/rfc7142
https://tools.ietf.org/html/rfc1195
https://community.cisco.com/t5/networking-documents/ripv2-routing-information-protocol/ta-p/3117425
https://community.cisco.com/t5/networking-documents/ripv2-routing-information-protocol/ta-p/3117425
https://tools.ietf.org/html/rfc2453
https://en.wikipedia.org/wiki/Enhanced_Interior_Gateway_Routing_Protocol
https://en.wikipedia.org/wiki/Interior_Gateway_Routing_Protocol
https://tools.ietf.org/html/rfc7868
https://en.wikipedia.org/wiki/IS-IS
https://tools.ietf.org/html/rfc1142
https://tools.ietf.org/html/rfc7142
https://tools.ietf.org/html/rfc1195

81

of BGP. It is not a distance vector algorithm; it is a link-state protocol.92 It operates by

reliably flooding network topology information through a network of routers, allowing

each router to build its own picture of the complete network. OSPF (developed by the

IETF about the same time) is more widely used, although it appears that IS-IS has certain

characteristics that make it superior in large ISPs.

OSPFv2: Open Shortest Path First,93 version 2. Unlike EIGRP and IS-IS, OSPF is an

IETF standard. OSPFv2 is defined in RFC 2328,94 “OSPF Version 2,” April 1998. OSPF is

the most widely used Interior Gateway Protocol today (as opposed to BGP, which is an

Exterior Gateway Protocol). Like IS-IS, OSPF is a link-state protocol.95 It gathers link-

state information from available routers and builds a topology map of the network. It

was designed to support variable-length subnet masking (VLSM) or CIDR addressing

models. Changes to the network topology are rapidly detected, and it converges on a

new optimal routing structure within seconds. It allows specification of different metrics

(“cost of transmission” in some sense) for various links to allow better modeling of the

real world (where some links are fast and some slow). OSPF does not layer over UDP or

TCP but uses IP datagrams with a protocol number of 89. This is very different from RIP

or BGP. OSPF uses multicast, including the special addresses:

For routing IPv4 multicast traffic, there is MOSPF (Multicast Open Short Path First), defined

in RFC 1584,96 “Multicast Extensions to OSPF,” March 1994. However, this is not widely used.

Instead, most people use PIM97 in conjunction with OSPF or other Interior Gateway Protocols.

BGP-4: Border Gateway Protocol 4.98 Defined in RFC 4271,99 “A Border Gateway

Protocol 4 (BGP-4),” January 2006. This version supports routing only IPv4. There are

defined multiprotocol extensions (BGP4+) that support IPv6 and other protocols, which

will be described in Chapter 5.

92 https://en.wikipedia.org/wiki/Link-state_routing_protocol
93 https://en.wikipedia.org/wiki/Open_Shortest_Path_First
94 https://tools.ietf.org/html/rfc2328
95 https://en.wikipedia.org/wiki/Link-state_routing_protocol
96 https://tools.ietf.org/html/rfc1584
97 https://en.wikipedia.org/wiki/Protocol_Independent_Multicast
98 https://en.wikipedia.org/wiki/Border_Gateway_Protocol
99 https://tools.ietf.org/html/rfc4271

Chapter 3 review of ipv4

https://en.wikipedia.org/wiki/Link-state_routing_protocol
https://en.wikipedia.org/wiki/Link-state_routing_protocol
https://tools.ietf.org/html/rfc2328
https://en.wikipedia.org/wiki/Link-state_routing_protocol
https://tools.ietf.org/html/rfc1584
https://en.wikipedia.org/wiki/Protocol_Independent_Multicast
https://tools.ietf.org/html/rfc4271
https://en.wikipedia.org/wiki/Link-state_routing_protocol
https://en.wikipedia.org/wiki/Open_Shortest_Path_First
https://tools.ietf.org/html/rfc2328
https://en.wikipedia.org/wiki/Link-state_routing_protocol
https://tools.ietf.org/html/rfc1584
https://en.wikipedia.org/wiki/Protocol_Independent_Multicast
https://en.wikipedia.org/wiki/Border_Gateway_Protocol
https://tools.ietf.org/html/rfc4271

82

BGP is an Exterior Gateway Protocol100 (compare with IS-IS and OSPFv2, which

are Interior Gateway Protocols101). It is not used within networks, but only between

autonomous systems.102 Its primary function is to exchange AS network reachability

information with other AS networks. This includes information on the list of

autonomous systems (ASs) that reachability information traverses. This is sufficient for

BGP to construct a graph of AS connectivity from which routing loops can be pruned,

and, at the AS level, certain policy decisions may be enforced.

BGP-4 includes mechanisms for supporting CIDR. They can advertise a set of

destinations as an IP prefix, eliminating the concept of network “class,” which was

present in early BGP implementations. BGP-4 also has mechanisms that allow

aggregation of routes and AS paths. Most networks that obtain service from ISPs never

deploy BGP themselves. It is mostly for exchange of information between ISPs, especially

if they are multihomed (obtain upstream service from more than one source). This

would be referred to as Exterior Border Gateway Protocol or EBGP. Enormous networks

that are too large for OSPF could deploy BGP themselves as a top level linking multiple

OSPF routing domains (this would normally be referred to as Interior Border Gateway

Protocol or IBGP).

BGP is a path vector protocol.103 It does not use IGP metrics, but makes routing

decisions based on path, network policies, and/or rulesets. It replaces the now defunct

Exterior Gateway Protocol (EGP), which was formally specified in RFC 904,104 “Exterior

Gateway Protocol Formal Specification,” April 1984.

 Network Address Translation (NAT)
It is also possible for a gateway to do Network Address Translation105 (NAT) as packets

are forwarded. One form of this (“Full Cone” or “Static” NAT) allows multiple internal

nodes (which use private addresses, such as 10.1.2.3) to be translated to globally routable

addresses (like 123.45.67.89) on the way out. It also can translate the globally routable

destination address of packets sent in reply to an outgoing packet back to the private

100 https://en.wikipedia.org/wiki/Exterior_Gateway_Protocol
101 https://en.wikipedia.org/wiki/Interior_gateway_protocol
102 https://en.wikipedia.org/wiki/Autonomous_system_(Internet)
103 https://en.wikipedia.org/wiki/Path_vector_routing_protocol
104 https://tools.ietf.org/html/rfc904
105 https://en.wikipedia.org/wiki/Network_address_translation

Chapter 3 review of ipv4

https://en.wikipedia.org/wiki/Exterior_Gateway_Protocol
https://en.wikipedia.org/wiki/Interior_gateway_protocol
https://en.wikipedia.org/wiki/Autonomous_system_(Internet)
https://en.wikipedia.org/wiki/Path_vector_routing_protocol
https://en.wikipedia.org/wiki/Path_vector_routing_protocol
https://tools.ietf.org/html/rfc904
https://en.wikipedia.org/wiki/Network_address_translation
https://en.wikipedia.org/wiki/Exterior_Gateway_Protocol
https://en.wikipedia.org/wiki/Interior_gateway_protocol
https://en.wikipedia.org/wiki/Autonomous_system_(Internet)
https://en.wikipedia.org/wiki/Path_vector_routing_protocol
https://tools.ietf.org/html/rfc904
https://en.wikipedia.org/wiki/Network_address_translation

83

address of the originating node, so that the internal node can complete a query/response

transaction. The port numbers in outgoing packets are shifted by a NAT gateway in such

a way that it can figure out which internal node to send reply packets to. This allows

many internal nodes to “share” (hide behind) a single globally routable Ipv4 address

(necessary now that we are running out of these). NAT will be covered in more detail in

the next chapter.

 Relevant Standard for IPv4 NAT
RFC 1918, “Address Allocation for Private Internets,” February
1996 (Best Current Practices)

RFC 2663, “IP Network Address Translation (NAT) Terminology
and Considerations,” August 1999 (Informational)

RFC 2694, “DNS Extensions to Network Address Translations

(DNS_ALG),” September 1999 (Informational)

RFC 2709, “Security Model with Tunnel-mode IPsec for NAT

Domains,” October 1999 (Informational)

RFC 2993, “Architectural Implications of NAT,” November 2000
(Informational)

RFC 3022, “Traditional IP Network Address Translation
(Traditional NAT),” January 2001 (Informational)

RFC 3235, “Network Address Translation (NAT)-Friendly

Application Design Guidelines,” January 2002 (Informational)

RFC 3519, “Mobile IP Traversal of Network Address Translation

(NAT) Devices,” April 2003 (Standards Track)

RFC 3715, “IPsec-Network Address Translation (NAT)
Compatibility Requirements,” March 2004 (Informational)

RFC 3947, “Negotiation of NAT-Traversal in the IKE,” January
2005 (Standards Track)

RFC 4008, “Definitions of Managed Objects for Network Address

Translations (NAT),” March 2005 (Standards Track)

Chapter 3 review of ipv4

https://tools.ietf.org/html/rfc1918
https://tools.ietf.org/html/rfc2663
https://tools.ietf.org/html/rfc2694
https://tools.ietf.org/html/rfc2709
https://tools.ietf.org/html/rfc2993
https://tools.ietf.org/html/rfc3022
https://tools.ietf.org/html/rfc3235
https://tools.ietf.org/html/rfc3519
https://tools.ietf.org/html/rfc3715
https://tools.ietf.org/html/rfc3947
https://tools.ietf.org/html/rfc4008

84

RFC 4787, “Network Address Translation (NAT) Behavioral
Requirements for Unicast UDP,” January 2007 (Best Current
Practices)

RFC 4966, “Reasons to Move the Network Address Translation –

Protocol Translator (NAT-PT) to Historic Status,” (Informational)

RFC 5128, “State of Peer-to-Peer (P2P) Communication Across

Network Address Translations (NATs),” March 2008 (Informational)

RFC 5207, “NAT and Firewall Traversal Issues of Host Identity

Protocol (HIP) Communication,” April 2008 (Informational)

RFC 5382, “NAT Behavioral Requirements for TCP,” October
2008 (Best Current Practices)

RFC 5389, “Session Traversal Utilities for NAT (STUN),”
October 2008 (Standards Track)

RFC 5508, “NAT Behavioral Requirements for ICMP”, April 2009
(Best Current Practices)

RFC 5597, “Network Address Translation (NAT) Behavioral

Requirements for the Datagram Congestion Control Protocol,”

September 2009 (Best Current Practices)

RFC 5684, “Unintended Consequences of NAT Deployments
with Overlapping Address Space,” February 2010
(Informational)

It should be obvious from the number of RFCs that explain how NAT affects other

things that NAT has a heavy impact on almost every aspect of networks. There are also

a lot of “Informational” RFCs required to explain exactly how it impacts these things.

Removing NAT has no downside (given sufficient public addresses) and vastly simplifies

network architecture and management in addition to lowering costs. It also vastly

simplifies application design and implementation. The removal of NAT and restoration

of the flat address space is one of the main benefits of moving to IPv6. Unfortunately, we

have an entire generation of network engineers who have assumed that NAT is “the way

networks are done” and don’t realize it was created only as a temporary crutch to extend

the life of the IPv4 address space until IPv6 could be completed and deployed. Before

NAT, the IPv4 Internet was “flat,” and firewalls had very effective security without NAT

Chapter 3 review of ipv4

https://tools.ietf.org/html/rfc4787
https://tools.ietf.org/html/rfc4966
https://tools.ietf.org/html/rfc5128
https://tools.ietf.org/html/rfc5207
https://tools.ietf.org/html/rfc5382
https://tools.ietf.org/html/rfc5389
https://tools.ietf.org/html/rfc5508
https://tools.ietf.org/html/rfc5597
https://tools.ietf.org/html/rfc5684

85

(I call this “classic firewall architecture”). In IPv6, we are simply returning to the original

concept of “any node to any node connectivity” that characterized the pre-NAT IPv4

Internet. Protocols like SIP, IPsec, IKE, and Mobile IP will work far better without NAT

in the way. DNS is also greatly simplified in the absence of NAT (no internal vs. external

“views” are required).

Unfortunately, there is no possible way to remove NAT from the current Internet.

There are far too many users to handle with the possible public addresses, and

essentially all the routable addresses are already in use. The only possible way now to

remove NAT is by migrating to IPv6.

Most routers and firewalls typically include NAT for IPv4 as part of their

functionality, although it would be possible to have a NAT gateway without any filtering

or routing capabilities that does only NAT.

In general, any gateway that modifies the source and/or destination addresses in a

packet (possibly also the source port number) is doing NAT. There are several forms of it,

the most popular being address masquerading (hide-mode NAT) and one-to-one (BINAT,

or static NAT).

Most IPv4 networks today make use of private addresses as defined in RFC 1918,106

“Address Allocation for Private Internets,” February 1996. Basically, three blocks of

addresses (10.0.0.0/8, 172.16.0.0/12, and 192.168.0.0/16) were permanently removed

from the available Internet allocation pool, marked as “unroutable” on the Internet,

and reserved for use as something similar to telephone extension numbers in an office

(hiding behind a single company phone number, via a Private Branch Exchange). It is

possible for any company to use addresses from any or all of these ranges to number the

nodes inside their networks. However, these addresses cannot be routed on the Internet

from anyone, since they are no longer globally unique. Hence, if the users of nodes with

those addresses want to use the Internet, there must be address translation to and from

“real” (globally unique) addresses at the gateway that connects them to the Internet,

which is what NAT does.

One thing that confuses people is that internal telephone extensions don’t look

like public telephone numbers (e.g., 100, 101, 1125 vs. 9472-4173). However, private IP

addresses look just like public addresses (except for the address ranges) and in fact used

to be public addresses that were repurposed.

The RFC 1918 private addresses are in the following ranges:

106 https://tools.ietf.org/html/rfc1918

Chapter 3 review of ipv4

https://tools.ietf.org/html/rfc1918
https://tools.ietf.org/html/rfc1918

86

Figure 3-11. RFC 1918 address ranges

Figure 3-12. New private IP address block for CGN

More recently another range was reserved for CGN (Carrier-Grade NAT107). These

addresses cannot be used by end users, only ISPs deploying CGN:

Note that the most popular form of NAT is more properly called NAPT (“Network

Address Port Translation”), which involves the translation of both IP addresses and port

numbers.

NAT is defined in RFC 3022,108 “Traditional IP Network Address Translation

(Traditional NAT),” January 2001. Some aspects of NAT are defined in RFC 2663,109 “IP

Network Address Translation (NAT) Terminology and Considerations,” August 1999.

One form of NAT traversal (STUN) is defined in RFC 5389,110 “Session Traversal

Utilities for NAT (STUN),” October 2008. STUN is a protocol that serves as a tool for other

protocols in dealing with Network Address Translation (NAT) traversal. It can be used

by an endpoint to determine the IP address and port allocated to it by a NAT. It can also

be used to check connectivity between two endpoints and as a keepalive protocol to

maintain NAT bindings. STUN works with many existing NATs and does not require any

special behavior from them.

 Connection Without NAT (Inside the LAN)
Say you have two nodes (Alice and Bob) on your LAN. Alice has the address 10.50.3.12,

and Bob has the address 10.50.3.75 (both private addresses). They can make connections

within their LAN (to any address in the 10.0.0.0/8 network) with no problem. Say there is

a web server (port 80) at 10.1.20.30.

107 https://en.wikipedia.org/wiki/Carrier-grade_NAT
108 www.ietf.org/rfc/rfc3022.txt
109 www.ietf.org/rfc/rfc2663.txt
110 www.ietf.org/rfc/rfc5389.txt

Chapter 3 review of ipv4

https://en.wikipedia.org/wiki/Carrier-grade_NAT
https://www.ietf.org/rfc/rfc3022.txt
https://www.ietf.org/rfc/rfc2663.txt
https://www.ietf.org/rfc/rfc5389.txt
https://en.wikipedia.org/wiki/Carrier-grade_NAT
http://www.ietf.org/rfc/rfc3022.txt
http://www.ietf.org/rfc/rfc2663.txt
http://www.ietf.org/rfc/rfc5389.txt

87

In the following, we will specify the port number appended to the IP address,

separated by a colon (e.g., 10.50.3.12:12345). When Alice makes a connection to the web

server, the destination port is 80, but her source port is a randomly chosen value greater

than 1024 that is not already in use (e.g., 12345 or 54321). The same source port would

be used for the duration of the connection. Replies from the server would be sent using

Alice’s source address and port as the destination address and port in the reply packets.

See the following for example.

Note: the preceding behavior is somewhat simplified. Such a server could accept
only one connection at a time, which would have to complete before anyone
else could connect. this is because a given address:port can only handle one
connection at any given time. a real-world server would have a parent process
listening for connections on a well-known port (e.g., 80). when some client
connects to the well-known port, the parent process would create a child process
(or thread), which would accept the connection (using yet another unused port
number) and process it. Meanwhile, the main process would go back to listening
for further connections on the well-known port. if ten users were connected at
a time, there would be 11 processes running, one main process and ten child
processes (one for each connection). from the viewpoint of the client (e.g., with
“netstat –na”), it would appear that the remote port (the one on the server) was
the original well-known port (e.g., 80).

 Connection Through Hide-Mode NAT
But how do Alice and Bob connect to www.ipv6.org? That node happens to have an IPv4

address of 194.63.248.52, and we’re still in Chapter 3 (about Ipv4), so they don’t have IPv6

yet! Let’s say there is a NAT gateway where their LAN (or ISP) connects to the Internet. It

has an “outside” address (which must be a valid, routable Ipv4 address) of 12.34.56.137. If

Figure 3-13. Port mapping for IPv4 NAT

Chapter 3 review of ipv4

http://www.ipv6.org

88

either Alice or Bob connects to www.ipv6.org (over Ipv4), the web page there will indicate

to both of them that they are connecting over IPv4, from the address 12.34.56.137, not

from their respective private addresses, even if the connections are made at the same

instant. The web server log will show that both are connected from that one public

address. How can www.ipv6.org reply with the correct web page to each of them?

With hide-mode NAT, the gateway is translating the source address in Alice’s packets

from 10.50.3.12 to 12.34.56.137. It is also translating the source address in Bob’s packets

from 10.50.3.75 to 12.34.56.137. The destination address is 194.63.248.52:80 for both

Alice and Bob. Their browsers would each choose a random source port. Let’s say

Alice’s chose 10123 and Bob’s chose 20321. The NAT gateway would not only translate

the source address from both Alice and Bob; it would also shift the source ports and

keep track of that shift in a table, which contains the source address, the original source

port, and the shifted source port (for each connection). Let’s say Alice’s port is shifted

to 30567 and Bob’s to 40765. The new source address for outgoing connections and the

old destination address for incoming connections will always be the same (the outside

address of the NAT gateway), so it does not need to keep those in the table. The resulting

NAT table would look like the following.

Alice’s connection to www.ipv6.org appears to be coming from 12.34.56.137:30567.

When www.ipv6.org replies to Alice, it is sent from 194.63.248.52:80 to

12.34.56.137:30567. The NAT gateway looks up that port in its table and sees that it was

used for an outgoing connection from 10.50.3.12:10123, so it translates the destination

address and port to Alice’s private address and port, thereby forwarding the packets

correctly to Alice.

Bob’s connection to www.ipv6.org appears to be coming from 12.34.56.137:40765.

When www.ipv6.org replies to Bob, it is sent from 194.63.248.52:80 to 12.34.56.137:40765.

The NAT gateway looks that port up in its table and sees that it was used from a

Figure 3-14. Example of outgoing and incoming port mapping for NAT

Chapter 3 review of ipv4

http://www.ipv6.org
http://www.ipv6.org
http://www.ipv6.org
http://www.ipv6.org
http://www.ipv6.org
http://www.ipv6.org

89

connection from 10.50.3.75:20321, so it translates the destination address and port to

Bob’s private address and port, thereby forwarding those packets correctly to Bob.

 BINAT (One-to-One NAT)
If you are doing NAT at your gateway, most routers or firewalls support another form

of NAT, which is known as BINAT (bidirectional NAT) or one-to-one NAT (sometimes

also static NAT). This works much the same as regular (hide-mode) NAT, except there

is no port shifting involved. This means there can only be one internal node associated

with each globally routable external address. This is used only for servers that must be

accessible from the outside world.

Typically, a server has both an internal (private) address (e.g., 10.0.0.13) and

an external (unique, globally routable) address (e.g., 12.34.56.131). With outgoing

connections, the gateway rewrites the source address of each packet to be the external

address for that node (but does not shift the port). For incoming connections, the

gateway rewrites the destination address to be the internal address for that node.

Internally, the node will have only the internal address. However, if you connected to

www.ipv6.org from such a node, the resulting web page would show a connection not

from the internal address of the server, but from the unique external address associated

with that node. This is similar to hide-mode NAT except that there is exactly one internal

node per external address (rather than many), there is no port shifting, and the mapping

can be done in both directions (incoming and outgoing connections).

There is a minor problem of the “missing ARP” that must be solved in some way for

this to work (there is no physical node at the external address, so no node will respond to

ARP requests concerning that address). One approach is to configure a static ARP on the

gateway that can supply that response. Every operating system or router has some way

to do this. Without that, connections from the outside will not work. It is also possible

in most cases to assign the external address as an alias to the outside interface of the

gateway (in addition to its real address). Solving the missing ARP problem is one of the

most difficult things for firewall administrators to master. This problem only exists in

IPv4. As no NAT is needed or done in IPv6, there is no missing ARP (actually in IPv6, it

would be a missing ND response).

BINAT at least allows incoming connections but uses up one globally routable IPv4

address for each server node. Most SOHO gateways do not support BINAT. Many do have

a simpler mechanism called port redirection, which allows incoming connections to the

Chapter 3 review of ipv4

http://www.ipv6.org

90

hide-mode external address. At most one internal server can be configured as the target

for any given port. So you could configure an internal mail server and redirect ports

25 (SMTP), 110 (POP3), and 143 (IMAP) to it. However, if you have two internal web

servers both configured for port 80, you could not redirect port 80 on the gateway to both

servers.

 Ramifications of Using NAT
When Network Address Translation happens, the NAT gateway is actually rewriting

new values into the address and port number fields in the IP and TCP (or UDP) packet

headers of all packets flowing through the NAT gateway, according to the rule just

specified. For outgoing packets, it is rewriting the source address and source port. For

incoming packets, it is rewriting the destination address and destination port. Obviously,

this would invalidate the IP and TCP header checksums (the IP header contains source

and destination addresses; the TCP header contains the source and destination port

numbers). Therefore, the NAT gateway also has to recalculate both IP and TCP header

checksums and rewrite those as well.

Packet fragmentation is a real complication for TCP and UDP via NAT. A NAT

gateway must reassemble an entire packet, in order to be able to recalculate the TCP

checksum (which covers all bytes in the payload, plus the pseudo header, which contains

the source and destination addresses). It typically must then re-fragment the packet for

further transmission.

What about the IPsec Authentication header (AH)? (Note: IPsec will be discussed

in detail in Chapter 6.) The IPsec AH algorithm works like a checksum, but there is a

key that only the sender has, required to generate the cryptographic checksum. All this

address and port rewriting invalidates the existing AH cryptographic checksum, and the

NAT gateway does not have the necessary key to regenerate a correct new AH for the

modified packet headers. Because of this IPsec does not work through a NAT gateway.

Actually, AH is performing its function very effectively; it is detecting tampering with

the contents of the packet header! It just happens that this tampering is done by a NAT

gateway, not a hacker. It’s kind of like getting hit by “friendly fire” in a war zone (getting

shot by your own side). If any node other than the original sender could generate a new

valid AH checksum, then AH would not be very useful! IPsec and NAT are mutually

exclusive (although IPsec VPNs can be made to work in conjunction with NAT traversal).

Chapter 3 review of ipv4

91

Another ramification involves FTP (File Transfer Protocol). FTP is a very old protocol

(RFC 765111 is from 1980, back in the days of the First Internet). In active mode, FTP uses

separate connections for control traffic (commands) and for data traffic. The initiating

host identifies the corresponding data connection with its Network Layer and Transport

Layer addresses. Unfortunately, NAT invalidates this. Fortunately, here, it is possible

to create a reverse FTP proxy (included on most firewalls) that solves this problem.

Without such a proxy though, FTP will not work if NAT is in place, even for outgoing

connections. My company early on ported a popular one for IPv4 to IPv6. That allowed

FTP connections to dual-stack networks such as freebsd.org to work from our own dual-

stack network.

“Peer-to-peer” (like Kazaa, not “real” peer-to-peer) applications have the same kinds

of problems with NAT. You must somehow provide a way for your peers to connect to

you for these applications to work. All participants really need a real, globally routable IP

address. This is not easy to arrange on the Second Internet. All such “fake” peer-to-peer

applications must use NAT traversal.

SIP (Session Initiation Protocol112) is used with many things, including VoIP and

video conferencing. It also has major problems with NAT. SIP may use multiple ports

to set up a connection and transmit the analog stream over RTP (Real-Time Transport

Protocol). IP addresses and port numbers are encoded in the payload and must be

known prior to the traversal of NAT gateways (this was bad protocol design, but now

we are stuck with it). Again, a SIP proxy on the gateway can help resolve this problem.

Another solution is to use NAT traversal, such as STUN. Unfortunately, in these days of

widespread NAT, both the caller and the callee are typically behind NAT, so VoIP must

overcome problems with NAT both going out from the caller and coming in to the callee.

If this sounds like an ugly mess, it is.

Another problem with NAT is the limit of 65,536 ports on the NAT gateway. When

NAT was first deployed, most network applications used only one or two ports. Some

recent applications (Apple’s iTunes and Google Maps) use 200–300 ports at a time

for better performance. If each node is using 300 ports, then there can be at most 200

nodes behind a given external IPv4 address. If the NAT gateway runs out of ports, there

can be very mysterious failures in network applications. For example, in Google Maps,

some areas of the map never get drawn. There is no way for end users (or typically even

the network administrator) to determine that this has happened other than by seeing

111 https://tools.ietf.org/html/rfc765
112 https://en.wikipedia.org/wiki/Session_Initiation_Protocol

Chapter 3 review of ipv4

https://tools.ietf.org/html/rfc765
https://tools.ietf.org/html/rfc765
https://en.wikipedia.org/wiki/Session_Initiation_Protocol

92

mysterious failures in some applications. This means that a larger number of NAT

gateways (and valid external IPv4 addresses) are required today than in the past, for a

given number of users behind NAT. Just as we are running out of public IPv4 addresses!

Some legacy applications (like web surfing and email) work okay through one

layer of NAT. Even with chat, today there must be an intermediary system that two or

more chatters connect to via outgoing connections from their nodes (e.g., AOL Instant

Messenger). In a flat address space (especially with working multicast), much better

connectivity models are possible that may require little or no central facilities.

As the IPv4 addresses run out, it will become more common to have multiple

layers of NAT (CGN). This can happen today, if you deploy a Wi-Fi access point with

NAT behind a DSL modem that also has NAT. If you think a single layer of NAT causes

problems, you should try dealing with multiple layers of it!

With the wide-scale deployment of NAT, we have lost the original end-to-end model

of the early Second Internet, which was a core feature. We’ve also broken one of the

fundamental rules of protocol design: never tamper with source or destination addresses

or ports in an IP packet.

Today users are either content producers who can publish information or videos (e.g.,

cnn.com, youtube.com) or content consumers who can view the content published by the

producers. It is much more complicated and expensive to be a producer in the current

Second Internet (with NAT in the way) than to be a consumer. There are relatively few

producers and millions of consumers. This was not that much of a problem when most

people were running mainly web browsers and email clients on their nodes. As newer

applications emerge (VoIP, IPTV, multiplayer games, peer-to-peer), this new “digital

divide” between producers and consumers is becoming more of a problem. Today, many

people would like to be prosumers (both producers and consumers of content). With

IPv6 that is simple.

Another problem is that since the first implementation of networking on

smartphones (WAP), there were not enough public IPv4 addresses for phones, so

historically there have never been public IP addresses on phones. Phones could only

be used to make outgoing connections – you could not deploy a server on your phone,

and Alice’s phone could not connect directly to Bob’s phone. With IPv6 for the first time,

phones have public addresses and hence can run servers or do end-to-end connections.

All these problems go away with a flat address space (no NAT). Unfortunately, there

is no way to restore the flat address space of the early (pre-NAT) Second Internet. The

Second Internet is now permanently broken (there are not enough addresses to allow

Chapter 3 review of ipv4

93

even the existing users to have access without NAT, even if we use all the remaining

unallocated addresses today). The only real solution is to switch to IPv6 (at least for

protocols such as VoIP, P2P, multiplayer games, IPTV, and IPsec VPNs).

 Basic IPv4 Routing
In the simplest case, where two nodes (A and B) are on the same network segment (not

separated by any router), no routing is required. Let’s say node A wants to send a packet

to node B. Node A determines if node B is in the same network segment by examining

B’s IP address and the network subnet mask. If node B is in the same subnet as A’s IP

address, then B is a local node. Node A simply uses B’s MAC address from its ARP table

to send the packet to B. If there is no entry for B’s IP address, then node A does address

resolution (obtains the MAC address for B), as described earlier.

If B’s address is not in the local subnet, B is not a local node, and the packet (with

B’s correct IP address as the destination) is sent to the node that serves as the default

gateway for A’s subnet (A may first have to do an ARP to obtain the MAC address of

the default gateway). The default gateway is a node with multiple network interfaces

that knows how to forward the packet on toward the network in which B’s IP address is

found. Note that by default, packet forwarding (relaying packets from one interface to

another on a multihomed system) is not enabled. It must be specifically enabled for each

protocol (IPv4 and IPv6). The address of a network’s default gateway is known to every

node in a subnet, either through manual configuration or via DHCPv4. Once the default

gateway receives the packet, it may already have the necessary routing information to

know where to send that packet (either via static routes or via a routing protocol, such

as RIP, OSPF, and/or BGP). In the case of a home network, your SOHO router typically

just knows how to forward packets for the outside world to yet another gateway at the

ISP, where the real routing takes place (via its own default gateway, which is a node at

the ISP).

Once your traffic gets to your default gateway, that node typically uses an Interior

Gateway Routing Protocol (RIP, RIPv2, or OSPF) to route that traffic to the edge of your

overall network (e.g., the place your organization’s or ISP’s network connects to the rest

of the Internet). At that point, an Exterior Gateway Routing Protocol (typically BGP-4) is

used to determine the best route to the correct edge router for the destination address.

Once your traffic arrives there, once again an Interior Gateway Routing Protocol (RIP,

RIPv2, or OSPF) takes over and gets the packets to the default gateway of the subnet

Chapter 3 review of ipv4

94

where the destination node lives. From there, ARP is used to forward the packets to the

actual destination node, because the default gateway and the destination node are now

on the same subnet. And all this takes place in the blink of an eye, billions of times a day,

just like clockwork.

 TCP: The Transmission Control Protocol
TCP, the Transmission Control Protocol,113 is defined in RFC 793,114 “Transmission

Control Protocol,” September 1981. This is a Transport Layer115 protocol. TCP

implements a reliable, connection-oriented116 model. When we say reliable, we

aren’t talking about a “well-designed” or “robust” protocol. With respect to TCP,

“reliable” simply means that the protocol includes error detection and recovery (via

retransmission). The term connection oriented refers to the fact that TCP is designed to

handle potentially large streams of data (typically larger than a single packet). It does

this by breaking the large object up into multiple packet-sized chunks and sending

those packets out and to the recipient. For example, a large email message or a JPEG

photograph might require quite a few packets. Software that uses TCP typically opens

(initiates) a connection for I/O, reads and/or writes potentially a lot of data from/to

it, and then, when done, closes (terminates) the connection. This is very similar to the

process for reading and writing files, and in fact in UNIX, network streams are just a

special kind of file.

 Standards Relevant to TCP
RFC 793, “Transmission Control Protocol,” September 1981
(Standards Track)

RFC 896, “Congestion Control in IP/TCP Internetworks,” January

1984 (Unknown)

113 https://en.wikipedia.org/wiki/Transmission_Control_Protocol
114 https://tools.ietf.org/html/rfc793
115 https://en.wikipedia.org/wiki/Transport_layer
116 https://en.wikipedia.org/wiki/Connection-oriented_communication

Chapter 3 review of ipv4

https://en.wikipedia.org/wiki/Transmission_Control_Protocol
https://tools.ietf.org/html/rfc793
https://en.wikipedia.org/wiki/Transport_layer
https://en.wikipedia.org/wiki/Connection-oriented_communication
https://tools.ietf.org/html/rfc793
https://tools.ietf.org/html/rfc896
https://en.wikipedia.org/wiki/Transmission_Control_Protocol
https://tools.ietf.org/html/rfc793
https://en.wikipedia.org/wiki/Transport_layer
https://en.wikipedia.org/wiki/Connection-oriented_communication

95

RFC 1001, “Protocol Standard for a NetBIOS Service on a
TCP/UDP Transport: Concepts and Methods,” March 1987
(Standards Track)

RFC 1002, “Protocol Standard for a NetBIOS Service on a
TCP/UDP Transport: Detailed Specifications,” March 1987
(Standards Track)

RFC 1006, “ISO Transport Service on Top of the TCP Version: 3,”

May 1987 (Standards Track)

RFC 1085, “ISO Presentation Services on Top of TCP/IP-Based

Internets,” December 1998

RFC 1086, “ISO-TP0 Bridge Between TCP and X.25,”

December 1988

RFC 1144, “Compressing TCP/IP Headers for Low-Speed Serial
Links,” February 1990 (Standards Track)

RFC 1155, “Structure and Identification of Management

Information for TCP/IP-Based Internets”, May 1990

(Standards Track)

RFC 1180, “TCP/IP Tutorial,” January 1991 (Informational)

RFC 1213, “Management Information Base for Network

Management of TCP/IP-Based Internets: MIB II,” March 1991

(Standards Track)

RFC 1323, “TCP Extensions for High Performance,” May 1992

(Standards Track)

RFC 2018, “TCP Selective Acknowledgement Options,” October

1996 (Standards Track)

RFC 2126, “ISO Transport Service on Top of TCP (ITOT),” March

1997 (Standards Track)

RFC 2873, “TCP Processing of the IPv4 Precedence Field,” June

2000 (Standards Track)

RFC 2883, “An Extension to the Selective Acknowledgement

(SACK) Option for TCP,” July 2000 (Standards Track)

Chapter 3 review of ipv4

https://tools.ietf.org/html/rfc1001
https://tools.ietf.org/html/rfc1002
https://tools.ietf.org/html/rfc1006
https://tools.ietf.org/html/rfc1085
https://tools.ietf.org/html/rfc1086
https://tools.ietf.org/html/rfc1144
https://tools.ietf.org/html/rfc1155
https://tools.ietf.org/html/rfc1180
https://tools.ietf.org/html/rfc1213
https://tools.ietf.org/html/rfc1323
https://tools.ietf.org/html/rfc2018
https://tools.ietf.org/html/rfc2126
https://tools.ietf.org/html/rfc2873
https://tools.ietf.org/html/rfc2883

96

RFC 2988, “Computing TCP’s Retransmission Timer,” November

2000 (Standards Track)

RFC 3042, “Enhancing TCP’s Loss Recovery Using Limited

Transport,” January 2001 (Standards Track)

RFC 3293, “General Switch Management Protocol (GSMP)

Packet Encapsulation for Asynchronous Transfer Mode (ATM),

Ethernet and Transmission Control Protocol (TCP),” June 2002

(Standards Track)

RFC 3390, “Increasing TCP’s Initial Window,” October 2002

(Standards Track)

RFC 3517, “A Conservative Selective Acknowledgement

(SACK)-Based Loss Recovery Algorithm for TCP,” April 2003

(Standards Track)

RFC 3782, “The New Reno Modifications to TCP’s Fast Recovery

Algorithm,” April 2004 (Standards Track)

RFC 3821, “Fiber Channel over TCP/IP (FCIP),” July 2004

(Standards Track)

RFC 4015, “The Eifel Response Algorithm for TCP,” February 2005

(Standards Track)

RFC 4022, “Management Information Base for the
Transmission Control Protocol (TCP),” March 2005
(Standards Track)

RFC 4614, “A Roadmap for Transmission Control Protocol
(TCP) Specification Documents,” September 2006
(Informational)

RFC 4727, “Experimental Values in IPv4, IPv6, ICMPv4, ICMPv6,

UDP and TCP Headers,” November 2006 (Standards Track)

RFC 4898, “TCP Extended Statistics MIB,” May 2007

(Standards Track)

RFC 4996, “Robust Header Compression (ROHC): A Profile for

TCP/IP (ROHC-TCP),” July 2007 (Standards Track)

Chapter 3 review of ipv4

https://tools.ietf.org/html/rfc2988
https://tools.ietf.org/html/rfc3042
https://tools.ietf.org/html/rfc3293
https://tools.ietf.org/html/rfc3390
https://tools.ietf.org/html/rfc3517
https://tools.ietf.org/html/rfc3782
https://tools.ietf.org/html/rfc3821
https://tools.ietf.org/html/rfc4015
https://tools.ietf.org/html/rfc4022
https://tools.ietf.org/html/rfc4614
https://tools.ietf.org/html/rfc4727
https://tools.ietf.org/html/rfc4898
https://tools.ietf.org/html/rfc4996

97

RFC 5348, “TCP Friendly Rate Control (TFRC): Protocol

Specification,” September 2008 (Standards Track)

RFC 5482, “TCP User Timeout Option,” March 2009

(Standards Track)

RFC 5681, “TCP Congestion Control,” September 2009
(Standards Track)

RFC 5682, “Forward RTO-Recovery (F-RTO): An Algorithm

for Detecting Spurious Retransmission Timeouts with TCP,”

September 2009 (Standards Track)

RFC 5734, “Extensible Provisioning Protocol (EPP) Transport over

TCP,” August 2009 (Standards Track)

 TCP Packet Header

Source Port (16 bits): Specifies the port that the data was written to on the sending node.

Figure 3-15. TCP packet header

Chapter 3 review of ipv4

https://tools.ietf.org/html/rfc5348
https://tools.ietf.org/html/rfc5482
https://tools.ietf.org/html/rfc5681
https://tools.ietf.org/html/rfc5682
https://tools.ietf.org/html/rfc5734

98

Destination Port (16 bits): Specifies the port that the data will be read from on the

receiving node.

Sequence Number (32 bits): Meaning depends on the value of the SYN flag:

• If the SYN flag is set, this field contains the initial sequence

number. The sequence number of the actual first data byte (and the

acknowledgment number in the resulting ACK) will then be that

value plus 1.

• If the SYN flag is clear, this field contains the accumulated sequence

number of the first data byte of this packet for the current session.

Acknowledgement Number (32 bits): Used to acknowledge receipt of data:

• If the ACK flag is set, this field is the next sequence number that the

receiver is expecting. This acknowledges receipt of all previous bytes.

• If the ACK flag is clear, this field is not used.

Data Offset (4 bits): Specifies the size of the TCP header in 32-bit words. The

minimum value is 5 words (20 bytes), and the maximum value is 15 words (60 bytes),

allowing for up to 40 bytes of options.

Reserved (4 bits): Not currently used and must be zeros.

There are eight 1-bit flags (8 bits total) as follows (in order from most significant bit

to least significant bit):

• CWR: Congestion Window Reduced. If set by the sender, it indicates

it has received a TCP segment with the ECE flag set and has

responded in a congestion control mechanism.

• ECE: ECN Echo. If the SYN flag is set, then ECE set indicates that the

TCP peer is ECN capable. If the SYN flag is clear, then the ECE flag set

indicates that a Congestion Experienced flag in the IP header set was

received during normal transmission.

• URG: Indicates whether the Urgent Pointer field is significant.

• ACK: If set, indicates that the Acknowledgement Number field is

significant. All packets after the initial SYN packet sent by a node

should have this flag set.

Chapter 3 review of ipv4

99

• PSH: Push flag. If set, asks to push any buffered data to the receiving

application.

• RST: Reset flag. If set, resets the connection.

• SYN: Synchronize flag. If set, synchronizes sequence numbers. Only

the first packet sent from each end should have this flag set.

• FIN: Finished flag – if set, no more data is coming.

Window Size (16 bits): Size of the receive window, which is the number of bytes that

the receiver is willing to receive.

Checksum (16 bits): Used for error checking of the TCP header and data.

Urgent Pointer (16 bits): If the URG flag is set, this is the offset from the sequence

number indicating the last urgent data byte.

Options (from zero to ten 32-bit words): Optional, not commonly used – see RFC for

details.

Protocol Operation

 1. Connection is established using a three-way handshake, which

creates a virtual circuit.

 2. Data is transferred over the virtual circuit until connection is

terminated.

 3. Connection termination closes the established virtual circuit and

releases allocated resources.

TCP operation is controlled by a state machine, with 11 states:

 1. LISTEN: Wait for a connection request from a remote client.

 2. SYN-SENT: Wait for the remote peer to send back a segment with

SYN and ACK flags set.

 3. SYN-RECEIVED: Wait for the remote peer to send back

acknowledgment after sending back a connection.

 4. ESTABLISHED: The port is ready to exchange data with the

remote peer.

 5. FIN-WAIT-1

 6. FIN-WAIT-2

Chapter 3 review of ipv4

100

 7. CLOSE-WAIT

 8. CLOSING

 9. LAST-ACK

 10. TIME-WAIT: Ensure the remote peer has received

acknowledgment of the termination request (< 4 minutes).

 11. CLOSED

Notes
TCP uses sequence numbers to detect lost packets and/or reorder packets that

arrive out of order. The cumulative acknowledgment scheme informs the sender that

all packets up to the acknowledged sequence number have been received. Selective

Figure 3-16. TCP state transition diagram (from Wikipedia)

Chapter 3 review of ipv4

101

acknowledgment (RFC 2018117) allows for optimization of this feature. Lost data is

automatically retransmitted by the sender. End-to-end flow control provides for a

mismatch in performance between sender and receiver. A sliding window algorithm

allows multiple packets to be in progress, which increases efficiency. Recently,

congestion control has been added into TCP to avoid network congestion.

TCP is very complicated. The good news is that when used over IPv6, TCP works

essentially the same way. The very minor changes will be covered later.

 UDP: The User Datagram Protocol
The User Datagram Protocol is defined in RFC 768,118 “User Datagram Protocol,” August

1980. Like TCP, it is also a Transport Layer119 protocol. Unlike TCP, UDP implements

an unreliable, connectionless model. When we say unreliable, we just mean that error

detection and recovery are not built into the protocol, so it is up to the application to

do any desired error detection and recovery. By connectionless, we mean that each

transmission consists of a single (but complete) packet. In IPv4, a packet is typically

1508 bytes, but can be more or less. If you send a big packet, it will likely be fragmented

somewhere along the way and reassembled at the other end. Each datagram is an atomic

event, not connected to any other datagram. UDP does not handle streams of data (as

is done with the connection-oriented model). Software that uses UDP does not need to

open or close a connection; it can simply read or write datagrams at any time, and each

operation sends or receives one packet. This is a much simpler model than TCP, with

less overhead. However, when using UDP you are responsible for doing certain things

that TCP does for you, such as error detection and retransmission. UDP is often used for

things like streaming audio or video. It is also used for DNS queries and responses and

for TFTP120 (Trivial File Transfer Protocol).

117 https://tools.ietf.org/html/rfc2018
118 https://tools.ietf.org/html/rfc768
119 https://en.wikipedia.org/wiki/Transport_layer
120 https://en.wikipedia.org/wiki/Trivial_File_Transfer_Protocol

Chapter 3 review of ipv4

https://tools.ietf.org/html/rfc2018
https://tools.ietf.org/html/rfc768
https://en.wikipedia.org/wiki/Transport_layer
https://en.wikipedia.org/wiki/Trivial_File_Transfer_Protocol
https://tools.ietf.org/html/rfc2018
https://tools.ietf.org/html/rfc768
https://en.wikipedia.org/wiki/Transport_layer
https://en.wikipedia.org/wiki/Trivial_File_Transfer_Protocol

102

 Standards Relevant to UDP
RFC 768, “User Datagram Protocol,” August 1980
(Standards Track)

RFC 2508, “Compressing IP/UDP/RTP Headers for Low-Speed
Serial Links,” February 1999 (Standards Track)

RFC 3095, “Robust Header Compression (ROHC): Framework

and Four Profiles: RTP, UDP, ESP and Uncompressed,” July 2001

(Standards Track)

RFC 3828, “The Lightweight User Datagram Protocols (UDP-Lite),”

July 2004 (Standards Track)

RFC 4019, “Robust Header Compression (ROHC): Profiles for User

Datagram Protocol (UDP) Lite,” April 2005 (Standards Track)

RFC 4113, “Management Information Base for User Datagram
Protocol (UDP),” June 2005 (Standards Track)

RFC 4362, “RObust Header Compression (ROHC): A Link-Layer

Assisted Profile for IP/UDP/RTP,” January 2006 (Standards Track)

RFC 4727, “Experimental Values in IPv4, IPv6, ICMPv4, ICMPv6,

UDP and TCP Headers,” November 2006 (Standards Track)

RFC 4815, “Robust Header Compression (ROHC): Corrections and

Clarifications to RFC 3095,” February 2007 (Standards Track)

RFC 5097, “MIB for the UDP-Lite Protocol,” January 2008

(Standards Track)

RFC 5225, “RObust Header Compression Version 2 (ROHCv2):

Profiles for RTP, UDP, IP, ESP and UDP-Lite,” April 2008

(Standards Track)

Chapter 3 review of ipv4

https://tools.ietf.org/html/rfc768
https://tools.ietf.org/html/rfc2508
https://tools.ietf.org/html/rfc3095
https://tools.ietf.org/html/rfc3828
https://tools.ietf.org/html/rfc4019
https://tools.ietf.org/html/rfc4113
https://tools.ietf.org/html/rfc4362
https://tools.ietf.org/html/rfc4727
https://tools.ietf.org/html/rfc4815
https://tools.ietf.org/html/rfc5097
https://tools.ietf.org/html/rfc5225

103

 UDP Packet Header

The Source Port field (16 bits) specifies which port number the data is being written to on

the sending computer. This field is optional (if not used, fill with zeros).

The Destination Port field (16 bits) specifies which port number the data is being

read from on the receiving computer.

The Length field (16 bits) is the number of bytes in the datagram, including the UDP

header and the data. Therefore, the minimum value is 8 (the length of the UDP header).

The maximum value in theory is 65,536 bytes, but this value is limited by the maximum

packet size, typically 1508.

The Checksum field (16 bits) is the 16-bit one’s complement sum of the 16-bit words

in the following items:

 1. A “pseudo header,” which contains the source and destination IP

addresses, the protocol number, and the UDP length (from the

IP header)

 2. The UDP header itself

 3. The data, padded with a zero byte if required to make an even

number of bytes

The Checksum field is optional (if not used, fill with zeros).

The Data field begins immediately after the Checksum field. It is not really part of the

header, but it is factored into the checksum.

Figure 3-17. UDP packet header

Chapter 3 review of ipv4

104

 DHCPv4: Dynamic Host Configuration Protocol
for IPv4
One of the network services that is really useful in network configuration is the Dynamic

Host Configuration Protocol (DHCP121). The version that works with IPv4 is now called

DHCPv4 (to distinguish it from the one for IPv6, which is called DHCPv6). DHCPv4

is specified in RFC 2131,122 “Dynamic Host Configuration Protocol,” March 1997.

Without DHCPv4 running on your network, someone must manually configure all IPv4

network settings on every computer. This can be very complicated and error-prone. It

also requires at least some expertise, which many users don’t possess. It is possible to

accidently configure two computers with the same address or mistype a DNS server’s

address on the 35th computer you install that day. These kinds of errors can cause

tricky problems. With a DHCPv4 server, you can configure all the client computers to

do “autoconfiguration.” When such a computer powers up, it will search for a DHCPv4

server (or a relay agent, connected to a real DHCPv4 server in another network). When

it finds one, it will request configuration data (including the default gateway, the IP

addresses of the DNS servers, the Internet domain name, and other items, including a

lease on an IPv4 address, which should be unique within your network). This makes it

easier to change things. If you move a DNS server or make other changes, you need only

update your DHCPv4 server configuration and terminate all client leases (all nodes will

request new configuration information).

DHCPv4 is widely used by ISPs, especially ones that have lots more customers

than valid (globally routable) IPv4 addresses. They can set very short lease times.

Then when someone disconnects, the address they had been using can be reused by

another customer. Of course, these days, most people want 7×24 Internet connectivity,

as opposed to perhaps 1 hour a day or dial-up access. Many ISPs now provide their

customers with RFC 1918 private addresses, unless for some reason they specifically

require a globally routable address. Some ISPs charge more for a globally routable

address and a lot more for multiple globally routable addresses. I have one real

public IPv4 address for my home network, so I can run email and other services, in

addition to using one to tunnel IPv6 into my network over IPv4. DHCPv4 can provide

autoconfiguration with private addresses just as easily as with globally routable

121 https://en.wikipedia.org/wiki/Dynamic_Host_Configuration_Protocol
122 https://tools.ietf.org/html/rfc2131

Chapter 3 review of ipv4

https://en.wikipedia.org/wiki/Dynamic_Host_Configuration_Protocol
https://tools.ietf.org/html/rfc2131
https://en.wikipedia.org/wiki/Dynamic_Host_Configuration_Protocol
https://tools.ietf.org/html/rfc2131

105

addresses, so they still use DHCPv4 to assign those. Basically, all their users are now

“hiding” behind a single public address, via NAT. More recently, users are behind two

layers of NAT – they don’t even have one public IPv4 address anymore. This is done with

CGNAT (Carrier-Grade NAT123), with one mapping from a public address at the ISP to

one private address from 100.64/10 at the ISP and another from that private address to

multiple RFC 1918 private addresses in their network.

DHCPv4 uses broadcast (which doesn’t exist in IPv6) and can only deliver 32-bit

addresses (for the assigned IP address or things like DNS IP addresses), so it had to be

completely rewritten for IPv6. The differences will be covered in Chapter 6.

Most client operating systems in use today (especially on personal computers)

include a DHCPv4 client, including all versions of Windows, FreeBSD, Linux, Solaris,

Mac OSX, etc. Even smartphones with Wi-Fi include a DHCPv4 client. In practice,

DHCPv6 may not be widely used, as IPv6 addresses and even discovery of IPv6

addresses for DNS are more likely to be done via Stateless Address Autoconfiguration

(SLAAC) than via DHCPv6 (see RFC 6106,124 “IPv6 Router Advertisement Options for

DNS Configuration”, November 2010).

Most server operating systems (such as Windows Server, FreeBSD, Linux, etc.)

include a DHCPv4 server. The most common one for UNIX and UNIX-like servers is

dhcpd from the Internet Systems Corporation (ISC). It is configured by editing some

complex ASCII text configuration files (with a text editor). This type of configuration has

not changed appreciably in 50 years (and you thought IPv4 was old). The DHCPv4 server

included with Windows Server at least has a GUI configuration tool, which is much

easier to use. Most appliances that provide DHCPv4 service include a GUI web-based

configuration tool (as a “front end” to dhcpd, in most cases).

When you configure a DHCPv4 server, you typically configure one or more pools of

addresses to be managed by that server. You can have more than one DHCPv4 server

in a given network subnet, but the managed address ranges must not overlap. DHCPv4

clients cannot contact DHCPv4 servers on another subnet (on the other side of a router)

directly (since DHCPv4 servers are found via broadcast). So you either need to have a

DHCPv4 server (or at least a DHCPv4 relay agent) in every subnet (“broadcast domain”).

You can create a “scope” on the server and configure the “stateless” items that it will

use to autoconfigure clients, including the domain name, the subnet mask, the address

of the default gateway, the IP addresses of two DNS servers, etc. There are dozens of

123 https://en.wikipedia.org/wiki/Carrier-grade_NAT
124 https://tools.ietf.org/html/rfc6106

Chapter 3 review of ipv4

https://tools.ietf.org/html/rfc6106
https://en.wikipedia.org/wiki/Carrier-grade_NAT
https://tools.ietf.org/html/rfc6106

106

things you can autoconfigure with DHCPv4. You also specify a range of addresses (e.g.,

192.168.5.100 to 192.168.5.199) as a pool from which to lease addresses. You should not

manually assign any of these addresses to other nodes. If you do for some reason, you

can exclude that address from the available pool.

Once such a server is installed and configured, just set up your client computers to

“Obtain an IP address automatically” and to “Obtain DNS server address automatically.”

As soon as you specify that or anytime the computer powers up, it will obtain all

necessary information (including a unique IPv4 node address) from the DHCPv4 server.

In Windows, you can use the “ipconfig /all” command (in a DOS prompt window) to

view the obtained settings (look for the interface named Local Area Connection).

By default, addresses are assigned on a “first come, first served” basis. If you want

a given node to be assigned a specific address each time, you can make an address

reservation by associating one of the pool addresses with that node’s MAC address. Any

time that node requests configuration data from the DHCPv4 server, it will be assigned

the reserved address for that MAC address, rather than a random one from the pool.

 The DHCPv4
The DHCPv4 lives in the Application Layer. It uses port 67 for data from client to server

and port 68 for data from the server to the client (both over UDP). There are four phases

in a DHCPv4 network configuration:

 1. IP Discovery

 2. IP Lease Offer

 3. IP Request

 4. IP Lease Acknowledgment

Let’s say our network uses 192.168.0.0/16. That means the subnet mask is

255.255.0.0. Our DNS servers are at 192.168.0.11 and 192.168.0.12. The DHCPv4 server is

also running on 192.168.0.11. The default gateway is 192.168.0.1. We have created a pool

of addresses from 192.168.1.0 to 192.168.1.255.

In the Discover IP phase, the client sends a DHCPDISCOVER request, as follows:

• Source address = 0.0.0.0, source port = 68

• Destination address = 255.255.255.255, destination port = 67

Chapter 3 review of ipv4

107

• DHCP option 50: IP address 192.168.1.100 is requested.

• DHCP option 53: Message is DHCPDISCOVER.

• Request subnet mask, default gateway, domain name, and domain

name server(s).

In this case, the node is requesting its last known IP address. Assuming it is still

connected to the same network and the address is not already leased to someone else,

the server may grant the request. Otherwise, the client will have to negotiate for a new

address.

In the DHCP Lease Offer phase, the server will reserve an IP address for the client (in

this case it is accepting the request for the last known address) and send a DHCPOFFER

message to the client, as follows:

• Source address = 192.168.0.11, source port = 67

• Destination address = 255.255.255.255, destination port = 68

• DHCP option 01: Subnet mask is 255.255.0.0.

• DHCP option 03: Default gateway is 192.168.0.1.

• DHCP option 06: IP addresses of DNS servers are 192.168.0.11 and

192.168.0.12.

• DHCP option 51: Lease duration is 86400 seconds (1 day).

• DHCP option 53: Message is DHCPOFFER.

• DHCP option 54: IP address of the DHCP server is 192.168.0.11.

In the IP Request phase, the client accepts the offer and sends a DHCPREQUEST

message as follows:

• Source address = 0.0.0.0, source port = 68

• Destination address = 255.255.255.255, destination port = 67

• DHCP option 50: IP address 192.168.1.100 is requested.

• DHCP option 53: Message is DHCPREQUEST.

• DHCP option 54: IP address of the DHCP server is 192.168.0.11.

Chapter 3 review of ipv4

108

In the IP Acknowledgement phase, the server officially registers the assignment and

notifies the client of the configuration values:

• Source address = 192.168.0.11, source port = 67

• Destination address = 255.255.255.255, destination port = 68

• DHCP option 01: Subnet mask is 255.255.0.0.

• DHCP option 03: Default gateway is 192.168.0.1.

• DHCP option 06: IP addresses of DNS servers are 192.168.0.11 and

192.168.0.12.

• DHCP option 51: Lease duration is 86400 seconds (1 day).

• DHCP option 53: Message is DHCPACK.

• DHCP option 54: IP address of the DHCP server is 192.168.0.11.

At this point, the client actually configures those values for its network interface and

can begin using the network.

 Useful Commands Related to DHCPv4
In Windows, there are some commands available in a DOS prompt box related

to DHCPv4:

ipconfig /release: Release the assigned IPv4 address and de-

configure network.

ipconfig /renew: Do a new configuration request for IPv4.

ipconfig /all: View all network configuration settings.

This is an example of the output from “ipconfig /all”.

Chapter 3 review of ipv4

109

Figure 3-18. Output of the ipconfig /all command

 IPv4 Network Configuration
Let’s assume our LAN has the following configuration:

Network Address: 192.168.0.0/16 (mask = 255.255.0.0)

Default Gateway: 192.168.0.1

DHCPv4 Address: 192.168.0.11

DNS Server Address: 192.168.0.11, 192.168.0.12

Domain Name: redwar.org

Furthermore, assume the DHCPv4 server is correctly configured with this

information and is managing the address range 192.168.1.0–192.168.1.255 (and that

some leases have already been granted).

Any node connected to a network with IPv4 must have certain items configured,

including

• IPv4 node address

• Subnet mask (or, equivalently, CIDR subnet mask length)

• IPv4 address of the default gateway

• IPv4 addresses of DNS servers

• Nodename

• DNS domain name

Chapter 3 review of ipv4

110

 Manual Network Configuration
It is possible to perform IPv4 network configuration on a node manually, either by

editing ASCII configuration files, as in FreeBSD or Linux, or via GUI configuration tools,

as in Windows. If you have understood the material in this chapter, it should be fairly

easy for you to configure your node(s). In most cases, if you have ISP service, the ISP will

give you all the information necessary to configure your node(s).

Let’s configure a FreeBSD 7.2 node manually. Assign it the nodename “us1.redwar.

org” and the IP address 192.168.0.13. The interface we are configuring has the FreeBSD

name “vr0”.

You need to edit the following files (you will need root privilege to do this):

/etc/rc.conf

...

hostname=”us1.redwar.org”

ifconfig_vr0=”inet 192.168.0.13 netmask 255.255.0.0”

defaultrouter=”192.168.0.1”

...

/etc/resolv.conf

domain redwar.org

nameserver 192.168.0.11

nameserver 192.168.0.12

If you make these changes and reboot, you can check the configuration as shown:

$ ifconfig vr0

vr0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0 mtu 1500

 options=2808<VLAN_MTU,WOL_UCAST,WOL_MAGIC>

 ether 00:15:f2:2e:b4:1c

 inet 192.168.0.13 netmask 0xffff0000 broadcast 192.168.255.255

 media: Ethernet autoselect (100baseTX <full-duplex>)

 status: active

$ uname –n

us1.redwar.org

$ nslookup

> server

Chapter 3 review of ipv4

111

Default server: 192.168.0.11

Address: 192.168.0.11#53

Default server: 192.168.0.12

Address: 192.168.0.12#53

> exit

$ netstat -rn

Routing tables

Internet:

Destination Gateway Flags Refs Use Netif Expire

default 192.168.0.1 UGS 0 5 vr0

...

 Auto Network Configuration Using DHCPv4
It is also possible for a node to be automatically configured if a DHCPv4 server (or

relay agent) is available somewhere on the LAN (or possibly from the ISP). If you are

deploying several nodes on a home network, it is likely that there is a DHCPv4 server in

your home gateway/DSL modem.

Let’s configure a FreeBSD 7.2 node automatically using DHCPv4. Assign it the

nodename “us1.redwar.org” and any IP address from DHCPv4. The interface we are

configuring has the FreeBSD name “vr0”.

You need to edit the following file (you will need root privilege to do this):

/etc/rc.conf

...

hostname=”us1.redwar.org”

ifconfig_vr0=”DHCP”

...

If you make these changes and reboot, you can check the configuration as shown:

$ ifconfig vr0

vr0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0 mtu 1500

 options=2808<VLAN_MTU,WOL_UCAST,WOL_MAGIC>

 ether 00:15:f2:2e:b4:1c

Chapter 3 review of ipv4

112

 inet 192.168.1.9 netmask 0xffff0000 broadcast 192.168.255.255

 media: Ethernet autoselect (100baseTX <full-duplex>)

 status: active

$ uname –n

us1.redwar.org

$ nslookup

> server

Default server: 192.168.0.11

Address: 192.168.0.11#53

Default server: 192.168.0.12

Address: 192.168.0.12#53

> exit

$ netstat -rn

Routing tables

Internet:

Destination Gateway Flags Refs Use Netif Expire

default 192.168.0.1 UGS 0 5 vr0

Figure 3-19. TCP/IP network configuration – main tab

Chapter 3 review of ipv4

113

Figure 3-20. IPv4 network configuration – TCP/IPv4 Properties dialog

Figure 3-21. TCP/IP network configuration – IPv4 manual configuration dialog

Chapter 3 review of ipv4

114

Figure 3-22. TCP/IP network configuration main tab – select IPv6

Figure 3-23. TCP/IP network configuration – TCP/IPv6 automatic configuration

Chapter 3 review of ipv4

115

Figure 3-25. TCP/IP network configuration – verify configuration

Figure 3-24. TCP/IP network configuration – TCP/IPv6 manual configuration

Chapter 3 review of ipv4

116

Figure 3-26. TCP/IP network configuration – check network configuration details

 Summary
In this chapter, we reviewed the technical aspects of IPv4. First off, some of you might

not be familiar with the details of this protocol or how it has evolved over the many years

since 1981, when it was specified.

In particular, we covered how we have “broken the Internet” by introducing NAT and

private addresses and why it was done. This allowed us to keep using IPv4 well past its

real shelf life, but at a very high cost (more complex network software design and limits

on what most uses can do in terms of connections to and from other nodes). We have

splintered the original IPv4 “monolithic address space” into millions of tiny “private

Internets” loosely coupled together through NAT gateways.

There are many RFCs that specify how IPv4 works, going back to 1981 (RFCs 791

and 792).

Since IPv6 is heavily based on IPv4, you need to understand IPv4 in order to

understand what is new in IPv6.

Chapter 3 review of ipv4

117

Likely, IPv4 will be phased out (at least at the international backbone level) in the

next few years. Until then, we will have a global Internet that is partly IPv4 and partly

IPv6. The two can exist in parallel, but it is not really practical to translate between them

in either direction (NAT64 is very limited to allow translation from IPv6 addresses to

external IPv4 servers).

If you are like most network engineers and developers today, you only know IPv4. If

so, you are rapidly becoming obsolete. The future is IPv6. This book will help you make

the leap from IPv4 to IPv6, so you will still have a job in a few years. Today, when I run

into a corporate network that is IPv4-only, I feel like I am being asked to ride on a horse

instead of my much more powerful and fast car (IPv6). The four-octet IPv4 addresses

now look quaint and primitive to me, like the one-octet NDP addresses from ARPANET

look to you now. Get used to 128-bit addresses in hexadecimal. The future is here.

A good analogy is when Novell NetWare was being replaced by TCP/IP some years

ago. Many people were very tied to NetWare, with multiple certifications and extensive

expertise, but soon there were no jobs for them. All networks were being converted over

to TCP/IP because that was the native protocol of the Internet. They had to learn TCP/IP

to be useful. The next generation has arrived.

If you want to have a good dose of reality, check out “Sunset IPv4” – the working

group of the IETF whose charter was to figure out how to finally put IPv4 to sleep for

good, like NetWare or OSI. So let us say a fond farewell to IPv4. The king is dead. Long

live the king.

Chapter 3 review of ipv4

119

CHAPTER 4

The Depletion of the
IPv4 Address Space
Some people today are aware that the folks in charge of the Internet are running out (or

have already run out) of public IPv4 addresses. Most of them are not aware that this is

not the first time we’ve faced this or just how low that pool of addresses is today. The

majority of Internet users are either completely oblivious to what is going on and think

that the Internet will go on like it has, forever. If they have heard any rumors about an

address shortage, they have a blind faith that the people in charge can simply work some

magic and the problem will go away. Well, they did once, in the mid-1990s (with NAT

and private addresses), and they have found another trick with Carrier-Grade NAT to

extend the lifetime of IPv4 even longer. However, each of these stopgap measures has

caused major new problems. IPv4 is simply at its end of life, and it is time to start using

its successor, IPv6.

© Lawrence E. Hughes 2022
L. E. Hughes, Third Generation Internet Revealed, https://doi.org/10.1007/978-1-4842-8603-6_4

https://doi.org/10.1007/978-1-4842-8603-6_4

120

Figure 4-1. RIP, IPv4 public address allocation pool

 OECD IPv6 Report, March 2008
The best study on this done to date (in my opinion) is in the OECD report presented

at the OECD Ministerial Meeting on the Future of the Internet Economy, in Seoul,

Korea, June 17–18, 2008. I was a speaker at the concurrent Korean IPv6 Summit. The

full name of the OECD is Organisation for Economic Co-operation and Development. It

was established in 1961 and currently has 30 member nations, including most members

of the EU, plus Australia, Canada, Japan, Korea, Mexico, New Zealand, Turkey, the

United Kingdom, and the United States. It had a 2009 budget of EUR 320 million. Their

goals are to

• Support sustainable economic growth.

• Boost employment.

• Raise living standards.

• Maintain financial stability.

Chapter 4 the DepLetION OF the IpV4 aDDreSS SpaCe

121

• Assist other countries’ economic development.

• Contribute to growth in world trade.

Unlike the IETF or ISO, the OECD is not specifically concerned with technology.

They are primarily concerned with the economies of their member countries. However,

they have determined that the imminent exhaustion of the IPv4 address space will have

a major impact on most of their goal areas. Because of this, they did a major study, the

results of which are presented in Ministerial Background Report DSTI/ICCP(2007)20/

FINAL, “Internet Address Space: Economic Considerations in the Management of

IPv4 and in the Deployment of IPv6.” The report1 is available free to download over

the Internet. You should actually read the entire report, but I will summarize the most

important aspects of it in this chapter.

Let me quote one paragraph from the “Main Points” section:

There is now an expectation among some experts that the

currently used version of the Internet Protocol, IPv4, will run

out of previously unallocated address space in 2010 or 2011, as

only 16% of the total IPv4 address space remains unallocated in

early 2008. The situation is critical for the future of the Internet

economy because all new users connecting to the Internet, and

all businesses that require IP addresses for their growth, will be

affected by the change from the current status of ready availability

of unallocated IPv4 addresses.

As of early 2010, only 8% of the addresses remained unallocated. The IANA pool was

officially exhausted in February 2011.2 All five RIRs have all reached “end of normal IPv4

allocation” since then.

Another key passage from this section follows:

As the pool of unallocated IPv4 addresses dwindles and transition

to IPv6 gathers momentum, all stakeholders should anticipate

the impacts of the transition period and plan accordingly. With

regard to the depletion of the unallocated IPv4 address space,

the most important message may be that there is no complete

1 www.oecd.org/internet/ieconomy/40605942.pdf
2 www.computerworld.com/article/2512924/update--icann-assigns-its-last-ipv4-
addresses.html

Chapter 4 the DepLetION OF the IpV4 aDDreSS SpaC

https://www.computerworld.com/article/2512924/update--icann-assigns-its-last-ipv4-addresses.html
http://www.oecd.org/internet/ieconomy/40605942.pdf
http://www.computerworld.com/article/2512924/update%2D%2Dicann-assigns-its-last-ipv4-addresses.html
http://www.computerworld.com/article/2512924/update%2D%2Dicann-assigns-its-last-ipv4-addresses.html

122

solution and that no option will meet all expectations. While the

Internet technical community discusses optional mechanisms

to manage IPv4 address space exhaustion and IPv6 deployment

and to manage routing table growth pre- and post-exhaustion,

governments should encourage all stakeholders to support a

smooth transition to IPv6.

IPv6 adoption is a multi-year, complex integration process that

impacts all sectors of the economy. In addition, a long period of

co-existence between IPv4 and IPv6 is projected during which

maintaining operations and interoperability at the application

level will be critical. The fact that each player is capable of

addressing only part of the issue associated with the Internet-wide

transition to IPv6 underscores the need for awareness raising and

co-operation.

Basically, there is no good or lasting solution for those wanting to remain with IPv4.

It is going to take multiple years to make the transition. We are now in 2022, and there are

still a lot of people and organizations who have not completed their transition to IPv6

(and some who haven’t even begun it). Such transitions are usually not done well when

rushed. And once the addresses are gone, that’s it. The IETF assumed that the transition

would be done by 2010 before IPv4 public addresses ran out. One problem is that the

best transition mechanism (6in4 tunneling) requires one public IPv4 address at the

customer site, and today those are very hard to come by. For example, in the Philippines,

no personal ISP accounts include a public IPv4 address, and even business accounts

have a very small number (five or maybe just one). The ISPs just don’t have any more to

allocate. The tunneling schemes that work through NAT are much more problematic and

unstable.

The OECD report acknowledges that in the early phases of a major technology

transition such as this, there may be little or no incentive to shift to the new technology.

However, once a critical mass of users adopt the new technology, there is often a tipping

point after which adoption grows rapidly until it is widespread. In theory this tipping

point is reached when the marginal cost, for an ISP or an organization, of implementing

the next device with IPv4 becomes higher than the cost of deploying the next device

with IPv6. For an ISP, there are costs associated with deploying IPv4 nodes such as the

Chapter 4 the DepLetION OF the IpV4 aDDreSS SpaCe

123

cost of obtaining the addresses themselves and the costs of designing and deploying

network infrastructure that uses fewer and fewer public (globally routable) addresses

(by using NAT). When these become higher than the cost of deploying IPv6, they will

begin migration in earnest. Reaching this tipping point depends on a number of factors,

including customer demand, opportunity costs, emerging markets, the introduction of

new services, government incentives, and regulation.

For mobile telco service providers (especially in the United States), they have already

passed this tipping point. It was far cheaper for them to migrate to IPv6 than to keep

IPv4 alive for one more year. Even with private addresses, the largest block (10/8) only

has 16.7M addresses in it, and many mobile telcos have far more than 16.7M customers.

So multiple /8 blocks must be deployed and somehow “stitched together” into a single

network. This is very difficult. Many mobile operators are ditching IPv4 altogether and

providing only IPv6 service. This is viable due to something called “464XLAT,” (RFC

68773 – 464XLAT: Combination of Stateful and Stateless Transition,” April 2013). This

allows legacy smartphone apps that only support IPv4 to still work. 464XLAT has been

in Android since 4.3 in October 2013. On iPhones, since iOS 10, all apps in the App Store

must work in an IPv6-only environment. Today many mobile phone service providers

have migrated to IPv6 – typical companies are at 90+% migrated.

As 5G is rolled out, this will likely be mostly IPv6 based. Apart from the higher

speed, 5G is supposed to support end-to-end direct connection, which is only possible

with IPv6.

One of the key requirements for migrating to IPv6 is technical expertise in the

subject. This is necessary to provide countries and companies with competitive

advantage in the area of technology products and services and the benefit from

ICT-enabled innovation. Countries who are early adopters and provide training

and incentives for their companies to embrace it or even help fund the necessary

infrastructure (as in China) will have significant competitive advantages in years to come

over countries that are laggards in this transition. India has taken the lead in this by

requiring all ISPs to deploy IPv6. They are now at 60% migration nationwide (the highest

in the world).

Increasing scarcity of IPv4 addresses can raise competitive concerns in terms of

barriers to new entry and strengthening incumbent positions. There has been much

discussion over how to manage previously allocated IPv4 addresses once the free pool

3 https://tools.ietf.org/html/rfc6877

Chapter 4 the DepLetION OF the IpV4 aDDreSS SpaC

https://tools.ietf.org/html/rfc6877
https://tools.ietf.org/html/rfc6877
https://tools.ietf.org/html/rfc6877

124

has been exhausted. A global market for IPv4 addresses has emerged. Desperate ISPs

and cloud service providers can still buy previously allocated IPv4 addresses for about

$16 per address (early 2019). Today, you only borrow (lease?) addresses from an ISP for

so long as you have service with that ISP. If you terminate that service, the addresses

are reclaimed by the ISP for allocation to other customers. You don’t really own those

addresses, so you can’t sell them. Even the ISP doesn’t own them. If an ISP goes out of

business, their address pool probably returns to the RIR they got them from. Some of

these situations are not currently well defined, but they will be as the IPv4 address space

nears exhaustion. Notably, the situation on the early class A block allocations is not quite

so well defined. Those blocks are owned by those early adopter companies.

One of the companies that got a class A block (Nortel), when it closed down, sold

off 666,000 IPv4 public addresses to Microsoft4 for USD 7.5 million (primarily for use in

Azure Cloud).

There is also discussion of how existing and increasing use of NAT requires

developers of network-aware products and applications to build increasingly complex

central gateways or NAT traversal mechanisms to allow clients (who are in most cases

both behind NAT gateways) to communicate. This is creating barriers to innovation

and to the development of new services. It is also causing problems with the overall

performance and stability of the Internet.

There is a risk of some parts of the world deploying IPv6, while others continue

running IPv4 with multiple layers of NAT. Such decisions would impact the economic

opportunities offered by the Internet with severe repercussions in terms of stifled

creativity and deployment of generally accessible new services. Also, there could be

serious issues of interoperation between people in the IPv6 world and those left behind

in the IPv4 world. This could lead to a fragmentation of the Internet.

The five sections of the report cover the following topics:

• Overview of the major initiatives that have taken place in Internet

addressing to date and the parallel development of institutions that

manage Internet addressing.

• Summary of proposals under consideration for management of the

remaining IPv4 addresses.

4 www.networkworld.com/article/2228854/microsoft-pays-nortel--7-5-million-for-ipv4-
addresses.html

Chapter 4 the DepLetION OF the IpV4 aDDreSS SpaCe

https://www.networkworld.com/article/2228854/microsoft-pays-nortel--7-5-million-for-ipv4-addresses.html
https://www.networkworld.com/article/2228854/microsoft-pays-nortel--7-5-million-for-ipv4-addresses.html
http://www.networkworld.com/article/2228854/microsoft-pays-nortel%2D%2D7-5-million-for-ipv4-addresses.html
http://www.networkworld.com/article/2228854/microsoft-pays-nortel%2D%2D7-5-million-for-ipv4-addresses.html

125

• Overview of the drivers and challenges for transitioning to IPv6

through a dual-stack (IPv4 + IPv6) environment. It reviews factors

that influence IPv6 adoption, drawing on available information.

• Economic and public policy considerations and recommendations to

governments.

• Lessons learned from several IPv6 deployments.

 OECD Follow-Up Report on IPv6, April 2010
In April 2010, the OECD released a follow-up report to the IPv6 report mentioned

previously. It is called “Internet Addressing: Measuring Deployment of IPv6.”5 They

still expected IPv4 addresses to run out in 2012. As of March 2010, only 8% of the full

IPv4 address space was available for allocation at the IANA level. At that time, IPv6

use was growing faster than IPv4 use, albeit from a still small base. Several large-scale

deployments were taking place or were in planning. Some of the key findings, all as of

March 2010, were as follows:

• 5.5% of the networks on the Internet (1,800 networks) could handle

IPv6 traffic.

• IPv6 networks have grown faster than IPv4-only networks since

mid-2007.

• Demand for IPv6 address blocks has grown faster than demand for

IPv4 address blocks.

• One out of five transit networks (i.e., networks that provide

connections through themselves to other networks) handled IPv6.

This means that Internet infrastructure players were actively readying

for IPv6.

5 www.oecd.org/internet/ieconomy/44953210.pdf

Chapter 4 the DepLetION OF the IpV4 aDDreSS SpaC

https://www.oecd.org/digital/ieconomy/44953210.pdf
http://www.oecd.org/internet/ieconomy/44953210.pdf

126

• As of January 2010, over 90% of installed operating systems were IPv6

capable, and 25% of end users ran an operating system that enabled

IPv6 by default (e.g., Windows Vista or Mac OS X). This percentage

has probably increased since the release of Windows 7, but no

measurement is available.

• As of January 2010, over 1.45% of the top 1000 websites were available

over IPv6, but as of March 2010 (when Google IPv6 enabled their

websites), this jumped to 8%.

• Over 4,000 IPv6 prefixes (address blocks) had been allocated. Of

these 2,500 (60%) showed up as routed on the Internet backbone

(were actually in use).

• At least 23% of Internet Exchange Points explicitly supported IPv6.

• Seven out of 13 DNS root servers were accessible over IPv6.

• 65% of top-level domains (TLDs) had IPv6 records in the root

zone file.

• 80% of TLDs had name servers with an IPv6 address.

• 1.5 million domain names (about 1% of the total) had IPv6 DNS

records.

Operators in the RIPE NCC and APNIC service areas were given a survey in 2009. The

results showed the following:

• 7% of APNIC respondents claimed to have equal or more IPv6 traffic

than IPv4 traffic.

• 2% of RIPE respondents claimed to have equal or more IPv6 traffic

than IPv4 traffic.

• Of those respondents not deploying IPv6, 60% saw cost as a major

barrier.

• Of those respondents deploying IPv6, 40% considered lack of vendor

support the main obstacle.

Chapter 4 the DepLetION OF the IpV4 aDDreSS SpaCe

127

 OECD Second Follow-Up Report on IPv6,
November 2014
Since the 2010 book, the OECD has released another report on IPv6: The Economics of

Transition to Internet Protocol version 6 (IPv6).6

Citation: OECD (2014), "The Economics of Transition to Internet Protocol version 6

(IPv6)," OECD Digital Economy Papers, No. 244, OECD Publishing. DOI: https://doi.

org/10.1787/5jxt46d07bhc-en7

• As of April 2014, worldwide traffic over IPv6 was roughly 3.5%.

• The adoption of IPv6 has differed from that of other technologies, for

the following reasons:

• The primary benefit to adopters is access to the larger IP

address space.

• Since most people deploying IPv6 are implementing dual stack,

they still must cope with the lack of public addresses and NAT on

the IPv4 side – many of the benefits will not come until users can

turn off IPv4.

• Implementation may involve solving new and unexpected

technical challenges, and there has been a lack of skills for

implementing IPv6.

• ISPs and vendors have invested heavily in alternative solutions

such as Carrier-Grade NAT, despite many negative aspects.

• Deployment by mobile service providers has been much stronger

than by wired service providers, due to certain technical factors,

which make it less expensive to deploy IPv6 than to keep IPv4 alive in

that space.

• Not transitioning to IPv6 has a range of economic implications:

6 www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=DSTI/ICCP/
CISP%282014%293/FINAL&docLanguage=En
7 www.oecd-ilibrary.org/science-and-technology/the-economics-of-transition-to-
internet-protocol-version-6-ipv6_5jxt46d07bhc-en

Chapter 4 the DepLetION OF the IpV4 aDDreSS SpaC

http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=DSTI/ICCP/CISP(2014)3/FINAL&docLanguage=En
http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=DSTI/ICCP/CISP(2014)3/FINAL&docLanguage=En
https://doi.org/10.1787/5jxt46d07bhc-en
https://doi.org/10.1787/5jxt46d07bhc-en
http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=DSTI/ICCP/CISP(2014)3/FINAL&docLanguage=En
http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=DSTI/ICCP/CISP(2014)3/FINAL&docLanguage=En
http://www.oecd-ilibrary.org/science-and-technology/the-economics-of-transition-to-internet-protocol-version-6-ipv6_5jxt46d07bhc-en
http://www.oecd-ilibrary.org/science-and-technology/the-economics-of-transition-to-internet-protocol-version-6-ipv6_5jxt46d07bhc-en

128

• Alternative solutions break some applications and disrupt the

modularity of the Internet.

• Economic costs of IPv4 depletion are asymmetric, affecting some

products, services, and providers more than others.

• A market has emerged to trade in unused IPv4 addresses.

• The World IPv6 Launch (June 6, 2006) was effective in promoting

adoption.

• IPv6 is infrastructure, not a product in its own right.

• The net benefits from adoption are not distributed equally across the

stakeholders.

• As of April 2014, IANA, APNIC, RIPE, and LACNIC had already

reached end of normal IPv4 allocation. ARIN was expected to end

allocation in February 2015 and AfriNIC in June 2020. [ARIN actually

ended normal allocation in September 2015 but left no buffer in

stock – other RIRs ended allocation when they reached one “/8” of

addresses (16.7M).]

• IPv6 connections to Google search website had reached 3.5% [it is

now at 26.7%, just 5 years later].

• IPv6 adoption is based on the “Probit model,” where (1) the benefits

of adoption exceed the costs and (2) it is better to adopt now

compared with any other time.

• To many users, the benefits are uncertain and will occur primarily in

the future.

• As with many technologies, there is a “network effect,” where as more

people adopt it, the incentives to adopt increase.

• Adoption of early users can influence adoption by later users.

Early ISP adopters include Comcast, Verizon Wireless, AT&T, Free,

Deutsche Telekom, and KDDI. Large content providers include

Google, Facebook, and Yahoo.

Chapter 4 the DepLetION OF the IpV4 aDDreSS SpaCe

129

• Another OECD report in 2013 estimated that a family with two

teenagers could have as many as 50 devices connected in their home

by 2022. They further estimated 50 billion devices by 2020–2030.

These volumes cannot be handled by IPv4.

• Support for IPv6 by network equipment vendors was “excellent,”

while CPE vendors were not as good.

• Costs of deploying CGN were estimated at US$ 90,000 per 10,000

users, plus US$ 10,000 per year ongoing.

• Costs of a provider transitioning to IPv6 are lower if stretched over

several years than if done all at once (replace IPv4-only gear with

IPv6-compliant gear during normal replacement cycles).

• Mobile providers do not have to consider CPE costs and complexity,

and 40% of LTE handsets in 2014 supported IPv6 [virtually all do

now]. The presence of 464XLAT on almost all Android handsets

makes the migration to IPv6 especially easy for mobile providers.

• In enterprise, current use of NAT and private addresses reduces

pressure to have more IP addresses, but complicates the transition

to IPv6.

Chapter 4 the DepLetION OF the IpV4 aDDreSS SpaC

130

Figure 4-3. IPv6 unique autonomous systems, 2003 to end of 2009

Source: ITAC/NRO Contribution to the OECD, Geoff Huston and George Michaelson,
data from end of year 2009

Figure 4-2. Routed IPv6 refixes, 2003 to end of 2009

Chapter 4 the DepLetION OF the IpV4 aDDreSS SpaCe

131

Since 2008, the ratio of routed IPv6 prefixes to IPv4 prefixes had climbed from 0.45%

to 0.8%, which indicates that the number of routed IPv6 prefixes was increasing more

rapidly than that of routed IPv4 prefixes. The ratio of IPv6 to IPv4 AS entities actively

routing went from about 3.2% in 2008 to 5.5% in 2010.

The compound annual growth rate from February 24, 2009, to November 5, 2009, for

dual-stack AS networks was 52%, for IPv6-only AS networks was 13%, and for IPv4-only

AS networks was 8%. At year-end 2009, there were 31,582 AS networks using IPv4-only,

there were 1806 AS networks using dual stack, and there were 59 AS networks using

IPv6-only.

One trend is that service providers, corporations, public agencies, and end users

were using IPv6 for advanced and innovative activities on private networks. IPv6 was

also being used in 6LoWPANs (IPv6 over Low-Power Wireless Personal Area Networks),

as specified in RFC 4944, “Transmission of IPv6 Packets over IEEE 802.15.4 Networks,”

September 2007.

 How IPv4 Addresses Were Allocated
in the Early Days
In the early days, before IANA and the RIRs were created, IPv4 addresses were actually

allocated manually by a single individual, Jon Postel.8 He never dreamed how large the

Internet would grow or that it would be a worldwide phenomenon that had a major

impact on most world economies. He is the one responsible for allocating large chunks

(“class A” blocks) to a few early adopters (e.g., HP, Apple, and MIT). Unfortunately,

those allocations are very difficult to undo today, so about one-third of all the addresses

allocated in the United States belong to fewer than 50 organizations. The IANA now just

considers those legacy allocations and tried to do the best they could with the address

space remaining at the time they took over allocation.

 Original “Classful” Allocation Blocks
The first 50% of the full IPv4 address space (0.0.0.0–127.255.255.255) was divided

up into 128 “class A” blocks (now known as “/8” or “slash-8” blocks). Each of these

contained 224-2, or some 16.8 million usable addresses. Here is a list of some of the lucky

8 https://en.wikipedia.org/wiki/Jon_Postel

Chapter 4 the DepLetION OF the IpV4 aDDreSS SpaC

https://en.wikipedia.org/wiki/Jon_Postel
https://en.wikipedia.org/wiki/Jon_Postel

132

organizations that own these blocks today, either from the original allocation or by

buying other companies that owned them:

General Electric 3.x.x.x

Level 3 Communications 4.x.x.x

U.S. Army Info Systems Center 6.x.x.x

 (formerly DoD, now ARIN) 7.x.x.x

Level 3 Communications 8.x.x.x

IBM 9.x.x.x

U.S. DoD Intel Info Systems 11.x.x.x

AT&T Worldnet 12.x.x.x

Xerox Corp. 13.x.x.x

HP 15.x.x.x

DEC (now HP) 16.x.x.x

Apple Computer 17.x.x.x

Mass. Inst. Of Technology 18.x.x.x

Ford Motor Company 19.x.x.x

Computer Sciences Corp 20.x.x.x

DoD DISA DDN-RVN 21.x.x.x

U.S. DoD DISA 22.x.x.x

U.K. Ministry of Defense 25.x.x.x

U.S. DoD DISA 26.x.x.x

U.S. DoD DSI-North 28.x.x.x

U.S. DoD DISA 29.x.x.x

U.S. DoD DISA 30.x.x.x

AT&T Global Network Svcs 32.x.x.x

U.S. DoD DLA Sys Auto Ctr 33.x.x.x

Halliburton 34.x.x.x

InterOp Show 45.x.x.x

Bell-Northern (now Nortel) 47.x.x.x

Prudential Insurance 48.x.x.x

E.I. DuPont de Nemours 52.x.x.x

Daimler AG 53.x.x.x

U.S. DoD Network Info Ctr 55.x.x.x

U.S. Postal Service 56.x.x.x

Chapter 4 the DepLetION OF the IpV4 aDDreSS SpaCe

133

Another 25% of the full address space (128.0.0.0–191.255.255.255) was divided up

into 16,384 “class B” blocks (now known as “/16” blocks). Each of these contained 216-2,

or 65,534 usable addresses.

Another 12.5% of the full address space (192.0.0.0–224.255.255.255) was divided

up into about 2.1 million “class C” blocks (now known as “/24” blocks). Each of these

contained 28-2, or 254 usable addresses.

Another 6.25% of the full address space (224.0.0.0–239.255.255.255) was reserved for

multicast (these are known as class D addresses). There is no way to “recover” any of this

address space.

The final 6.25% of the full address space (240.0.0.0–255.255.255.255) was reserved

for future use, experimentation, and limited broadcast. These are known as class E

addresses. These addresses cannot be “recovered” without modifications to essentially

every router in the world (most routers block them by default).

The sub-block of class E from 255.0.0.0 to 255.255.255.255 is actually used for

“limited broadcast” (limited because it will not cross routers). A packet sent to any of

these addresses will be received by all nodes on your LAN. Of these, normally only

the address 255.255.255.255 is used. There is no broadcast in IPv6 (although there is a

multicast address that has much the same effect).

The US Department of Defense has ten “/8” blocks, for about 168 million addresses.

This is almost 4% of the total IPv4 address space. One entire “/8” block (127.x.x.x) has

only one address used, which is 127.0.0.1 (the IPv4 “loopback” address, used to address

your own node). A small block at 169.254.0.0/16 is reserved for IPv4 link-local usage

(similar to IPv6 link-local addresses). For details, see RFC 5735, “Special Use IPv4

Addresses,” January 2010.

One “/8” block (10.0.0.0/8), one “/12” block (172.16.0.0/12), and one “/16” block

(192.168.0.0/16) were reserved for use as “private” addresses by RFC 1918, “Address

Allocation for Private Internets,” February 1996. These addresses can be used by any

organization for any internal network but should never be routed onto the Internet

(although in practice you can sometimes find these addresses on the backbone due to

misconfigured routers). These would correspond to internal phone “extensions” such as

101, 102, etc. Every company with a PBX might use that same set of extensions.

Chapter 4 the DepLetION OF the IpV4 aDDreSS SpaC

134

As of June 4, 2010, only 16 of the possible 256 “/8” blocks (about 6.25% of the full

address space) were still unallocated. Here is a map of the status of all 256 “/8” blocks.

By February 2011, there weren’t any dots left. All the blocks with dots (unallocated “/8”s)

in the chart today were allocated to one of the RIRs (ARIN, RIPE, APNIC, LACNIC, or

AfriNIC).

 +0 +1 +2 +3 +4 +5 +6 +7 +8 +9

000 R AP RN L L . L L-AR L L

010 R L L L AP L L L L L

020 L L L . AR L L AP L L

030 L RN L L L L . . L .

040 L AF . L-AP L L RN L L .

050 AR L L L L L L L AP AP

060 AP AP RN AR AR AR AR AR AR AR

070 AR AR AR AR AR AR AR RN RN RN

080 RN RN RN RN RN RN RN RN RN RN

090 RN RN RN RN RN RN AR AR AR AR

100 AR AR RN

110 AP AP AP AP AP AP AP AP AP AP

120 AP AP AP AP AP AP AP R L-AR L-AR

130 L-AR L-AR L-AR L-AP L-AR L-AR L-AR L-AR L-AR L-AR

140 L-AR L-RN L-AR L-AR L-AR L-RN L-AR L-AR L-AR L-AR

150 L-AP L-RN L-AR L-AP L-AF L-AR L-AR L-AR L-AR L-AR

160 L-AR L-AR L-AR L-AP L-AR L-AR L-AR L-AR L-AR L-AR

170 L-AR L-AP L-AR AR AR AP RN LA RN .

180 AP LA AP AP AR . LA LA L-RN LA

190 LA L-LA L-AR RN RN RN L-AF AF L-AR AR

200 LA LA AP AP AR AR AR AR AR AR

210 AP AP RN RN L L AR RN AP AP

220 AP AP AP AP R-MC R-MC R-MC R-MC R-MC R-MC

230 R-MC R-MC R-MC R-MC R-MC R-MC R-MC R-MC R-MC R-MC

240 R-FU R-FU R-FU R-FU R-FU R-FU R-FU R-FU R-FU R-FU

250 R-FU R-FU R-FU R-FU R-FU R-FU

Chapter 4 the DepLetION OF the IpV4 aDDreSS SpaCe

135

Key and Analysis

AR ARIN allocated 33 72 28.13% (ARIN total)

L-AR Legacy, admin by ARIN 39

AP APNIC allocated 38 44 17.19% (APNIC total)

L-AP Legacy, admin by APNIC 6

RN RIPE NCC allocated 33 37 14.45% (RIPE total)

L-RN Legacy, admin by RIPE NCC 4

LA LACNIC allocated 8 9 3.52% (LACNIC total)

L-LA Legacy, admin by LACNIC 1

AF AfriNIC allocated 2 4 1.56% (AfriNIC total)

L-AF Legacy, admin by AfriNIC 2

L Legacy, early allocation 39 39 15.23% (Legacy total)

R Reserved 3 3 1.17%

R-MC Reserved, Multicast 16 16 6.25%

R-FU Reserved, Future Use 16 16 6.25%

. Unallocated 16 16 6.25% (Unallocated)

 --- --- -------

 256 256 100.00%

Almost all the “Legacy, early allocation” blocks are in the United States, so ARIN’s real

share of the total IPv4 address space is over 40% (for less than 5% of the world’s population).

Of course, today, all remaining /8 blocks at IANA have been allocated, but the

percentages are not that different from those shown.

 Classless Inter-Domain Routing (CIDR)
The original allocation block sizes (classes A, B, and C) did not fit all organizations. For

many organizations, even the smallest block (class C) was too big. If we had stuck with

the original allocation block sizes, we would have run out of addresses around 1997.

When this was realized, the IETF introduced Classless Inter-Domain Routing as defined

in RFC 1518, “An Architecture for IP Address Allocation with CIDR,” September 1993,

and RFC 1519, “Classless Inter-Domain Routing (CIDR): An Address Assignment and

Aggregation Strategy,” September 1993. CIDR allowed the two parts of an address to be

split along any of the 30 possible places to divide them, not just at multiples of 8 bits.

Some useful CIDR allocation block sizes are

Chapter 4 the DepLetION OF the IpV4 aDDreSS SpaC

136

Size Subnet Mask Number of usable addresses in block

/30 255.255.255.252 2

/29 255.255.255.248 6

/28 255.255.255.240 14

/27 255.255.255.224 30

/26 255.255.255.192 62

/25 255.255.255.128 126

/24 255.255.255.0 254 (old Class C)

/23 255.254.0.0 510

/22 255.252.0.0 1,022

/21 255.248.0.0 2,046

/20 255.240.0.0 4,094

/19 255.224.0.0 8,190

/18 255.192.0.0 16,382

/17 255.128.0.0 32,766

/16 255.255.0.0 65,534 (old Class B)

/8 255.0.0.0 16,777,214 (old Class A)

CIDR allows a closer fit to actual organization size than the old classful “three-sizes-

fit-all” scheme. However, each allocated block requires an entry in the core routing

tables. As we allocate smaller and smaller blocks, the number of entries in the core

routing tables is growing very rapidly. Many things are beginning to go wrong as we get

closer and closer to an empty barrel.

In the mid-1990s, there were steps taken (NAT and private addresses) to further limit

the number of public IPv4 addresses being allocated to each organization. NAT was only

ever envisioned by its creators as a “quick fix” that would buy us a few years to really

solve the problem. They understood all the problems NAT would cause and were willing

to live with them for a short time, when the alternative was to run out of IPv4 addresses

somewhere around 1997. For the real long-term fix, the IETF also began working on

the next-generation Internet Protocol with a much larger address space. That next-

generation Internet Protocol is complete, mature, and being deployed globally today. It

is called IPv6.

Chapter 4 the DepLetION OF the IpV4 aDDreSS SpaCe

137

 Problems Introduced by Customer Premises
Equipment NAT (CPE NAT)
Since the mid-1990s, we have been living with problems created by the introduction

of Network Address Translation doing conventional “hide-mode” (cone) NAT at the

customer premise (CPE NAT). These include the following:

• Difficulty for internal nodes to accept incoming connections, for

VoIP (SIP), peer-to-peer (P2P), running your own mail (SMTP), web

(HTTP/HTTPS), file transfer (FTP/SSH), or other servers.

• Problems with protocols that embed IPv4 addresses in packet

transmissions (SIP, many games).

• Problems with protocols that detect tampering to IP and/or TCP/

UDP header fields (e.g., IP addresses, port numbers), such as the

IPsec Authentication header (AH).

• Problems due to advances in web technology (primarily Web 2.0/

AJAX) that use large numbers of connections, each over a different

port, such as iTunes and Google Maps. This can be as high as 200–300

ports per application. Since NAT systems share the 65,536 possible

ports associated with a single “real” IPv4 address among the nodes

hidden behind each address, each internal user on average can use at

most 65,536 divided by the number of users behind that address. In

enterprise networks, this might (until recently) have been thousands

or tens of thousands of nodes behind one real address. For 1,000

nodes, on average each user could use no more than 65 ports. For

10,000 nodes, on average each user could use no more than 6 ports.

To allow each user up to 200 ports, no more than 300 users should

be hidden behind each IPv4 address. Currently, the average number

of ports used per user is actually quite low (less than 10), but this is

expected to grow rapidly as more users begin using Web 2.0–/AJAX-

type applications. If possible, NAT schemes should use ports on a

first come, first served basis, rather than allocating 1/n of the possible

ports to each node.

Chapter 4 the DepLetION OF the IpV4 aDDreSS SpaC

138

• Difficulty tracking abuse to specific users behind a NAT. This requires

keeping large amounts of information including source IP address,

destination IP address, port number(s), and accurate timestamps

for every connection. This may have to be kept for up to 1 year. A

year’s worth of such data for a single user can be tens of gigabytes

to terabytes in size. Multiplied by the number of users, this is a

staggering amount of storage that ISPs are required to keep. Hackers

love to “hide behind” NAT gateways.

Essentially, private IP addresses behind “hide-mode” NAT are good only for outgoing

connections using the simplest connectivity paradigms (e.g., client to server, using a

small total number of ports per user). Note that since the start of accessing the Internet

from phones, we have had only private addresses. With IPv6 on phones, for the first time,

we have public addresses on phones. That means you can run a server on your phone

that will be accessible from anywhere, or your phone can connect directly to any other

phone in the world (so long as both of you have IPv6 addresses and nothing is blocking

the ports involved). That is very exciting.

It is possible to allow at most one internal node to accept incoming connections

on a given port (e.g., port 80 for HTTP) for the gateway external IPv4 address, using

port forwarding. For example, your NAT gateway can be configured to forward any

incoming connection to its external IPv4 address on port 25 to the private address of a

single internal node where an email server is running. The gateway could also forward

incoming connections to its external IPv4 address on port 80 to the same (or a different)

internal node’s private address where a web server is running. This limits the entire LAN

(or that part of it behind a given real IPv4 address) to a single server for any given port

number (when using port redirection). This still translates the destination IPv4 address

on the way in and the source IPv4 address on the way out (but port numbers are left

unchanged). This still causes many of the problems listed previously. One-to-one NAT

(BINAT) does not have this limitation, but one valid external IPv4 address (in addition to

the valid external IPv4 address used for hide-mode NAT and port redirection) is required

for each internal server.

If you tried to map incoming port 80 traffic to two different internal addresses with

port redirection, your browser would be very confused by receiving responses from two

different web servers simultaneously. A good firewall or router should flag the attempt to

do this as an error.

Chapter 4 the DepLetION OF the IpV4 aDDreSS SpaCe

139

Some firewalls (or other NAT gateways) in addition to “hide-mode” (cone) NAT

for outgoing connections, and port forwarding, also support bidirectional NAT (called

BINAT, symmetric NAT, and “1-to-1” NAT, among other names). This type of NAT

makes a two-way address translation between a single external IP address and a single

private internal address (hence “1-to-1”). The full 65,536 possible ports may be used

on the internal node, but a distinct real IPv4 address is required for each such BINAT

mapping. This would allow deployment of multiple web servers within a LAN or an easy

way to provide access to many services on a single node (e.g., a Windows Server–based

computer). This still translates the destination IP address of packets on the way in and

the source IP address of packets on the way out (again, port numbers are not affected),

still causing many of the problems listed previously. In addition, it uses up one real

address per internal server and requires addressing the “missing ARP” problem (caused

by the fact that there is no physical node at the external address to respond to ARP

queries). This can be solved by configuring a static ARP for the external IPv4 address on

the NAT gateway or various other solutions. Solving the “missing ARP” problem is one

of the most difficult and least widely understood aspects of managing a NAT gateway (or

firewall).

There is in fact an external interface on the NAT gateway, with a valid external

address (say 123.45.67.81), which will reply as usual to an ARP request to its primary

address (e.g., 123.45.67.81) with the MAC address of the external interface. With BINAT,

however, you also assign an additional alias address for each BINAT mapping (e.g.,

123.45.67.82, 123.45.67.83, etc.) to the gateway’s external interface. If an ARP is done

for two of these alias addresses, by default the external interface will not respond to

them, hence the “missing ARP” (actually, “missing ARP response”). The ARP request is

not translated to the internal node, and even if it was, the node doing the ARP doesn’t

want the MAC address of the internal node – it wants the MAC address of the external

interface of the gateway. To get the external interface to respond with its MAC address

to ARP requests for an alias address, you must configure a proxy ARP on the external

interface for that alias address. The commands for configuring alias addresses on the

external interface, and proxy ARPs for them, vary widely from one OS to another. See the

labs in Chapter 10 for an example of this with m0n0wall (based on FreeBSD). In some

cases, another mechanisms may be used to solve the “missing ARP” problem, such as

configuring a static route for each alias address. This eliminates the need for other nodes

to do an ARP request.

Chapter 4 the DepLetION OF the IpV4 aDDreSS SpaC

140

There are several NAT traversal protocols (STUN, TURN, SOCKS, NAT-T, etc.) that

allow incoming connections to internal nodes that have only private addresses (without

any port forwarding or BINAT support in the NAT gateway). These typically require

an outside server to assist (this alone should raise security and reliability concerns).

STUN uses an outside server only to establish the connection, while TURN also routes

all traversing traffic through an outside gateway. All NAT traversal schemes involve

encapsulating traffic over UDP, which complicates error detection and recovery and

intrusion detection, as well as supporting the “connection-oriented” nature of TCP

traffic. All require extensive modifications to the source code of clients, which is quite

complex and very specific to the NAT traversal algorithm used. Usually, the external

servers used are not under control of the network, leading to security issues. One of

the most popular network applications (Skype) uses standard UDP-encapsulated “hole

punching” traversal, which causes many security issues. Anyone with access to the

external server can easily track who you are calling (and who is calling you) and even

listen in or redirect the call. With IPv6, there is no NAT, hence no need for NAT traversal.

Note that there are many variants of NAT, and a given implementation of NAT

traversal may work with only one or two of them. Also, many schemes fail if there are two

or more NAT mappings in series (say your ISP doing a NAT44 mapping to one private

address and then your CPE router/modem doing a second NAT44 mapping of that

private address to yet another private address – this is sometimes called NAT444).

Here are RFCs related to NAT traversal:

RFC 1928, “SOCKS Protocol Version 5,” March 1996

(Standards Track)

RFC 3947, “Negotiation of NAT-Traversal in the IKE,” January 2005

(Standards Track)

RFC 3948, “UDP Encapsulation of IPsec ESP Packets,” January 2005

(Standards Track)

RFC 5389, “Session Traversal Utilities for NAT (STUN),” October 2008

(Standards Track)

RFC 5766, “Traversal Using Relays Around NAT (TURN): Relay

Extensions to Session Traversal Utilities for NAT (STUN),” March

2010 (Standards Track, awaiting final approval)

Chapter 4 the DepLetION OF the IpV4 aDDreSS SpaCe

https://www.ietf.org/rfc/rfc1928.txt
https://www.ietf.org/rfc/rfc3947.txt
https://www.ietf.org/rfc/rfc3948.txt
https://www.ietf.org/rfc/rfc5389.txt
https://www.ietf.org/rfc/rfc5766.txt

141

 Implementing NAT at the Carrier: Carrier-Grade
NAT (CGN)
As we have progressed from the “end times” for IPv4 to “life after IPv4” (beyond the

depletion date for IPv4), those who have not already migrated to IPv6 will face even

greater problems, as ISPs deploy Carrier-Grade NAT9 solutions in their networks, as

opposed to doing NAT only in the Customer Premises Equipment (CPE NAT). The

reason for this is to try to make optimal use of an even smaller number of globally

routable IPv4 addresses than is possible with CPE NAT. Essentially the ISP will have a

very small pool of real IPv4 addresses (far less than the number of customers). They will

share single real IPv4 addresses across customers. This will make the problems associated

with CPE NAT dramatically worse. There is excellent coverage of the issues associated

with deploying NAT in the carrier in RFC 6269,10 “Issues with IP Address Sharing,” June

2011 (Informational):

• Dual-Stack Lite, RFC 633311

• Carrier-Grade NAT (CGN), RFCs 688812 and 659813

• NAT64, RFC 614614

• IVI, RFC 621915

• Address+Port (A+P), RFC 6346

Of these, only Dual-Stack Lite makes dual-stack service available to users. It provides

direct IPv6 service (no NAT, no tunneling). It provides IPv4 service tunneled over IPv6

(called 4in6 tunneling) with only one level of NAT44 (which takes place at the carrier).

Customers will get only private IPv4 addresses. It is possible that some ISPs may provide

a few precious “real” (globally routable) IPv4 addresses to business customers at a

9 https://en.wikipedia.org/wiki/Carrier-grade_NAT
10 https://tools.ietf.org/html/rfc6269
11 https://tools.ietf.org/html/rfc6333
12 https://tools.ietf.org/html/rfc6888
13 https://tools.ietf.org/html/rfc6598
14 https://tools.ietf.org/html/rfc6146
15 https://tools.ietf.org/html/rfc6219

Chapter 4 the DepLetION OF the IpV4 aDDreSS SpaC

https://en.wikipedia.org/wiki/Carrier-grade_NAT
https://tools.ietf.org/html/rfc6269
https://tools.ietf.org/html/rfc6333
https://tools.ietf.org/html/rfc6888
https://tools.ietf.org/html/rfc6598
https://tools.ietf.org/html/rfc6146
https://tools.ietf.org/html/rfc6219
https://tools.ietf.org/html/rfc6346
https://en.wikipedia.org/wiki/Carrier-grade_NAT
https://tools.ietf.org/html/rfc6269
https://tools.ietf.org/html/rfc6333
https://tools.ietf.org/html/rfc6888
https://tools.ietf.org/html/rfc6598
https://tools.ietf.org/html/rfc6146
https://tools.ietf.org/html/rfc6219

142

significant price premium (all the market will bear, which could easily reach thousands

of dollars per address per year). All the NAT schemes extend the address space by adding

port information. They differ in the way they manage the port value.

With CPE NAT, a given public IPv4 address covers only one legal entity (a home, a

company, etc.). With Carrier-Grade NAT, multiple legal entities will be behind most real

IPv4 addresses, which will vastly complicate the legal issues (such as tracking down a

source of network abuse or being able to prove who really did something).

You will see the terms NAT444 and NAT464 in discussions of carrier-based NAT. The

existing NAT that is widely deployed now is called NAT44 (NAT from IPv4 to IPv4). There

is also NAT46 (NAT from IPv4 to IPv6) and NAT64 (NAT from IPv6 to IPv4).

NAT44416 essentially leaves the CPE NAT44 (the existing one-layer NAT that is widely

deployed today) intact at the customer premise, while the carrier deploys a second layer

of NAT44 before it ever reaches the customer (using the new reserved block 100.64/10).

It is really just two NAT44 mechanisms in series. The CPE NAT44 will map the private

addresses supplied from the carrier NAT44 onto yet another set of internal private

addresses. The transport from carrier to customer is also over IPv4. The difference from

existing systems is that today the CPE NAT usually has one real IPv4 address, which

it shares among multiple internal nodes. In NAT444 systems, there won’t be even one

real IPv4 address at the customer premise. It will be quite difficult (and probably very

expensive) to host servers with public IPv4 addresses (e.g., web, mail, VoIP) at customer

sites – most will have to be hosted at a colocation facility.

For an analogy, imagine deploying nested telephone PBXes. There would be an

outer PBX, with a real telephone number, and behind that other PBXes with internal

extensions from the outer PBX. Behind each internal PBX, you would have sets of

internal phones. To call an internal phone, you would dial the real phone number of

the outer PBX and have to do something to select an internal PBX (dial the internal

PBX’s extension number?). Then once connected to the internal PBX, you would need

to interact with it to select an internal phone (e.g., dial the first three characters of the

phone owner’s name). This is the kind of complexity that IPv4 applications will now have

to cope with. It will be much simpler to just convert them directly to IPv6.

16 https://chrisgrundemann.com/index.php/2011/nat444-cgn-lsn-breaks/

Chapter 4 the DepLetION OF the IpV4 aDDreSS SpaCe

https://chrisgrundemann.com/index.php/2011/nat444-cgn-lsn-breaks/
https://chrisgrundemann.com/index.php/2011/nat444-cgn-lsn-breaks/

143

Figure 4-4. How NAT444 works

NAT464 is similar but involves doing one layer of NAT46 (from IPv4 to IPv6) at the

carrier, followed by a second layer of NAT64 (from IPv6 to IPv4) at the customer premise.

This allows the transport from carrier to customer to be over IPv6, which is a good thing,

but involves upgrading or replacing all Customer Premises Equipment to ones that are

NAT64 compliant (few are today). Also, address translation between IP families (IPv4 to

IPv6 and IPv6 to IPv4) has even more problems than address translation within a single

IP family (only IPv4 to IPv4 – there is no IPv6-to-IPv6 NAT!).

Chapter 4 the DepLetION OF the IpV4 aDDreSS SpaC

144

Figure 4-5. How NAT464 works

In either case (NAT444 or NAT464), there are some protocols that will work across

one layer of NAT, but fail when there is more than one layer of NAT. Both NAT444 and

NAT464 will introduce these kinds of issues, since both involve at least two layers of

NAT. Some home or small business users may unintentionally introduce even more

layers of NAT due to lack of understanding, for example, by deploying a firewall/NAT box

behind a modem/NAT gateway.

The following problems are made worse by Carrier-Grade NAT compared even with

CPE NAT. Some affect only the end user, some affect third parties (e.g., law enforcement),

and many affect both:

• The number of ports available per node will be even less, so Web

2.0/AJAX applications such as iTunes and Google Maps will fail in

unpredictable ways, especially with schemes that divide the available

ports into equally sized port ranges per customer.

• Incoming port negotiations may fail – for example, Universal Plug

and Play (UPnP).

• Incoming connections to well-known ports will not work (e.g., SMTP,

HTTP, SIP, etc.).

Chapter 4 the DepLetION OF the IpV4 aDDreSS SpaC

145

• Reverse DNS pretty much breaks down completely.

• Inbound ICMP will fail in most cases.

• Security issues are even worse than with CPE NAT.

• Packet fragmentation requires special handling.

• There are more single points of failure and decreased network

stability.

• Port randomization is affected (especially in schemes that restrict

ports to ranges).

• Penalty boxes no longer work.

• Spam blacklisting will affect many other nodes that use the same

address.

• Geolocation services may not be reliable or particularly specific.

• Load balancing algorithms are impacted.

• Authentication mechanisms are impacted.

• IPv6 transition mechanisms will be affected (Dual-Stack Lite is the

exception here).

• Frequent keep-alives will reduce battery life in mobile nodes.

Applications that had to be modified to support NAT traversal to work through

NAT44 will have to be modified once again, with even more complicated schemes, to

traverse multiple layers of NAT. Application Layer gateway (ALG) workarounds now have

to be implemented at the carrier, not just at the customer premise. ALGs that have to

deal with port-range restrictions will have an even harder job.

Blocking incoming access to services based on IPv4 addresses will likely affect many

“innocent bystanders” that happen to share the same real IPv4 address. One obvious

example is spam blacklists. A less obvious example is that some secure devices restrict

access by source IP address (only this node can connect to my firewall). Now, many other

nodes, even in different organizations, will be sharing that same IP address legitimately,

so may be able to access such nodes.

Chapter 4 the DepLetION OF the IpV4 aDDreSS SpaC

146

With reverse DNS, you publish the nodename associated with a given IP address.

With CPE NAT this affects many nodes, but this will be completely meaningless for

nodes behind carrier-based NAT. There is no way to publish thousands of nodenames

for a single IP address, nor is there any way for someone asking for the reverse lookup to

interpret the response correctly.

IPv6 transition mechanisms such as 6to4 will not work at all behind carrier-based

NAT, but Teredo might. Likewise, IPv4 multicast and Mobile IPv4 will have to be

modified extensively for carrier-based NAT.

 Summary
In this chapter we covered the inevitable depletion of public IPv4 addresses. First, IANA

ran out of addresses to allocate to RIRs in 2011. Over the next few years, all five RIRs have

reached end of normal allocation. Even companies, telcos, and ISPs are now pretty much

out of public IPv4 addresses.

They have tried to continue operation of IPv4 via various schemes, but those are

causing even more problems now.

IPv4 is at end of life. It’s time for everyone to migrate to IPv6.

Chapter 4 the DepLetION OF the IpV4 aDDreSS SpaCe

147

CHAPTER 5

IPv6 Deployment Progress
This chapter presents the progress to date in the deployment of IPv6. There are many

sources of information on this. We are now in the rapid adoption phase (finally).

Cisco’s 6lab site1

This widget shows a summary of the deployment percentages in the top five

countries (all already above 50%). The “Internet core” shows readiness of the Internet

backbones for IPv6. The “Global content” shows how much of the popular content is

available over IPv6 (almost always over both IPv4 and IPv6 at this time – there is very

little content available over just IPv6). The “Users” indicates what percentage of users

can access IPv6 content.

1 https://6lab.cisco.com/stats/

Figure 5-1. Global IPv6 adoption

© Lawrence E. Hughes 2022
L. E. Hughes, Third Generation Internet Revealed, https://doi.org/10.1007/978-1-4842-8603-6_5

https://6lab.cisco.com/stats/
https://6lab.cisco.com/stats/
https://doi.org/10.1007/978-1-4842-8603-6_5

148

There are many world maps on the 6lab site with frequently updated information

about each country.

If you hover over a country, it will show a number of items about IPv6 deployment in

that country. For example, on April 1, 2019, the United States shows

IPv6 deployment: 50.2%

Prefixes: 33.69%

Transit AS: 67.47%

Content: 56.66%

Users: 34.9%

The “Prefixes” value is from measurements done by APNIC and Eric Vyncke. It shows

the percentage of “allocated” prefixes that are “live” (actually have traffic going to them

or at least have entries in the BGP routing tables). Typically, a lot of organizations have

made the first step of obtaining a block of addresses from their RIR (Regional Internet

Registry), but only some of those have gone live at this time.

Figure 5-2. Deployment by country, Cisco

Chapter 5 Ipv6 Deployment progress

149

The “Transit AS” value has to do with autonomous systems used only for “transit” –

information being source and destination ASs. This indicates the readiness of the

Internet core.

The “Content” value has to do with how many of the popular (“Alexa 500”) websites

are available over IPv6.

The “Users” value is the percentage of users that connect to Google’s search page

over IPv6. Note that language and national blocking of google.com (e.g., in China) affect

this number.

The overall deployment value is a weighted combination of the above values.

Here are some per-country stats (“IPv6 deployment”) from the Cisco site as of March

17, 2019. Cisco is measuring very different things from Google, including infrastructure,

and is not as influenced by language:

Country IPv6 %

Belgium 63.7

germany 59.07

Uruguay 55.26

greece 53.93

malaysia 52.81

Finland 51.13

vietnam 50.85

United states 50.36

Japan 49.13

thailand 49.02

India 49.01

Brazil 48.66

United Kingdom 48.25

France 47.95

estonia 47.42

portugal 46.89

Canada 46.40

Chapter 5 Ipv6 Deployment progress

150

Figure 5-3. IPv4 exhaustion counter, toward the end of IPv4 available in RIRs

Country IPv6 %

mexico 45.85

hungary 44.14

norway 42.80

Ireland 40.42

peru 39.52

australia 38.96

singapore 38.68

saudi arabia 38.31

Czech republic 37.30

sweden 36.81

romania 33.78

So How Did IPv4 Depletion Go at RIRs?
The following widget on the IPv6 Forum website tells the story.

Chapter 5 Ipv6 Deployment progress

151

• IANA ran out of IPv4 allocable (public) addresses on February 3,

2011. After that, they could not provide any more IPv4 blocks to the

RIRs. It didn’t take long for the RIRs to go through their remaining

inventory.

• APNIC (AsiaPac + Japan) was the first RIR to reach the “end of normal

allocation,” on April 15, 2011.

• RIPE NCC (EU and Middle East) was next on September 14, 2012.

• LACNIC (Latin America) stopped normal allocation on June 10, 2014.

• ARIN (North America except for Mexico) ran completely out on

September 24, 2015.

• AfriNIC (African continent) stopped normal allocation on January

13, 2020.

Apart from ARIN, the RIRs decided to stop allocating IPv4 addresses when they

reached their final /8 (16.7 million) addresses. After that they could only be given out

in small blocks (e.g., 1024 addresses), for special purposes (such as migration to IPv6).

ARIN chose to keep doing allocation until the barrel was completely empty.

Some ISPs, telcos, and cloud providers tried to get as many IPv4 addresses as they

could, but many of those have now run out. They can buy a few on the IP address

market, but even those will run out at some point, and even now the price of public IPv4

addresses continues to rise.

Chapter 5 Ipv6 Deployment progress

152

 Google Statistics

Google tracks the number of connections to its search engine over both IPv4 and

IPv6. The preceding chart shows the growth of IPv6 as a percentage of total usage. As

of May 1, 2022, connections over IPv6 represent about 40% of all connections, globally.

Note that the actual percentage is likely higher, due to distortion caused by Happy

Eyeballs.2 This is a modification to all recent browsers that will attempt to connect

IPv4 or IPv6, depending on which one connected in the shortest time. This can result

in a situation where both the user and the website both support IPv6, but they also

both support IPv4, and for whatever reason, connection over IPv4 was faster. You can

see the current version of this chart at www.google.com/intl/en/ipv6/statistics.

html#tab=ipv6-adoption.3

For full details on Happy Eyeballs, see RFC 8305,4 “Happy Eyeballs Version 2: Better

Connectivity Using Concurrency,” December 2017.

2 https://en.wikipedia.org/wiki/Happy_Eyeballs
3 www.google.com/intl/en/ipv6/statistics.html#tab=ipv6-adoption
4 https://tools.ietf.org/html/rfc8305

Figure 5-4. Percentage of connections to google.com globally over IPv6

Chapter 5 Ipv6 Deployment progress

https://en.wikipedia.org/wiki/Happy_Eyeballs
https://en.wikipedia.org/wiki/Happy_Eyeballs
http://www.google.com/intl/en/ipv6/statistics.html#tab=ipv6-adoption
http://www.google.com/intl/en/ipv6/statistics.html#tab=ipv6-adoption
https://tools.ietf.org/html/rfc8305
https://en.wikipedia.org/wiki/Happy_Eyeballs
http://www.google.com/intl/en/ipv6/statistics.html
https://tools.ietf.org/html/rfc8305

153

You can see the incredible increase in deployment globally from when The Second

Internet book was written. At that time, the Google stats showed .25% adoption. In the

intervening years, adoption has increased by over 100 times, even with Happy Eyeballs.

The reason the line is wide vertically is actually quite interesting. It seems that usage

is highest on weekends and drops on weekdays. This is because more people have IPv6

at home than they do at work.

Google also breaks down their statistics per country. You can see the current version

of this information at www.google.com/intl/en/ipv6/statistics.html#tab=per-

country-ipv6- adoption.5

Here are a few selected countries from the Google per-country stats as of March

17, 2019:

Country IPv6 %

Belgium 53.17

germany 41.72

greece 35.99

United states 35.24

malaysia 34.13

Uruguay 34.07

India 32.59

vietnam 32.19

Japan 29.66

switzerland 28.94

Brazil 27.68

taiwan 25.97

France 24.62

estonia 24.35

Finland 23.80

mexico 22.92

5 www.google.com/intl/en/ipv6/statistics.html#tab=per-country-ipv6-adoption

Chapter 5 Ipv6 Deployment progress

http://www.google.com/intl/en/ipv6/statistics.html#tab=per-country-ipv6-adoption
http://www.google.com/intl/en/ipv6/statistics.html#tab=per-country-ipv6-adoption
http://www.google.com/intl/en/ipv6/statistics.html

154

Country IPv6 %

Canada 22.77

United Kingdom 22.71

hungary 20.44

portugal 20.06

ecuador 19.79

thailand 18.82

Ireland 18.70

trinidad and

tobago

17.65

new Zealand 17.11

netherlands 16.75

peru 16.62

australia 15.37

romania 12.95

norway 12.27

puerto rico 12.26

Bolivia 11.90

Czechia 10.87

slovenia 10.46

guatemala 9.51

saudi arabia 8.97

Note that these values are based on actual measurements but are heavily influenced

by English-speaking ability (the Google site is in English) and per-country restrictions

(China blocks Google). Most of the other countries are below 1%.

Chapter 5 Ipv6 Deployment progress

155

Another good source of statistics on IPv6 adoption from actual measurements can be

found at www.vyncke.org/ipv6status/.6 This site breaks it down by websites, email, and

DNS (from Alexa).

 Predictions for Future Years
Cisco had a chart to predict future IPv6 deployment based on past data from Google. It

predicts that we will reach 100% by 2028. That is just 6 years from now. Perhaps I will do

another update to this book in 2028 and see what really happened.

6 www.vyncke.org/ipv6status/

Figure 5-5. Predicted end of migration to IPv6

Chapter 5 Ipv6 Deployment progress

http://www.vyncke.org/ipv6status/
http://www.vyncke.org/ipv6status/

156

 Summary
IPv6 deployment is proceeding well globally. Most developed countries are already

over 50% of all traffic going over IPv6. The adoption curve for IPv6 from Google (for

percentage of connections to google.com over IPv6) is a strong indication of how this is

progressing. That is a classic adoption curve.

Chapter 5 Ipv6 Deployment progress

157

CHAPTER 6

IPv6 Core Protocols
This chapter introduces the new concepts and technical specifics of IPv6, the foundation

of the Third Internet. Since IPv6 is based heavily on IPv4, the approach will be to

describe the differences between the two. This will help those who already are familiar

with IPv4 to make the leap to IPv6. The subchapter headings are intentionally similar to

those in Chapter 3, to allow you to compare the old and the new, topic by topic. Again,

there is no intent to be comprehensive. There is a lot of content available on all aspects

of IPv6 listed in the bibliography and/or available online. The ultimate references are the

RFCs, so this chapter includes hyperlinks to the relevant ones, for those who want to drill

deeper on specific topics.

In other chapters we will discuss topics such as advanced aspects of IPv6 (IPsec,

IKEv2), the new things that IPv6 makes possible, who is involved in making it happen,

and how we get from the Second Internet to the Third Internet (migration). This chapter

covers the core protocols of IPv6.

 Network Hardware
Essentially the same network hardware that was used to deploy IPv4 networks is being

used to deploy the IPv6 networks, with some notable exceptions, primarily hardware

that implements things at the Internet Layer or above, such as smart (“layer 3”) switches,

routers, and firewalls. Also, DNS and DHCP servers must be updated or replaced with

ones that support IPv6 (more typically both IPv4 and IPv6, or “dual stack”). As IPv6 is

deployed, Virtual Private Networks (VPNs) will likely move away from “SSL/VPN”1 to

IPsec-based VPNs, which are the only IETF-approved technology for VPNs. There are no

RFCs for SSL/VPN because it is not considered to be a viable approach. Unfortunately,

IPsec is incompatible with NAT, which is now endemic in the Second Internet. VoIP and

1 https://openvpn.net/faq/why-ssl-vpn/

© Lawrence E. Hughes 2022
L. E. Hughes, Third Generation Internet Revealed, https://doi.org/10.1007/978-1-4842-8603-6_6

https://openvpn.net/faq/why-ssl-vpn/
https://openvpn.net/faq/why-ssl-vpn/
https://doi.org/10.1007/978-1-4842-8603-6_6

158

IPTV appliances will probably be upgraded to (or replaced with) IPv6-based systems.

Any device with TCP/IP hardware acceleration (such as high-end routers) will probably

need to be redesigned or replaced. Simply upgrading the firmware will not be sufficient

on such products (there are hardware dependencies on IPv4). There are some routers

that only have hardware acceleration for the IPv4 stack (IPv6 is done entirely with

software), which has led some people to think there are performance issues with IPv6.

Already there are hardware acceleration chips that support both IPv4 and IPv6 and are

available and being used in new product designs.

The hardware of most computing nodes does not need to change, especially client

and server computers. Replacement or upgrade of the operating system and applications

is all that is needed. The good news is that almost all operating systems and many

network applications that run on client computers are already fully compliant with IPv6,

and those are widely deployed. Those that aren’t yet compliant can be upgraded or

configured to support it with very reasonable effort and cost. Many server applications

(especially open source ones) are already compliant as well. Virtually everything

Microsoft makes fully (except Azure Cloud VMs, Skype, and Teams) supports IPv6 today.

For client computers, Windows Vista and Windows 7 had fairly complete support.

Later versions of Windows (8.1, 10, and 11) have very complete support. Windows XP

had some support but was missing some key features (like GUI configuration of IPv6

addresses and DNS queries over IPv6). For server computers, Windows Server 2008 and

Exchange Server 2007 (and most other server software since 2007) have full support for

IPv6. Most open source operating systems (Linux, FreeBSD, OpenBSD, and NetBSD)

have had full support for IPv6 for many years. Most open source network applications

(Apache, Nagios, Postfix, Dovecot, etc.) also have full support (although in some cases,

documentation may be hard to find).

NICs (Network Interface Connectors) do not need to change unless they have IPv4-

specific hardware acceleration, and even those will typically run IPv6 with no problem,

but the IPv6 part won’t be accelerated (it will run at “software” performance levels, in

terms of packets or bytes processed per second). There are already many chips available

to build hardware-accelerated NICs that fully support both IPv4 and IPv6, so soon, even

NICs with hardware acceleration will be no problem. They will accelerate IPv4 and/

or IPv6 traffic. For the most part, NICs work at the Link Layer and hence are IP version

agnostic (except for hardware acceleration).

Existing Wi-Fi NICs are also IP version agnostic (they work at the Link Layer), and

every Wi-Fi NIC that I’ve tried has worked with IPv6 with no upgrades or workarounds

required. Wi-Fi routers are another matter, because they include higher layer

Chapter 6 Ipv6 Core protoCols

159

functionality such as IPv4 routing, often including IPv4 NAT and a DHCPv4 server. Even

here, there is a simple workaround. Most Wi-Fi access points have a “WAN” connector,

which is the input to the NAT gateway, and one or more “LAN” connectors that are on

the client side of the NAT gateway. The LAN connectors are intended to plug in wired

client nodes, which are peers to the wireless client nodes (both wired and wireless client

nodes obtain configuration information and translated IP addresses from the DHCPv4

server and NAT gateway built into the Wi-Fi access point). Of course, the existing IPv4

routing, IPv4 NAT, and DHCPv4 in such devices are not compatible with IPv6. There are

dual-stack Wi-Fi access points available now from companies like D-Link, but some of

the products available today do not have routing, firewall, or DHCP support for IPv6. Any

device listed on the IPv6-ready list of certified products2 fully supports IPv6.

However, if you plug the cable from your ISP DSL modem (or from an existing Ethernet

network) into one of the LAN connectors on your Wi-Fi access point, instead of into the

WAN connector as you are supposed to, you can simply ignore the IPv4-specific parts of

the Wi-Fi access point. You are now using the router in “bridge mode.” The actual Wi-Fi

transmitter part is IP agnostic, and if there are both IPv4 and IPv6 on the feed you connect,

they will both be broadcast on wireless, and all existing nodes with Wi-Fi NICs will receive

it (assuming each OS supports IPv6 and you have configured it). Of course, if you want

your Wi-Fi nodes to obtain IPv4 addresses automatically, you must have a DHCPv4 server

somewhere in your network (properly configured). Your Wi-Fi access point is no longer

performing this function. Likewise, if you want Wi-Fi clients to obtain IPv6 addresses

through stateless autoconfiguration, there must be a Router Advertisement Daemon in

your network (just as for wired IPv6). If your wireless node has a DHCPv6 client and you

have a DHCPv6 server in your network, stateful autoconfiguration will work over Wi-Fi

as well. Of course, you can manually configure IPv6 addresses for Wi-Fi nodes just as you

can with wired nodes. No NAT is required (or needed) for IPv6. For IPv4, no NAT will be

performed in the Wi-Fi access point, so if you need it, it must be performed at the outside

gateway (e.g., a wired DSL modem from your ISP). Your wireless nodes will be peers to

your wired nodes. All of them (wired and wireless) will get IPv4 addresses from the same

DHCPv4 pool (if you use DHCP), and all will be in the same subnet. Normally if you

connected a Wi-Fi gateway with NAT inside an existing NATted network, your wireless

nodes would be behind two levels of NAT, which can cause some problems. One level of

NAT is bad enough – two levels are even worse.

2 www.ipv6ready.org/db/index.php/public

Chapter 6 Ipv6 Core protoCols

https://www.ipv6ready.org/db/index.php/public
http://www.ipv6ready.org/db/index.php/public

160

You will also find that some consumer devices that support Wi-Fi already have

support for IPv6, such as Android and iOS. It’s kinda cool to deploy dual-stack Wi-Fi and

show people the dancing turtle at www.kame.net3 on your phone.

With some of today’s phones, however, the only thing that works over IPv6 today

(if anything) is Wi-Fi Internet access, not the voice traffic or “dataplan” service. Some

mobile phone service providers are including IPv6 today (most in the United States

are). In theory you could add a dual-stack softphone (VoIP client) and do voice

communications over IPv6, but only via the Wi-Fi connection through a Wi-Fi access

point connected to the main Internet, not over your wireless telephone carrier’s Internet

service via WAP, GPRS, EDGE, HSDPA, or whatever else they provide. Someday even

these services will be dual stack (probably primarily LTE).

3 www.kame.net/

Figure 6-1. The dancing kame

Chapter 6 Ipv6 Core protoCols

http://www.kame.net
http://www.kame.net/

161

There are now dual-stack Wi-Fi access points that fully support routing for IPv4 and

IPv6, NAT for IPv4, and a Router Advertisement Daemon to enable IPv6 stateless auto-

configuration. D-Link in Taiwan has several that fully support IPv6, as do other vendors.

Network cables are totally IP version agnostic. You will not need to rewire your

network just for IPv6.

All conventional (“layer 2”) hubs and switches are IP version agnostic, although

“layer 3” features of some switches (such as web management, SNMP, and VLANs)

must be upgraded to support IPv6. In most cases, this will be possible simply with new

downloaded firmware. No hardware changes are needed (assuming there is sufficient

RAM and ROM to handle the more complex firmware). Contact your switch vendor

and demand that they add support for IPv6. There are already a few layer 3 switches on

the market that support IPv6. I have an SMC 8848M 48-port gigabit managed switch

in my home network that has quite a bit of IPv6 support, including web management

over IPv6, IPv6-based VLANs, SNMP over IPv6, etc. Unfortunately, traffic statistics do

not break out IPv4 and IPv6 traffic; just the total is reported. D-Link also has a dual-

stack smart switch series. They are already IPv6 ready certified. One example is their

DGS-3627 XSTACK managed 24-port gigabit stackable L3 switch.

Many enterprise-grade routers and firewalls already support IPv6, although in

some cases you must pay extra for the IPv6 functionality. Cisco routers used to require

“advanced IP services” for IOS (at additional cost), before IPv6 worked. For example, the

Cisco 2851 router ($6495) included only the base IOS (no IPv6 support). The Advanced

IP Services Feature Pack for it was an additional $1700 (all prices list). When buying or

considering using Cisco routers for use in IPv6 networks, make sure they already include

advanced IP services or include the additional cost of the feature pack. More recent

Cisco routers include IPv6 support for free in the base IOS.

Home network gateways that support IPv6 are further behind, but coming soon,

especially from Asian vendors, such as D-Link. A typical one will have all the features of

existing IPv4-based gateways, plus 6in4 tunneling (to tunnel in IPv6 from a virtual ISP),

a Router Advertisement Daemon (to enable stateless auto-configuration), and firewall

rules for IPv6 traffic. They should also be able to accept direct (in addition to tunneled)

IPv6 service, for when dual-stack ISP service becomes more widely available. Their DNS

relay should support DNS over both IPv4 and IPv6. More advanced gateways might

include a DHCPv6 server.

Note that some DSL or cable modems also include IPv4 firewall functionality. Of

course, this will not allow you to control IPv6 traffic. Therefore, if you are connecting

your LAN to the IPv6 Internet, there must be IPv6 firewalling somewhere, possibly in

Chapter 6 Ipv6 Core protoCols

162

a 6in4 tunnel endpoint that is routing IPv6 traffic into your LAN. A dual-stack gateway

firewall may include routing to accept incoming “direct” IPv6 service and/or a 6in4

endpoint to accept incoming “tunneled” IPv6 service, together with both IPv4 and

IPv6 filtering rules, and a Router Advertisement Daemon to support stateless auto-

configuration for the internal nodes that support IPv6.

Some IP phones in use today support IPv6, such as those from Snom in Germany and

Moimstone in Korea. Cisco supports IPv6 on a number of their recent phones, including the

7906G, 7911G, 7931G, 7941G/GE, 7942G, 7945G, 7961G/GE, 7962G, 7965G, 79770G, 7971G/

GE, and 7975G. Most of the older Cisco IP phones currently in use do not support IPv6, and

their firmware cannot be upgraded for various reasons (e.g., insufficient RAM or ROM).

When looking for hardware products that already support IPv6, an excellent source

of information is the IPv6-ready approved products list. If possible, choose products

that have passed the phase 2 (gold-level) testing. This ensures full compliance with

all relevant RFCs and interoperability with many other products. Phase 2 testing also

ensures compliance with all items denoted SHOULD in the relevant RFCs (a much more

comprehensive set of functionalities). These lists are updated and maintained by the

IPv6 Ready Logo Committee of the IPv6 Forum. They can be found at the IPv6-ready list

of certified products.4

 RFCs: A Whole Raft of New Standards for IPv6
There are many new RFCs that define the protocols, addressing and routing schemes, as

well as migration issues for IPv6. I will cover the most important of those in this chapter.

You can trace the beginnings and evolution of IPv6 in some early RFCs. In 1990,

when the IETF first realized that a successor to IPv4 was going to be needed (and soon),

the fun began. One key RFC related to this is RFC 1752,5 “The Recommendation for the

IP Next Generation Protocol,” January 1995. Prior to this, people referred to the successor

protocol as IPng (IP next generation), but in this RFC the term IPv6 was used. RFC 1752

says that the IETF started its effort to select a successor in late 1990 and that several

parallel efforts were started. Among these proposals were “CNAT,” “IP Encaps,” “Nimrod,”

“Simple CLNP,” the “P Internet Protocol,” the “Simple Internet Protocol,” and “TP/IX.”

None of these ever made it past the Internet Draft stage.

4 www.ipv6ready.org/db/index.php/public
5 https://tools.ietf.org/html/rfc1752

Chapter 6 Ipv6 Core protoCols

https://www.ipv6ready.org/db/index.php/public
https://www.ipv6ready.org/db/index.php/public
https://tools.ietf.org/html/rfc1752
http://www.ipv6ready.org/db/index.php/public
https://tools.ietf.org/html/rfc1752

163

By late 1993, an IPng Working Group was formed, and the various proposals still

around were reviewed. These included CATNIP, TUBA, and SIPP. Relevant RFCs (now of

only historical interest) are

RFC 1347, “TCP and UDP with Bigger Addresses (TUBA),” June

1992 (Informational)

RFC 1526, “Assignment of System Identifiers for TUBA/CLNP

Hosts,” September 1993 (Informational)

RFC 1561, “Use of ISO CLNP in TUBA Environments,” December

1993 (Experimental)

RFC 1707, “CATNIP: Common Architecture for the Internet,”

October 1994 (Informational)

RFC 1710, “Simple Internet Protocol Plus White Paper,” October

1994 (Informational)

The CLNP referred to in several of these was the “Connectionless-mode Network

Layer Protocol,” defined in ISO/IEC 8473, which did not make it into the final IPv6

specification. By 1995 a consensus had emerged, with the best features of all the

contenders. The consensus was summarized in RFC 1752. Before the end of the year

(barely), the first real IPv6 specifications were published:

RFC 1883, “Internet Protocol, Version 6 (IPv6) Specification,”

December 1995, obsoleted by RFC 2460 and then by RFC 8200

RFC 1884, “IP Version 6 Addressing Architecture,” December 1995,

obsoleted by RFC 2373, then by RFC 3513, and then by RFC 4291

RFC 1885, “Internet Control Message Protocol (ICMPv6) for the

Internet Protocol Version 6 (IPv6) Specification,” December 1995,

obsoleted by RFC 2463 and then by RFC 4443

RFC 1886, “DNS Extensions to Support IP Version 6,” December

1995, obsoleted by RFC 3596

RFC 1887, “An Architecture for IPv6 Unicast Address Allocation,”

December 1995

Chapter 6 Ipv6 Core protoCols

https://tools.ietf.org/html/rfc1347
https://tools.ietf.org/html/rfc1526
https://tools.ietf.org/html/rfc1561
https://tools.ietf.org/html/rfc1707
https://tools.ietf.org/html/rfc1710
https://tools.ietf.org/html/rfc1883
https://tools.ietf.org/html/rfc1884
https://tools.ietf.org/html/rfc1885
https://tools.ietf.org/html/rfc1886
https://tools.ietf.org/html/rfc1887

164

Four of these have been replaced (multiple times in some cases) since then, and

there are quite a few new ones since 1995, but this is where it really started. Yes, IPv6 is

27 years old in 2022 and has finally grown up.

 IPv6
The software that is making the Third Internet (and virtually all Local Area Networks)

possible will be around for quite some time. Like its predecessor, IPv4, it is a suite

(family) of protocols. Once again, the core protocols are TCPv6 (Transmission Control

Protocol version 6) and IPv6 (Internet Protocol version 6). TCPv6 has changes from

TCPv4, but only a few, due to the larger addresses that require more storage and the odd

method of calculating the checksum defined in TCPv4 (this involves a “pseudo header”

that includes the source and destination addresses from the IP header, which of course

are different in IPv4 and IPv6).

There is no new RFC specifically about TCPv6, but there are several RFCs that

include details about the new features.

UDP has only very minor changes to work over IPv6, primarily to provide more

storage for IPv6 addresses. The UDP packet header checksum also includes the IP

addresses, once again using the new pseudo header.

The following standards are relevant to IPv6 in general.

RFCs specific to IPv4-IPv6 transition can be found here.

RFCs specific to IPv6 and DNS can be found here.

RFC 1809, “Using the Flow Label Field in IPv6,” June 1995

(Informational)

RFC 1881, “IPv6 Address Allocation Management,” December
1995 (Informational)

RFC 1887, “An Architecture for IPv6 Unicast Address
Allocation,” December 1995 (Informational)

RFC 2428, “FTP Extensions for IPv6 and NATs,” September 1998

(Standards Track)

RFC 2474, “Definition of the Differentiated Service Field
(DS Field) in the IPv4 and IPv6 Headers,” December 1998
(Standards Track)

Chapter 6 Ipv6 Core protoCols

https://tools.ietf.org/html/rfc1809
https://tools.ietf.org/html/rfc1881
https://tools.ietf.org/html/rfc1887
https://tools.ietf.org/html/rfc2428
https://tools.ietf.org/html/rfc2474

165

RFC 2526, “Reserved IPv6 Subnet Anycast Addresses,” March 1999

(Standards Track)

RFC 2675, “IPv6 Jumbograms,” August 1999 (Standards Track)

RFC 2711, “IPv6 Router Alert Option,” October 1999

(Standards Track)

RFC 2894, “Router Renumbering for IPv6,” August 2000

(Standards Track)

RFC 3111, “Service Location Protocol Modifications for IPv6,” May

2001 (Standards Track)

RFC 3122, “Extensions to IPv6 Neighbor Discovery for Inverse

Discovery Specification,” June 2001 (Standards Track)

RFC 3175, “Aggregation of RSVP for IPv4 and IPv6 Reservations,”

September 2001 (Standards Track)

RFC 3178, “IPv6 Multihoming Support at Site Exit Routers,”

October 2001 (Informational)

RFC 3306, “Unicast-Prefix-based IPv6 Multicast Addresses,”
August 2002 (Standards Track)

RFC 3314, “Recommendations for IPv6 in Third Generation

Partnership Project (3GPP) Standards,” September 2002

(Informational)

RFC 3363, “Representing Internet Protocol version 6 (IPv6)
Addresses in the Domain Name System,” August 2002
(Informational)

RFC 3364, “Tradeoffs in Domain Name System (DNS) Support for

Internet Protocol version 6 (IPv6),” August 2002 (Informational)

RFC 3531, “A Flexible Method for Managing the Assignment of Bits

of an IPv6 Address Block,” April 2003 (Informational)

RFC 3574, “Transition Scenarios for 3GPP Networks,” August 2003

(Informational)

Chapter 6 Ipv6 Core protoCols

https://tools.ietf.org/html/rfc2526
https://tools.ietf.org/html/rfc2675
https://tools.ietf.org/html/rfc2711
https://tools.ietf.org/html/rfc2894
https://tools.ietf.org/html/rfc3111
https://tools.ietf.org/html/rfc3122
https://tools.ietf.org/html/rfc3175
https://tools.ietf.org/html/rfc3178
https://tools.ietf.org/html/rfc3306
https://tools.ietf.org/html/rfc3314
https://tools.ietf.org/html/rfc3363
https://tools.ietf.org/html/rfc3364
https://tools.ietf.org/html/rfc3531
https://tools.ietf.org/html/rfc3574

166

RFC 3582, “Goals for IPv6 Site-Multihoming Architectures,”

August 2003 (Informational)

RFC 3587, “IPv6 Global Unicast Address Format,” August 2003
(Informational)

RFC 3595, “Textual Conventions for the IPv6 Flow Label,”

September 2003 (Standards Track)

RFC 3701, “6bone (IPv6 Testing Address Allocation) Phaseout,”

March 2004 (Standards Track)

RFC 3750, “Unmanaged Networks IPv6 Transition Scenarios,”

April 2004 (Informational)

RFC 3756, “IPv6 Neighbor Discovery (ND) Trust Models and

Threats,” May 2004 (Informational)

RFC 3769, “Requirements for IPv6 Prefix Delegation,” June 2004

(Informational)

RFC 3849, “IPv6 Address Prefix Reserved for Documentation,” July

2004 (Informational)

RFC 3879, “Deprecating Site Local Addresses,” September 2004

(Standards Track)

RFC 3974, “SMTP Operational Experience in Mixed IPv4/v6

Environments,” January 2005 (Informational)

RFC 4007, “IPv6 Scoped Address Architecture,” March 2005
(Informational)

RFC 4029, “Scenarios and Analysis for Introducing IPv6 into ISP

Networks,” March 2005 (Informational)

RFC 4057, “IPv6 Enterprise Network Scenarios,” June 2005

(Informational)

RFC 4074, “Common Misbehavior Against DNS Queries for IPv6

Addresses,” May 2005 (Informational)

RFC 4135, “Goals of Detecting Network Attachment in IPv6,” May

2005 (Informational)

Chapter 6 Ipv6 Core protoCols

https://tools.ietf.org/html/rfc3582
https://tools.ietf.org/html/rfc3587
https://tools.ietf.org/html/rfc3595
https://tools.ietf.org/html/rfc3701
https://tools.ietf.org/html/rfc3750
https://tools.ietf.org/html/rfc3756
https://tools.ietf.org/html/rfc3769
https://tools.ietf.org/html/rfc3849
https://tools.ietf.org/html/rfc3879
https://tools.ietf.org/html/rfc3974
https://tools.ietf.org/html/rfc4007
https://tools.ietf.org/html/rfc4029
https://tools.ietf.org/html/rfc4057
https://tools.ietf.org/html/rfc4074
https://tools.ietf.org/html/rfc4135

167

RFC 4147, “Proposed Changes to the Format of the IANA IPv6

Registry,” August 2005 (Informational)

RFC 4159, “Depreciation of ip6.in,” August 2005 (Best Current

Practice)

RFC 4177, “Architectural Approaches to Multihoming for IPv6,”

September 2005 (Informational)

RFC 4192, “Procedures for Renumbering an IPv6 Network Without

a Flag Day,” September 2005 (Informational)

RFC 4193, “Unique Local IPv6 Unicast Addresses,” October
2005 (Standards Track)

RFC 4215, “Analysis of IPv6 Transition in Third Generation

Partnership Project (3GPP) Networks,” October 2005

(Informational)

RFC 4218, “Threats Relating to IPv6 Multihoming Solutions,”

October 2005 (Informational)

RFC 4291, “IP Version 6 Addressing Architecture,”
February 2006

RFC 4294, “IPv6 Node Requirements,” April 2006 (Informational)

RFC 4311, “IPv6 Host-to-Router Load Sharing,” November 2005

(Standards Track)

RFC 4339, “IPv6 Host Configuration of DNS Server Information

Approaches,” February 2006 (Informational)

RFC 4380, “Teredo: Tunneling IPv6 over UDP through Network

Address Translations (NATs),” February 2006 (Standards Track)

RFC 4429, “Optimistic Duplicate Address Detection (DAD) for

IPv6,” April 2006 (Standards Track)

RFC 4443, “Internet Control Message Protocol (ICMPv6) for
the Internet Protocol Version 6 (IPv6) Specification,” April
2006 (Standards Track)

Chapter 6 Ipv6 Core protoCols

https://tools.ietf.org/html/rfc4147
https://tools.ietf.org/html/rfc4159
https://tools.ietf.org/html/rfc4177
https://tools.ietf.org/html/rfc4192
https://tools.ietf.org/html/rfc4193
https://tools.ietf.org/html/rfc4215
https://tools.ietf.org/html/rfc4218
https://tools.ietf.org/html/rfc4291
https://tools.ietf.org/html/rfc4294
https://tools.ietf.org/html/rfc4311
https://tools.ietf.org/html/rfc4339
https://tools.ietf.org/html/rfc4380
https://tools.ietf.org/html/rfc4429
https://tools.ietf.org/html/rfc4443

168

RFC 4472, “Operational Considerations and Issues with IPv6

DNS,” April 2006 (Informational)

RFC 4554, “Use of VLANs for IPv4-IPv6 Coexistence in Enterprise

Networks,” June 2006 (Informational)

RFC 4659, “BGP-MPLS IP Virtual Private Network (VPN)

Extensions for IPv6 VPN,” September 2006 (Standards Track)

RFC 4692, “Considerations on the IPv6 Host Density Metric,”

October 2006 (Informational)

RFC 4727, “Experimental Values in IPv4, IPv6, ICMPv4, ICMPv6,

UDP and TCP Headers,” November 2006 (Standards Track)

RFC 4779, “ISP IPv6 Deployment Scenarios in Broadband Access

Networks,” January 2007 (Informational)

RFC 4818, “RADIUS Delegated-IPv6-Prefix Attribute,” April 2007

(Standards Track)

RFC 4852, “IPv6 Enterprise Network Analysis – IP Layer 3 Focus,”

April 2007 (Informational)

RFC 4861, “Neighbor Discovery for IP version 6 (IPv6),”
September 2007 (Standards Track)

RFC 4862, “IPv6 Stateless Address Autoconfiguration,”
September 2007 (Standards Track)

RFC 4864, “Local Network Protection for IPv6,” May 2007

(Informational)

RFC 4890, “Recommendations for Filtering ICMPv6 Messages in

Firewalls,” May 2007 (Informational)

RFC 4919, “IPv6 over Low-Power Wireless Personal Area Networks

(6LoWPANs): Overview, Assumptions, Problem Statement and

Goals,” August 2007 (Informational)

RFC 4941, “Privacy Extensions for Stateless Address
Autoconfiguration in IPv6,” September 2007 (Standards Track)

Chapter 6 Ipv6 Core protoCols

https://tools.ietf.org/html/rfc4472
https://tools.ietf.org/html/rfc4554
https://tools.ietf.org/html/rfc4659
https://tools.ietf.org/html/rfc4692
https://tools.ietf.org/html/rfc4727
https://tools.ietf.org/html/rfc4779
https://tools.ietf.org/html/rfc4818
https://tools.ietf.org/html/rfc4852
https://tools.ietf.org/html/rfc4861
https://tools.ietf.org/html/rfc4862
https://tools.ietf.org/html/rfc4864
https://tools.ietf.org/html/rfc4890
https://tools.ietf.org/html/rfc4919
https://tools.ietf.org/html/rfc4941

169

RFC 4943, “IPv6 Neighbor Discovery On-Link Assumption

Considered Harmful,” September 2007 (Informational)

RFC 4968, “Analysis of IPv6 Link Models for 802.16 Based

Networks,” August 2007 (Informational)

RFC 5095, “Deprecation of Type 0 Routing Headers in IPv6,”

December 2007 (Standards Track)

RFC 5172, “Negotiation for IPv6 Datagram Compression Using

IPv6 Control Protocol,” March 2008 (Standards Track)

RFC 5175, “IPv6 Router Advertisement Flags Option,” March 2008

(Standards Track)

RFC 5181, “IPv6 Deployment Scenarios in 802.16 Networks,” May

2008 (Informational)

RFC 5350, “IANA Considerations for the IPv4 and IPv6 Router

Alert Options,” September 2008 (Standards Track)

RFC 5375, “IPv6 Unicast Address Assignment Considerations,”

December 2008 (Informational)

RFC 5453, “Reserved IPv6 Interface Identifiers,” February 2009

(Standards Track)

RFC 5533, “Shim6: Level 3 Multihoming Shim Protocol for IPv6,”

June 2009 (Standards Track)

RFC 5534, “Failure Detection and Locator Pair Exploration

Protocol for IPv6 Multihoming,” June 2009 (Standards Track)

RFC 5549, “Advertising IPv4 Network Layer Reachability

Information with an IPv6 Next Hop,” May 2009 (Standards Track)

RFC 5570, “Common Architecture Label IPv6 Security Option

(CALIPSO),” July 2009 (Informational)

RFC 5619, “Softwire Security Analysis and Requirements,” August

2009 (Standards Track)

RFC 5701, “IP Address Specific BGP Extended Community

Attribute,” November 2009 (Standards Track)

Chapter 6 Ipv6 Core protoCols

https://tools.ietf.org/html/rfc4943
https://tools.ietf.org/html/rfc4968
https://tools.ietf.org/html/rfc5095
https://tools.ietf.org/html/rfc5172
https://tools.ietf.org/html/rfc5175
https://tools.ietf.org/html/rfc5181
https://tools.ietf.org/html/rfc5350
https://tools.ietf.org/html/rfc5375
https://tools.ietf.org/html/rfc5453
https://tools.ietf.org/html/rfc5533
https://tools.ietf.org/html/rfc5534
https://tools.ietf.org/html/rfc5549
https://tools.ietf.org/html/rfc5570
https://tools.ietf.org/html/rfc5619
https://tools.ietf.org/html/rfc5701

170

RFC 5722, “Handling of Overlapping IPv6 Fragments,” December

2009 (Standards Track)

RFC 5739, “IPv6 Configuration in Internet Key Exchange Protocol

version 2 (IKEv2),” February 2010 (Experimental)

RFC 5798, “Virtual Router Redundancy Protocol (VRRP) Version 3

for IPv4 and IPv6,” March 2010 (Standards Track)

RFC 5855, “Nameservers for IPv4 and IPv6 Reverse Zones,” May

2010 (Best Current Practices)

RFC 5871, “IANA Allocation Guidelines for the IPv6 Routing

Header,” May 2010 (Proposed Standard)

RFC 5881, “Bidirectional Forwarding Detection (BFD) for IPv4 and

IPv6 (Single Hop),” June 2010 (Proposed Standard)

RFC 5905, “Network Time Protocol Version 4: Protocol and

Algorithms Specification,” June 2010 (Standards Track)

RFC 5908, “Network Time Protocol (NTP) Server Option for

DHCPv6,” June 2010 (Proposed Standard)

RFC 5942, “IPv6 Subnet Model: The Relationship Between Links

and Subnet Prefixes,” July 2010 (Proposed Standard)

RFC 5952, “A Recommendation for IPv6 Address Text

Representation,” August 2010 (Proposed Standard)

RFC 5963, “IPv6 Deployment in Internet Exchange Points (IXPs),”

August 2010 (Informational)

RFC 5970, “DHCPv6 Options for Network Boot,” September 2010

(Proposed Standard)

RFC 6036, “Emerging Service Provider Scenarios for IPv6

Deployment,” October 2010 (Informational)

RFC 6059, “Simple Procedures for Detecting Network Attachment

in IPv6,” November 2010 (Proposed Standard)

RFC 6085, “Address Mapping of IPv6 Multicast Packets on

Ethernet,” January 2011 (Standards Track)

Chapter 6 Ipv6 Core protoCols

https://tools.ietf.org/html/rfc5722
https://tools.ietf.org/html/rfc5739
https://tools.ietf.org/html/rfc5798
https://tools.ietf.org/html/rfc5855
https://tools.ietf.org/html/rfc5871
https://tools.ietf.org/html/rfc5881
https://tools.ietf.org/html/rfc5905
https://tools.ietf.org/html/rfc5908
https://tools.ietf.org/html/rfc5942
https://tools.ietf.org/html/rfc5952
https://tools.ietf.org/html/rfc5963
https://tools.ietf.org/html/rfc5970
https://tools.ietf.org/html/rfc6036
https://tools.ietf.org/html/rfc6059
https://tools.ietf.org/html/rfc6085

171

RFC 6088, “Traffic Selectors for Flow Exchange Bindings,” January

2011 (Proposed Standard)

RFC 6092, “Recommended Simple Security Capabilities in

Customer Premises Equipment (CPE) for Providing Residential

Internet Service,” January 2011 (Informational)

RFC 6119, “IPv6 Traffic Engineering in IS-IS,” February 2011

(Proposed Standard)

RFC 6144, “Framework for IPv4/IPv6 Translation,” April 2011

(Informational)

RFC 6156, “Traversal Using Relays Around NAT (TURN)

Extensions for IPv6,” April 2011 (Proposed Standard)

RFC 6157, “IPv6 Transition in the Session Initiation Protocol

(SIP),” April 2011 (Proposed Standard)

RFC 6164, “Using 127-Bit IPv6 Prefixes on Inter-Router Links,”

April 2011 (Standards Track)

RFC 6177, “IPv6 Address Assignments to End Sites,” March 2011

RFC 6204, “Basic Requirements for IPv6 Customer Edge Routers,”

April 2011 (Informational)

RFC 6214, “Adaptation of RFC 1149 for IPv6,” April 1, 2011

(Informational)

RFC 6221, “Lightweight DHCPv6 Relay Agent,” May 2011

(Proposed Standard)

RFC 6250, “Evolution of the IP Model”, May 2011 (Informational)

RFC 6264, “An Incremental Carrier-Grade NAT (CGN) for IPv6

Transition,” June 2011 (Informational)

RFC 6294, “Survey of Proposed Use Cases for the IPv6 Flow Label,”

June 2011 (Informational)

RFC 6343, “Advisory Guidelines for 6to4 Deployment,” August

2011 (Informational)

Chapter 6 Ipv6 Core protoCols

https://tools.ietf.org/html/rfc6088
https://tools.ietf.org/html/rfc6092
https://tools.ietf.org/html/rfc6119
https://tools.ietf.org/html/rfc6144
https://tools.ietf.org/html/rfc6156
https://tools.ietf.org/html/rfc6157
https://tools.ietf.org/html/rfc6164
https://tools.ietf.org/html/rfc6177
https://tools.ietf.org/html/rfc6204
https://tools.ietf.org/html/rfc6214
https://tools.ietf.org/html/rfc6221
https://tools.ietf.org/html/rfc6250
https://tools.ietf.org/html/rfc6264
https://tools.ietf.org/html/rfc6294
https://tools.ietf.org/html/rfc6343

172

RFC 6384, “An FTP Application Layer Gateway (ALG) for IPv6-to-

IPv4 Translation,” October 2011 (Proposed Standard)

RFC 6437, “IPv6 Flow Label Specification,” November 2011
(Standards Track)

RFC 6438, “Using the IPv6 Flow Label for Equal Cost Multipath
Routing and Link Aggregation in Tunnels,” November 2011

RFC 6459, “IPv6 in 3rd Generation Partnership Project (3GPP)

Evolved Packet System (EPS),” January 2012 (Informational)

RFC 6540, “IPv6 Support Required for All IP-Capable Nodes,” April

2012 (Best Current Practice)

RFC 6556, “Testing Eyeball Happiness,” April 2012 (Informational)

RFC 6564, “A Uniform Format for IPv6 Extension Headers,” April

2012 (Proposed Standard)

RFC 6568, “Design and Application Spaces for IPv6 over Low-

Power Wireless Personal Area Networks (6LoWPANs),” April 2012

(Informational)

RFC 6606, “Problem Statement and Requirements for IPv6 over

Low-Power Wireless Personal Area Network (6LoWPAN) Routing,”

May 2012 (Informational)

RFC 6619, “Scalable Operation of Address Translators with Per-

Interface Bindings,” June 2012 (Proposed Standard)

RFC 6724, “Default Address Selection for Internet Protocol Version

6 (IPv6),” September 2012 (Standards Track)

RFC 6890, “Special-Purpose IP Address Registries,” April 2013

(Best Current Practice)

RFC 7066, “IPv6 for Third Generation Partnership Project (3GPP)

Cellular Hosts,” November 2013 (Informational)

RFC 7098, “Using the IPv6 Flow Label for Load Balancing in
Server Farms,” January 2014

Chapter 6 Ipv6 Core protoCols

https://tools.ietf.org/html/rfc6384
https://tools.ietf.org/html/rfc6437
https://tools.ietf.org/html/rfc6438
https://tools.ietf.org/html/rfc6459
https://tools.ietf.org/html/rfc6540
https://tools.ietf.org/html/rfc6556
https://tools.ietf.org/html/rfc6564
https://tools.ietf.org/html/rfc6568
https://tools.ietf.org/html/rfc6606
https://tools.ietf.org/html/rfc6619
https://tools.ietf.org/html/rfc6724
https://tools.ietf.org/html/rfc6890
https://tools.ietf.org/html/rfc7066
https://tools.ietf.org/html/rfc7098

173

RFC 7707, “Network Reconnaissance in IPv6 Networks,” March

2016 (Informational)

RFC 8106, “IPv6 Router Advertisement Options for DNS
Configuration,” March 2017 (Standards Track)

RFC 8200, “Internet Protocol, Version 6 (IPv6) Specification,”
July 2017 (Standards Track)

RFC 8201, “Path MTU Discovery for IP version 6,” July 2017
(Standards Track)

RFC 8504, “IPv6 Node Requirements,” January 2019 (Best
Current Practices)

 Four-Layer IPv6 Architectural Model

The major changes from the IPv4 model are as follows:

• Application Layer: DHCPv4 replaced with DHCPv6

• Transport Layer: TCPv4 replaced with TCPv6, UDPv4 replaced

with UDPv6

• Internet Layer: IPv4 replaced with IPv6, ICMPv4 replaced with

ICMPv6 (which includes ND)

• Link Layer: Removed ARP, OSPFv2 replaced with OSPFv3

Figure 6-2. Four-layer IPv6 model

Chapter 6 Ipv6 Core protoCols

https://tools.ietf.org/html/rfc7707
https://tools.ietf.org/html/rfc8106
https://tools.ietf.org/html/rfc8200
https://tools.ietf.org/html/rfc8201
https://tools.ietf.org/html/rfc8504

174

In the following discussion, traffic really flows both down from the Application Layer

to the Link Layer (then out the wire) and from the wire up through the Link Layer to the

Application Layer. For clarity, only the downward path is described in the following.

When traffic goes up through the layers, each layer strips off one header and hands off

the remaining bytes to the layer above.

The Application Layer implements the protocols most people are familiar with (e.g.,

HTTP). The software routines for these are typically contained in application programs

such as browsers or web servers that make system calls to subroutines (or “functions”

in C terminology) in the “socket API” (an API is an Application Program Interface,

or a collection of related subroutines, typically supplied with the operating system

or programming language). The application code creates outgoing data streams and

then calls routines in the API to actually send the data via TCP (Transmission Control

Protocol) or UDP (User Datagram Protocol). Output to the Transport Layer is [DATA]

using IP addresses.

The Transport Layer implements TCP (the Transmission Control Protocol) and

UDP (the User Datagram Protocol). These routines are internal to the socket API. They

add a TCP or UDP packet header to the data passed down from the Application Layer

and then pass the data down to the Internet Layer for further processing. Output to the

Internet Layer is [TCP HDR [DATA]], using IP addresses.

The Internet Layer implements IPv6 (the Internet Protocol) and various other

related protocols such as ICMPv6 (which includes the “ping” function among other

things). The IP routine takes the data passed down from the Transport Layer routines,

adds an IPv6 packet header onto it, and then passes the now complete IPv6 packet down

to routines in the Link Layer. Output to the Link layer is [IPv6 HDR [TCP HDR [DATA]]]

using IP addresses. ND (Neighbor Discovery) is actually a part of ICMPv6. It helps locate

the Link Layer address of other nodes on the link in addition to other functionality.

The Link Layer contains routines that actually read and write packets (as fed

down to it by routines in the Internet Layer) onto the network wire, in compliance with

Ethernet or other standards. Output to wire is Ethernet frame using MAC addresses (or

the equivalent if other network hardware is used, such as Wi-Fi), which includes the

entire IPv6 packet.

Chapter 6 Ipv6 Core protoCols

175

 Link Layer Issues with IPv6
The following standards are relevant to the Link Layer in IPv6 (primarily the binding

mechanisms from IPv6 to the Link Layer):

RFC 2464, “Transmission of IPv6 Packets over Ethernet Networks,”

December 1998 (Standards Track)

RFC 2467, “Transmission of IPv6 Packets over FDDI Networks,”

December 1998 (Standards Track)

RFC 2470, “Transmission of IPv6 Packets over Token Ring

Networks,” December 1998 (Standards Track)

RFC 2491, “IPv6 over Non-Broadcast Multiple Access (NBMA)

Networks,” January 1999 (Standards Track)

RFC 2492, “IPv6 over ATM Networks,” January 1999

(Standards Track)

RFC 2497, “Transmission of IPv6 Packets over ARCnet Networks,”

January 1999 (Standards Track)

RFC 2590, “Transmission of IPv6 Packets over Frame Relay

Networks Specification,” May 1999 (Standards Track)

RFC 3146, “Transmission of IPv6 Packets over IEEE 1394

Networks,” October 2001 (Standards Track)

RFC 4338, “Transmission of IPv6, IPv4 and Address Resolution

Protocol (ARP) Packets over Fibre Channel,” January 2006

(Standards Track)

RFC 4392, “IP over InfiniBand (IPoIB) Architecture,” April 2006

(Informational)

RFC 4944, “Transmission of IPv6 Packets over IEEE 802.15.4

Networks,” September 2007 (Standards Track)

RFC 5072, “IP Version 6 over PPP,” September 2007

(Standards Track)

RFC 5121, “Transmission of IPv6 via the IPv6 Convergence Sublayer

over IEEE 802.16 Networks,” February 2008 (Standards Track)

Chapter 6 Ipv6 Core protoCols

https://tools.ietf.org/html/rfc2464
https://tools.ietf.org/html/rfc2467
https://tools.ietf.org/html/rfc2470
https://tools.ietf.org/html/rfc2491
https://tools.ietf.org/html/rfc2492
https://tools.ietf.org/html/rfc2497
https://tools.ietf.org/html/rfc2590
https://tools.ietf.org/html/rfc3146
https://tools.ietf.org/html/rfc4338
https://tools.ietf.org/html/rfc4392
https://tools.ietf.org/html/rfc4944
https://tools.ietf.org/html/rfc5072
https://tools.ietf.org/html/rfc5121

176

 IPv6: The Internet Protocol, Version 6
IPv6 is the foundation of the Third Internet and accounts for many of its distinguishing

characteristics, such as its 128-bit address size, its addressing model, and its packet

header structure and routing. IPv6 is currently defined in RFC 8200,6 “Internet Protocol,

Version 6 (IPv6) Specification,” July 2017, but there are several RFCs that extend the

definition.

 IPv6 Packet Header Structure
So what are these packet headers mentioned previously? In IPv6 packets, there is an IPv6

packet header, then zero or more packet header extensions, then a TCP or UDP header,

and finally the packet data. Each header and header extension is a structured collection

of data, including things such as the IPv6 address of the sending node and the IPv6

address of the destination node. Why are we getting down to this level of detail? Because

some of the big changes from IPv4 to IPv6 have to do with the new and improved IP

packet header architecture in IPv6. In this chapter, we’ll cover the IPv6 packet header.

Here it is.

6 www.rfc-editor.org/rfc/rfc8200.txt

Figure 6-3. IPv6 packet header

Chapter 6 Ipv6 Core protoCols

https://www.rfc-editor.org/rfc/rfc8200.txt
http://www.rfc-editor.org/rfc/rfc8200.txt

177

The IP Version field (4 bits) contains the value 6 (imagine that!), which in binary is

“0110.” This field allows IPv4 and IPv6 traffic to be mixed in a single network.

The Traffic Class field (8 bits) is available for use by originating nodes and/or

forwarding routers to identify and distinguish between different classes or priorities of

IPv6 packets, in a manner virtually identical to that of IPv4 “Type of Service.”

The Flow Label field (20 bits) is something new in IPv6. It can be used to tag up

to 220 (1,048,576) distinct traffic flows, for purposes such as fine-grained bandwidth

management (QoS). Its use is still experimental. Hosts or routers that do not support

this function should set it to zero when originating a packet or ignore it when receiving

a packet. The semantics and usage of this field are covered in RFC 8200. Further

information is found in RFCs 3595, 6294, 6437, 6438, and 7098. Even today, very few

routers actually act on the contents of this field. Until they do, it will be of limited value.

The Payload Length field (16 bits) is the length of the IPv6 packet payload in bytes,

not counting the standard packet header (as it is in IPv4 Total Length), but counting

the size of any extension headers, which don’t exist in IPv4. You can think of packet

extension headers as being the first part of the Data field (payload) of the IPv6 packet.

The Next Header field (8 bits) indicates the type of header immediately following the

standard IPv6 packet header. It uses the same values as the IPv4 Protocol field, as defined

in RFC 1700, “Assigned Numbers,” October 1994. If this value contains the code for TCP,

then the TCP header and packet payload (data) begins immediately after the IPv6 packet

header. Otherwise, one or more IPv6 extension headers will be found before the TCP

header and data begins. Since each extension header has another Next Header field (and

a Header Length field), this constitutes a linked list of headers before the final extension

header, which is followed by the data. UDP packets can also have extension headers.

The Hop Limit field (8 bits) is to prevent packets from being shuttled around

indefinitely on a network. Every time a packet crosses a switch or router, the hop

count is decremented by one. If it reaches zero, the packet is dropped. Typically, if this

happens, an ICMPv6 message (“Time Exceeded”) is returned to the packet sender. This

mechanism is how the traceroute command works.

The Source IP Address field (128 bits) contains the IPv6 address of the packet sender.

The Destination IP Address field (128 bits) contains the IPv6 address of the packet

recipient.

Chapter 6 Ipv6 Core protoCols

178

Note the following fields from the Ipv4 packet header have been eliminated in
the Ipv6 packet header: Header Length, Identification (Fragment ID), Fragmentation
Flags, Fragment Offset, Header Checksum, and Options. the value in the Payload
Length field no longer includes the length of the standard packet header. the
Flow Label field has no corresponding field in the Ipv4 packet header. some
of the missing fields (e.g., fragmentation information) have been pushed into
extension packet headers. For example, in Ipv6 only fragmented packets have the
fragmentation header extension. Unfragmented packets do not have to carry the
unnecessary overhead. In Ipv4, all packets have the fragmentation fields in their
header, whether they are fragmented or not.

IPv6 Packet Fragmentation and Path MTU Discovery
The fields related to fragmentation are now found in the Fragment extension header,

which exists only in fragmented packets (no need to clutter up unfragmented packets, as

in IPv4). In IPv6, only the originating node can fragment packets (no intervening node

is supposed to do this). The originating node uses MTU Path Discovery to determine

the “width” of the proposed path (the maximum packet size that it can handle). MTU

stands for Maximum Transmitted Unit (maximum packet length). Any packets larger

than that size must be fragmented before transmission by the originating node and

reassembled upon receipt by the destination node. There is a default packet size that any

IPv6 node must be able to handle (1280 bytes). MTU Path Discovery allows the sender to

determine if larger (more efficient) packets can be used. The originating node assumes

the path MTU is the MTU of the first hop in the path. A trial packet of this size is sent

out. If any link is unable to handle it, an ICMPv6 Packet Too Big message is returned.

The originating node iteratively tries smaller packet sizes until it gets no complaints

from any node and then uses the largest MTU that was acceptable along the entire path.

This process takes place automatically in the Internet Layer. There is no corresponding

mechanism in IPv4.

Extension Headers (New in IPv6)
After the main header, there can be zero or more extension headers, before the

payload (actual packet data). This approach makes IPv6 highly extensible, for new

functionality in years to come. Several extension headers are already defined, and

doubtless more will be defined over time.

Chapter 6 Ipv6 Core protoCols

179

The first byte of each extension header contains a Next Header field, identical to the

same named field in the main IPv6 packet header (using codes from RFC 1700). The

second byte of each extension header contains a Header Extension Length field, which

specifies the length of this header, in 8-byte units, not including the first 8 bytes. Thus,

every extension header is at least 8 bytes long and is a multiple of 8 bytes in length. The

following header (or data, if no more extension headers) will begin immediately after

the end of this extension header. This effectively defines a linked list (a data structure

familiar to all programmers). Here are some typical packet header sequences to illustrate

how each chains to the next.

The basic extension headers are defined in RFC 8200,7 “Internet Protocol, Version 6

(IPv6) Specification,” January 2017. These include the following:

• Options extension header

• Hop-by-Hop Options extension header

• Routing extension header

• Fragment extension header

• Destination extension header

7 www.rfc-editor.org/rfc/rfc8200.txt

Figure 6-4. Typical IPv6 packet headers with extensions

Chapter 6 Ipv6 Core protoCols

https://www.rfc-editor.org/rfc/rfc8200.txt
http://www.rfc-editor.org/rfc/rfc8200.txt

180

Two extension headers are used for IPsec (IP Layer security). The IPsec

Authentication extension header (IPsec AH) is defined in RFC 2402, “IP Authentication

Header,” November 1998. The Encapsulating Security Payload header (IPsec ESP) is

defined in RFC 2406, “IP Encapsulating Security Payload (ESP),” November 1998.

When multiple extension headers are used in a single packet, the following order

should be followed:

• IPv6 basic header

• Hop-by-Hop Options header

• Destination Options header (for options to be processed by more

than just the final recipient)

• Routing header

• Fragment header

• Authentication header

• Encapsulating Security Payload header

• Destination Options header (for options to be processed only by the

final recipient)

• Upper Layer header (TCP, UDP, or SCTP)

Hop-by-Hop Options header: Used to carry optional information that must be

examined by every node along a packet’s delivery path. This option is indicated by a Next

Header value of 0.

Routing header: Used by an IPv6 source node to list one or more intermediate nodes

to be “visited on the way” to a packet’s destination. This is similar to IPv4’s Loose Source

and Record Route option. The Routing header is identified by a Next Header value of 43.

Fragment header: Used by an IPv6 source to send a packet larger than would fit in

the path MTU to its destination. In IPv6, packet fragmentation is performed only by the

source node, which must use MTU discovery to determine the maximum packet size

along the proposed path. The Fragment header is identified by a Next Header value of 44.

Destination Options header: Used to carry optional information that needs to be

examined only by a packet’s destination node(s). The Destination Options header is

identified by a Next Header value of 60.

For the specific details on each of the above header extension packets, see RFC 8200.

The Authentication header and ESP packet headers will be described later, under IPsec.

Chapter 6 Ipv6 Core protoCols

181

 IPv6 Addressing Model
In IPv6, addresses are 128 bits in length. They are simply numbers from 0 to about 340

undecillion (340 trillion, trillion, trillion). In exponential notation, that would be 3.40

e+38 (think of it as a 38-digit phone number, where an IPv4 address is a 9-digit phone

number). Regardless of how you write it, that’s a really big number. For the convenience

of humans, these numbers are typically represented in what I call coloned hex notation

(as opposed to the dotted decimal notation used with IPv4). This splits the 128-bit

addresses into eight 16-bit fields, and each of which is represented with a hexadecimal

(base 16) number from 0 to ffff (you can use upper- or lowercase for the hexadecimal

digits A–F, but it is common practice in IPv6 to use lowercase). These hexadecimal

numbers cover all possible 16-bit binary patterns from 0000 0000 0000 0000 to 1111 1111

1111 1111. The hexadecimal numbers are separated by colons (“:”). Leading zeros can be

eliminated in each field. At most one run of zeros can be replaced by the double colon,

“::”. The following are all valid IPv6 addresses written in coloned hex notation:

2001:df8:5403:3000:b5ea:976d:679f:30f5 An EUI-64 unicast address

2001:df8:5403:3000::1e Manually assigned unicast

fe80::b5ea:976d:679f:30f5 Link-local EUI-64 address

ff02::1 Multicast address

::1 Loopback address for IPv6

:: The unspecified address

Some people are aware that you can use IPv4 addresses instead of nodenames in

web URIs, for example: http://123.45.67.89/main.html. You can also use IPv6 addresses,

but because colons demark other things in URIs (such as nonstandard port number),

you cannot use IPv6 addresses “as is”; enclose them in square brackets ([]). For example,

http://[2001:df8:5403:3000::d]/nagios is a valid URI that includes an IPv6 numeric

address.

In certain cases, the size of the subnet is specified after the address, similar to

CIDR. This is especially common when representing prefixes, for example:

2001:df8:5403::/48 An organization’s 48 bit network prefix

2001:df8:5403:3000::/52 A /52 block routed into a branch office

2001:df8:5403:3000::/64 The 64 bit prefix for one branch subnet

Chapter 6 Ipv6 Core protoCols

182

When an RIR (e.g., APNIC) allocates a “/32” block of addresses to an ISP, they assign

the first 32 bits of those addresses, based on the next available “/32” block from the

unallocated pool at that time. A “/32” block contains 65,536 “/48” blocks to allocate to

customers. If the ISP allocates all those, then the RIR will give them a new “/32” block,

each address of which will have a completely different first 32 bits from the addresses

in the previous “/32” block given to the ISP. The leftmost, or most significant, 32 bits

of every address in a given “/32” block will all be the same. All addresses from smaller

blocks (like a “/48” block or “/64” block) carved out of that “/32” block by the ISP (for

allocation to customers) will have the same first 32 bits. For example, many of NTT

America’s IPv6 allocations include addresses that start with “2001:418::/32”. No other ISP

in the world will ever be allocated a “/32” block with those particular first 32 bits. Up to

65,536 of NTT America’s customers might get “/48” blocks whose addresses start with

those 32 bits.

When an ISP allocates a “/48” block for a customer from their “/32” block, the next

16 bits (following the first 32 bits) are chosen by that ISP, so that the first 48 bits will be

unique to that customer in the entire world. The first 48 bits of every address in a “/48”

block given to an end-user organization will all be the same but will be different from

the first 48 bits of the addresses in any other “/48” block in the world. You can think of

this 48-bit sequence as the organization prefix. All addresses in our “/48” block from HE

happens to start with “2001:470:ed3a::/48”. No other customer of HE has ed3a in the third

16-bit field of their addresses. When a customer deploys subnets, they choose a further

16-bit value (unique within their organization) for each subnet, which, together with the

organization’s 48-bit prefix, creates a globally unique 64-bit prefix for a working subnet.

This can be used to manually configure 128-bit addresses for nodes on that subnet, or

they can be configured on the Router Advertisement Daemon that supplies prefixes to

nodes in that subnet for Stateless Address Autoconfiguration. If using stateful DHCPv6,

the administrator can also create pools of addresses for assignment, where each 128-bit

address in a pool has that same 64-bit subnet prefix.

 IPv6 Packet Transmission Types
In IPv4, there were several packet transmission types (unicast, anycast, and multicast).

IPv4 multicast uses class D addresses, while all other addresses are unicast (or reserved).

There is no real concept of scope in IPv4 (the part of the network in which a given

address is valid and unique). IPv4 “private addresses” are a step in this direction, but

Chapter 6 Ipv6 Core protoCols

183

IPv6 defines real scope rules for certain kinds of addresses. These concepts are defined

in RFC 4291, “IP Version 6 Addressing Architecture,” February 2006. Note: In Windows,

“ping” is used for both IPv4 and IPv6. In Linux and BSD, the “ping” command is used

just for IPv4 – in IPv6, the command is “ping6.” In the following, I use just the generic

“ping,” but be aware that for IPv6 on some platforms, “ping6” would actually be used.

 IPv6 Address Scopes
The scope of an address specifies in what part of the network it is valid and unique. The

defined scopes in IPv6 are as follows:

Node Local: Valid only within the local node (e.g., loopback

address).

Link Local: Valid only within a single network link (subnet). All

such addresses start with the 10 bits “1111 1110 10” followed by

54 bits of 0 (fe80::/64). When specified in commands, you usually

must follow a link-local address with “%” and the interface ID of

the link it is connected to. In FreeBSD, this might be something

like “fxp0”, so to ping a link-local address, you might use

the command

ping fe80::3c79:b2ca:90ce:5d59%fxp0

In Windows, interface IDs are numbers, so a ping command there

might look like

ping fe80::3c79:b2ca:90ce:5d59%11

Site Local: Valid only within a “site.” They start with the 10 bits

“1111 1110 11” (fec0::/10). These were intended to be like IPv4

RFC 1918 “private addresses,” but are no longer used as of RFC

3878, “Deprecating Site Local Addresses,” September 2004.

Global: Valid anywhere on the IPv6 Internet. Global unicast

addresses are in the 2000::/3 block. When you specify global

addresses, there is no need to append the interface ID, so a ping

command for such an address might look like

ping 2001:df8:5403:3000::c

Chapter 6 Ipv6 Core protoCols

184

 IPv6 Address Types
A unicast address specifies a single network interface (destination address). Currently,

all global unicast addresses are in the 2000::/3 block. There are also link-local unicast

addresses, in the fe80::/10 block. The global unicast address type is defined in RFC

3587, “IPv6 Global Unicast Address Format,” August 2003. This RFC deprecates (makes

historic) the “Top-Level Aggregator” and “Next-Level Aggregator” (TLA/NLA) scheme

previously defined for global unicast addresses and formalizes the 48-bit organization

prefix, 16-bit subnet number, and 64-bit interface identifier concept used today:

 | 3 | 45 bits | 16 bits | 64 bits |

 +---+---------------------+-----------+----------------------------+

 |001|global routing prefix| subnet ID | interface ID |

 +---+---------------------+-----------+----------------------------+

There are two special unicast addresses:

:: (all bits zero): The unspecified address must never be assigned

to any node.

::1 (127 zeros followed by a 1): The loopback address for IPv6

(corresponds to 127.0.0.1 in IPv4).

When the site-local scope was deprecated, a new address type called unique local

unicast was defined in RFC 4193, “Unique Local IPv6 Unicast Addresses,” October 2005.

These addresses are in the fc00:/7 block. The first 7 bits are “1111 110”. The eighth bit is

called “L”. If L = 1, the address is locally assigned (L = 0 is reserved for future use). The

next 40 bits are a global ID that ensures the global uniqueness of the overall address. It is

generated pseudo-randomly and must not be sequential. The next 16 bits are a subnet

ID, and the final 64 bits are an interface ID (just like in global unicast addresses). Perhaps

someday there will be a way to reserve specific global IDs from a central authority (to

prevent anyone else from using one you have chosen), but no such mechanism exists

today. These addresses have much the same semantics as the IPv4 private addresses:

 | 7 bits |1| 40 bits | 16 bits | 64 bits |

 +--------+-+------------+-----------+----------------------------+

 | Prefix |L| Global ID | Subnet ID | Interface ID |

 +--------+-+------------+-----------+----------------------------+

Chapter 6 Ipv6 Core protoCols

185

An anycast address can specify any of a group of addresses (usually on different

nodes). A packet sent to an anycast address will be delivered to exactly one of those

interfaces, typically the “nearest” one (in the network sense, not geographic sense).

Anycast addresses look just like unicast addresses and differ only in being injected into

the routing protocol at multiple locations in the network.

A multicast address specifies multiple network destinations (multiple nodes can be

configured with the same multicast address). A packet sent to a multicast address will be

delivered to all nodes that have been assigned that address. Multicast addresses all have

the special prefix ff00::/8 (the first 8 bits of multicast addresses are all ones). After the

first 8 bits, there are 4 bits of flags (0,0,0,T). If T=0, the address is a “well-known” address

assigned by IANA. If T=1, then the address is a non-permanently assigned (“transient”)

address. The scope is specified in the next 4 bits, followed by 112 bits of group ID:

 | 8 | 4 | 4 | 112 bits |

 +------ -+----+----+---+

 |11111111|flgs|scop| group ID |

 +--------+----+----+---+

There are several multicast scopes defined by the four scope bits. All other

combinations are unassigned:

0 reserved

1 interface-local scope

2 link-local scope

3 reserved

4 admin-local scope

5 site-local scope

8 organization-local scope

E global scope

F reserved

The following multicast groups are “well known” (T=0):

1 node

2 router

5 OSPF IGP router

6 OSPF IGP Designated router

9 RIP router

Chapter 6 Ipv6 Core protoCols

186

a EIGRP router

b mobile agent

d PIM router

16 MLDv2 capable router

fb DNS server

101 NTP server

108 NIS+ server

1:2 DHCPv6 relay agent or server

1:3 DHCPv6 server (but not relay agent)

As there are 112 bits for group ID, there are 2112 (about 5.19 e+33) possible multicast

groups. That is enough for the entire world, for quite some time to come. You can think

of a multicast group as similar to a TV channel number. As examples, the following

multicast addresses are all valid (and are all “well known”):

ff02::1 All nodes on the local link

ff05::1 All nodes in the organization

ff02::2 All routers on the local link

ff05::2 All routers in the site

ff02::fb All DNS servers on the local link

ff08::fb All DNS servers in the organization

ff02::1:2 All DHCPv6 relay agents or servers on local link

 (note, DHCPv6 relay agents can only be reached

 via link local addresses, so wider scope

 addresses for relay agents don’t make sense)

ff02::1:3 All DHCPv6 servers on the local link

ff05::1:3 All DHCPv6 servers in the site

With the scopes larger than the organization, multicast addresses must be

specifically configured on nodes (you have to “subscribe to that channel”). If you ping

the multicast address ff0e::1, you are not going to get a response from every node on

earth, unless you can first talk everyone into adding that address to their nodes. Even

then, various routers along the way would probably block that packet. An organization’s

routers enforce the scope rules so that link-local multicast addresses will not cross any

routers, organization-local multicast addresses will not cross the organization’s border

Chapter 6 Ipv6 Core protoCols

187

router, but global multicast addresses will cross any router (in the real world, this is

actually managed by the MLD, the Multicast Listener Discovery protocol, and PIM, the

Protocol Independent Multicast protocol).

A solicited node multicast address is a special multicast address (addressed

to all nodes on the local link) created from a global unicast address by appending

the least significant (rightmost) 24 bits of the unicast address to the special prefix

ff02:0:0:0:1:ff::/104. For the global unicast address

2001:df8:5403:3000:3c79:b2ca:90ce:5d59

the solicited node multicast address is:

ff02::1:ffce:5d59

These addresses are used by ND (the Neighbor Discovery protocol) in the process of

mapping IPv6 addresses to Link Layer (MAC) addresses.

There is no broadcast address in IPv6, but a multicast to all nodes on the local link

multicast group ff02::1 will have pretty much the same result.

Perhaps someday there will be a central authority to coordinate use (and allow

reservation) of multicast group IDs. No such authority currently exists. Once IPv6

multicast broadcasters start making their programming available over large regions (or

even worldwide), such coordination will be necessary and corresponds to the FCC’s

management of broadcast frequencies that prevent stations from interfering with each

other. Because the number of potential group IDs is so large (2112 or about 5.19 e+33),

for now, choosing them randomly is sufficient. The probability of any two randomly

generated group IDs being the same is quite low, even with millions of people using this

scheme. You might think of these group IDs as being in some sense channel numbers as

found today on TVs. I can envision a search engine that would allow you to find multicast

channels associated with programming that caters to specific tastes, such as Bollywood

music videos over IPTV.

Special Case: IPv4-Compatible IPv6 Addresses (Now Deprecated)
The entire 4.3 billion addresses of IPv4 were mapped into the IPv6 address space,

not just once, but twice – once as IPv4-compatible IPv6 addresses (::w.x.y.z) and a second

time as IPv4-mapped IPv6 addresses (::ffff:w.x.y.z).

The addresses in the first special block all start with 96 bits of 0, followed by a 32-bit

IPv4 address (which can be specified in dotted decimal). When you send traffic to an

IPv4-compatible IPv6 address, it is sent as an IPv6 packet, but encapsulated with an IPv4

Chapter 6 Ipv6 Core protoCols

188

header, with the Protocol field of the IPv4 packet header set to 41 to indicate that the

payload is an IPv6 packet. The IPv4 header allows the traffic to travel across an IPv4-only

infrastructure. Upon receipt, the packet payload (the IPv6 packet) is passed to IPv6. This

is called automatic IPv6 tunneling over IPv4 networks (defined in RFC 2893, “Transition

Mechanisms for IPv6 Hosts and Routers,” August 2000).

IPv4-compatible IPv6 addresses were deprecated in RFC 4291, “IP Version 6

Addressing Architecture,” February 2006. No current transition mechanism uses them.

New implementations are not required to support these addresses. Note however that

two special addresses that are widely used actually fall into this range, the “unspecified”

address (all zeros, or “::”) and the loopback address (“::1”).

Special Case: IPv4-Mapped IPv6 Addresses (Still Valid)
The addresses in the second special block of addresses all start with 80 bits of 0

(0:0:0:0:0), followed by 16 bits of 1 (ffff) and then a 32-bit IPv4 address (which can be,

but does not have to be, specified in dotted decimal). When such an address is used on a

dual-stack node that supports IPv4-mapped IPv6 addresses, it causes an IPv4 packet to

be sent using the last 32 bits of the IPv4-mapped IPv6 address, as the IPv4 address. As an

example, on a Windows 7 node configured with dual stack, you can ping an IPv4 node as

usual with the command

C:\Users\lhughes>ping 10.1.0.14

Pinging 10.1.0.14 with 32 bytes of data:

Reply from 10.1.0.14: bytes=32 time<1ms TTL=64

Reply from 10.1.0.14: bytes=32 time<1ms TTL=64

Reply from 10.1.0.14: bytes=32 time<1ms TTL=64

Reply from 10.1.0.14: bytes=32 time<1ms TTL=64

You could ping the same IPv4, by using an IPv4-mapped IPv6 address, as follows.

The ping command would first view the address as a valid IPv6 address and create an

IPv6 socket as usual. The IPv6 socket would look at the IPv6 address, realize it is an IPv4-

mapped IPv6 address, and then hand the operation over to the IPv4 stack to handle,

using the low 32 bits of the IPv4-mapped IPv6 address. Normal IPv4 packets would be

sent from the IPv6 socket, indistinguishable from the IPv4 packets sent in the preceding

example:

Chapter 6 Ipv6 Core protoCols

189

C:\Users\lhughes>ping ::ffff:10.1.0.14

Pinging 10.1.0.14 with 32 bytes of data:

Reply from 10.1.0.14: bytes=32 time<1ms TTL=64

Reply from 10.1.0.14: bytes=32 time<1ms TTL=64

Reply from 10.1.0.14: bytes=32 time<1ms TTL=64

Reply from 10.1.0.14: bytes=32 time<1ms TTL=64

In general, you can do any I/O operation to an IPv4 node using IPv4 packets, from an

IPv6 socket, by using these IPv4-mapped addresses (on nodes where this is supported).

Some operating systems (e.g., OpenBSD) don’t support this kind of “cross-stack”

operation at all. On some operating systems (Linux, NetBSD, FreeBSD), this mode is

disabled by default, but in FreeBSD can be enabled by including the following line in /

etc/rc.conf:

...

IPv6_IPv4mapping="YES"

...

In general, it is best to avoid use of these addresses since support varies from

operating system to operating system, behavior is implementation dependent, and there

are potential vulnerabilities if it is enabled. It was originally intended as a transition

mechanism, but it caused more problems than it solved, so it is better left unused and,

ideally, disabled.

Simple IPv6 Address Assignment Scheme (for Manually Assigned Addresses)
The following is not part of any standard, IETF or otherwise. It is a best-practices

recommendation, which may help you in migration to IPv6.

Many administrators have adopted a simple scheme for assigning IPv6 addresses

manually to nodes, based on existing IPv4 address conventions or actual addresses.

It could be argued that it can lead to confusion (by humans) between decimal and

hexadecimal. It uses the same numeric digits that are currently used in your IPv4

scheme, to create what are really hexadecimal fields. It is possible to use the numeric

digits (0–9) to create up to three hex digits in each of the four 16-bit groups in the IPv6

interface identifier. The resulting address may look strange in binary, but this scheme

will make it easier for you to keep track of your IPv6 nodes and is especially useful in

dual-stack networks, where you can use what appears to be the “same” address (not

counting the prefix) on a given node, in both IPv4 and IPv6.

Chapter 6 Ipv6 Core protoCols

190

As an example, say our 48-bit organization prefix is 2001:df8:5403::/48. Let’s also say

we have four subnets (independent links) for IPv4, so we would also have four subnets

for IPv6. Let’s arbitrarily assign the IPv6 subnet numbers as 3000, 3100, 3200, and 3300

(all hex) for these subnets. Choose any values you want for subnet numbers (when

setting up your network architecture) – you have 65,536 (from 0000 to ffff) to play with.

The following IPv4 addresses from these subnets could be assigned the corresponding

IPv6 addresses:

IPv4 Subnet IPv4 Address Corresponding IPv6 Address

123.45.67.00/24 123.45.67.1 2001:df8:5403:3000:123:45:67:1

192.168.0.0/16 192.168.5.13 2001:df8:5403:3100:192:168:5:13

172.16.0.0/12 172.31.25.32 2001:df8:5403:3200:172:31:25:32

10.0.0.0/8 10.30.1.43 2001:df8:5403:3300:10:30:1:43

Alternatively, It is also possible to use just the interface identifier part of the IPv4

address (“node number within subnet”) as the IPv6 interface identifier, in which case,

the preceding addresses would be

Subnet IPv4 Address Corresponding IPv6 Address

123.45.67.00/24 123.45.67.1 2001:df8:5403:3000::1

192.168.0.0/16 192.168.5.13 2001:df8:5403:3100::5:13

172.16.0.0/12 172.31.25.32 2001:df8:5403:3200::15:25:32

10.0.0.0/8 10.30.1.43 2001:df8:5403:3300::30:1:43

The mapping for the 172.31.25.32 address may confuse you – this is because a /12

subnet mask length divides the second 8-bit field right in the middle (4 bits of it are

the network address, and 4 bits are the interface identifier). This is why using dotted

decimal for IPv4 was a bad idea and hexadecimal is used in IPv6. This can get even more

confusing with very odd subnet lengths, like /19. The following should clear things up:

172 31 25 32 Full address, dotted decimal

A C 1 F 1 9 2 0 Full address, hex

1010 1100 0001 1111 0001 1001 0010 0000 Full address, binary

 F 1 9 2 0 Interface identifier, hex

 15 25 32 Interface identifier,

dotted decimal

Chapter 6 Ipv6 Core protoCols

191

Using only the IPv4 interface identifier is less likely to produce addresses that collide

with automatically generated addresses but requires a good understanding of IPv4

subnetting (see the preceding discussion). Use whichever scheme makes the most sense

to you but try to be consistent.

The Simple IPv6 Address Assignment Scheme can also be used to manually assign

link-local addresses. In this case, there is no IPv6 subnet number, because each address

is valid only within a subnet. The following link-local addresses could be assigned to the

preceding nodes:

Subnet IPv4 Address Corresponding IPv6 Address

123.45.67.00/24 123.45.67.1 fe80::123:45:67:1

192.168.0.0/16 192.168.5.13 fe80::192:168:5:13

172.16.0.0/12 172.31.25.32 fe80::172:31:25:32

10.0.0.0/8 10.30.1.43 fe80::10:30:1:43

As with global unicast addresses, you could use just the interface identifier part of

each IPv4 address, which would result in the following manually assigned IPv6 link-local

addresses:

Subnet IPv4 Address Corresponding IPv6 Address

123.45.67.00/24 123.45.67.1 fe80::1

192.168.0.0/16 192.168.5.13 fe80::5:13

172.16.0.0/12 172.31.25.32 fe80::15:25:32

10.0.0.0/8 10.30.1.43 fe80::30:1:43

Note that the addresses 123.45.67.1/24 and 192.168.0.1/16 would both produce

fe80::1 as the equivalent IPv6 address, but this would not produce a conflict since they

are in different subnets, and link-local addresses are valid only within a single subnet.

Obviously, no addresses generated with Stateless Address Autoconfiguration will

use this convention, although you should be careful to make sure there are no conflicts

between addresses you create and automatically generated addresses. Duplicate

Address Detection during automated address creation should detect such conflicts. On

the other hand, you can easily create DHCPv6 address pools that will be consistent with

these schemes.

Warning: There is a perfectly valid (but not often used) textual representation

of IPv6 addresses that would allow you to use the exact same bits as a 32-bit IPv4

interface identifier and even specify those 32 bits in dotted decimal. However, it

Chapter 6 Ipv6 Core protoCols

192

mixes hexadecimal and decimal numbers, plus colons and dots in a single address

representation, which to me is extremely confusing and inelegant. It represents the

first 96 bits of an address in coloned hex notation and the last 32 bits of that address in

dotted decimal notation. When you use this mixed notation, you must always specify all

four dotted decimal fields, and they must be the least significant 32 bits. It is possible

that some software applications will not accept this representation. Also, many things

that report addresses (e.g., ipconfig) have no way to display some addresses in mixed

notation and others in regular coloned hex notation, so they just display all addresses

in coloned hex notation. This can lead to confusion. As examples of addresses with this

mixed notation, the preceding IPv4 addresses would have corresponding IPv6 addresses

that look like this:

IPv4 Address IPv6 Address in "Mixed" Notation

 Same Address in Coloned Hex

123.45.67.1 2001:df8:5403:3000::123.45.67.1

 2001:df8:5403:3000::7b2d:4301

192.168.5.13 2001:df8:5403:3100::192.168.5.13

 2001:df8:5403:3000::c0a8:50d

172.16.25.3 2001:df8:5403:3200::172.16.25.3

 2001:df8:5403:3000::ac10:1903

10.30.1.43 2001:df8:5403:3300::10.30.1.43

 2001:df8:5403:3000::a1e:12b

I recommend that you avoid use of this mixed notation altogether. If you use the

Simple IPv6 Address Assignment scheme, be very careful to use colons (not dots)

between all fields, as software that understands the mixed address syntax will interpret

addresses with dots in the last four groups as perfectly valid “mixed” notation. This will

result in some odd problems. The mixed notation was really intended for use with IPv4-

mapped IPv6 addresses, but it works anywhere. You should never create addresses using

it, but you need to know about it in case you see addresses written in it by someone else.

Multiple IPv6 Subnet Numbers on a Single Network Link
A single network link can actually have addresses with more than one 16-bit subnet

number at any given time. For example, the prefix 2001:df8:5403:1600::/64 may be used

with stateless autoconfiguration, while the prefix 2001:df8:5403:1601::/64 could be used

with stateful autoconfiguration using DHCPv6 on the same network link. You could also

have manually assigned addresses using a third prefix (e.g., 2001:df8:5403:1602::/64)

Chapter 6 Ipv6 Core protoCols

193

on the same network link. Addresses with different subnet numbers, but the same

interface identifier, are not in conflict. Normally, you only broadcast one 64-bit prefix

with Router Advertisement messages onto a given network link, so all addresses created

with stateless autoconfiguration in a given subnet will have only that one 64-bit prefix.

It is possible in some implementations to advertise many prefixes on each network link.

If multiple prefixes are advertised, there will still be only one default gateway, which is

the link-local address of the gateway that is sending Router Advertisement messages.

Another alternative is to define a subnet size greater than /64 on a single network link

that includes all the desired subnet numbers. With a “/60” subnet, you can actually have

16 sequential /64 subnet numbers in a single network link (the first subnet number has

to be an integral multiple of 16). This is called supernetting. Do this only if you really

understand what you are doing.

Multiple IPv6 Addresses on a Single Node
Unlike with IPv4, it is completely normal for IPv6 nodes to have multiple valid

addresses. They don’t even all have to have the same subnet number (if you are running

multiple subnet numbers on a single link). A single node could have addresses with each

of the preceding 64-bit prefixes (or even multiple manually assigned addresses) at any

given time. It could also have various multicast addresses. One of the unicast addresses

(chosen at random) will be used as the source address of packets sent by that node, but

incoming packets addressed to any of the addresses owned by the node will be accepted.

A host is required to recognize any of the following addresses as referring to itself.

Any node has most of these by default without anyone having to assign them. The default

link-local address is created with Stateless Address Autoconfiguration even if there are

no Router Advertisement messages. Solicited node multicast addresses are created and

assigned automatically when unicast or anycast addresses are assigned:

• The loopback address (::1): Always present.

• The all-nodes multicast addresses (ff01::1, ff02::1, etc.): Only the

“on node” and “on link” scoped multicast addresses are created

automatically – ones with larger scope must be specifically assigned

to each node that you wish to accept such addresses.

• The automatically generated link-local unicast address.

• Any additional unicast and anycast addresses that have been

assigned to any of the node’s interfaces, manually or automatically.

Chapter 6 Ipv6 Core protoCols

194

• The solicited node multicast address for each of its unicast

and anycast addresses (created automatically for you when the

corresponding unicast or anycast address is assigned).

• Multicast addresses for all other groups to which the node has

subscribed.

A router (gateway) is required to recognize all addresses that a host is required to

recognize, plus the following special addresses for routers, as identifying itself:

• The subnet-router anycast address for all interfaces for which it is

configured to act as a router

• All other anycast addresses with which the router has been

configured

• The all-routers multicast addresses (ff01::2, ff02::2, ff05::2)

 Automatically Generated Interface Identifiers Based
on EUI-64
By default, every IPv6 interface will create a unique link-local address (fe80::w:x:y:z). If

there is a Router Advertisement Daemon configured and running on the link, the node

will also automatically create a global unicast address by using the 64-bit subnet prefix

from the Router Advertisement message. It either can generate the interface identifier

(low 64 bits) from the node’s MAC address (using EUI-64) or can use a random 64-bit

value. This is described in RFC 4291, “IP Version 6 Addressing Architecture,” and RFC

2464, “Transmission of IPv6 Packets over Ethernet Networks.”

An EUI-64 address is created by taking the first 24 bits of a MAC address (the

Organizationally Unique Identifier part of the MAC address), setting the seventh bit of

this to 1 (counting rightward from the most significant bit), appending the 16-bit value

FFFE, and then appending the last 24 bits of the MAC address (the device identifier).

Hence, the 48-bit MAC address

00-18-8B-78-DA-1A

produces an EUI-64 identifier of

0218:8BFF:FE78:DA1A

Chapter 6 Ipv6 Core protoCols

195

This is a reversible mapping, so given an EUI-64 identifier, it is trivial to determine

the MAC address of the node (discard the FFFE in the middle 16 bits and invert the

seventh bit of the remaining 48-bit value). Note: The seventh bit in the first byte of all

valid Organizationally Unique Identifiers, hence of all MAC addresses, will always be 0.

One of the security advantages of IPv6 is supposed to be that the number of possible

addresses in a subnet (264) is so large that it is impractical to scan all of them to discover all

the nodes on a subnet (this is called mapping a subnet). If EUI-64 interface identifiers are

used, there are so few of these (in comparison with the total possible number of interface

identifiers) that it is possible to scan for them (especially with the knowledge of which

Organizationally Unique Identifiers are actually in use, which is not difficult to determine).

 Randomized Interface Identifiers
There are several privacy concerns related to using addresses with EUI-64 interface

identifiers. One is the ability for a hacker to create a map of all nodes on the subnets

via scanning. It would also be possible to identify any person’s traffic at any point

through which the traffic flows, if you know the MAC address of their network interface.

You could certainly associate various traffic flows that all have the same MAC address

as coming from a single node. In IPv4, MAC addresses never leave your LAN. With

EUI-64-based IPv6 unicast addresses, MAC addresses can go anywhere in the world.

Fortunately, there is a way to generate a random interface identifier instead of using the

EUI-64 identifier. This is defined in RFC 4941,8 “Privacy Extensions for Stateless Address

Autoconfiguration in IPv6,” September 2007. The randomized identifier even changes

automatically over time. I may have had that address yesterday, but today I’ve got a

completely different one! Interface identifier randomization is enabled by default in

Windows 7, but it can be enabled or disabled with the following commands:

netsh interface IPv6 set global randomizeidentifiers=enabled

netsh interface IPv6 set global randomizeidentifiers=disabled

The reason you might want to disable randomization is that some servers will only

accept a connection from nodes for which they can perform a reverse DNS lookup.

This often will fail with randomized identifiers. Note that use of randomized interface

identifiers can make it very difficult to determine to whom specific traffic in a log

belongs, unless a record is kept of randomized interface identifiers used by each node.

8 https://tools.ietf.org/html/rfc4941

Chapter 6 Ipv6 Core protoCols

https://tools.ietf.org/html/rfc4941
https://tools.ietf.org/html/rfc4941

196

When a randomized address changes, the old address is kept around for some time,

but marked as deprecated, which means your node will not use it for further outgoing

connections. It will accept incoming replies addressed to a deprecated address until

that address becomes invalid, which it eventually will be. Since you aren’t making

new outgoing connections with it, replies to it will cease fairly quickly. Addresses with

randomized interface identifiers are used primarily for outgoing connections (and

replies thereto). A node that can accept incoming connections from anyone should have

(possibly in addition to other addresses) a static (unchanging) unicast address, which

is published in DNS. This would be used by other nodes that want to connect to it. A

node that only ever makes outgoing connections need not have such a static address

assigned to it, and there is no need to publish its name and IPv6 address in DNS (at least

not in your external DNS). Remember in IPv6, it is much more likely that other nodes

will be connecting to your node (for VoIP, VPNs, P2P, etc.). The age of NAT (and one-way

connectivity) is over.

 IPv6 Address Allocation
The standard allocation block to be given to organizations is a “/48,” which is 65,536

subnets, each of which is a “/64” block consisting of 264 or about 18 billion, billion

addresses (about 4 billion times the total number of addresses in the Second Internet).

Some ISPs may choose to allocate only a single “/64” block to individuals or home users,

who have no need for multiple subnets. It is not practical to allocate only a single IPv6

address (a “/128” block) to a user, due to the fact that nodes often create new addresses.

One “/48” block will supply 65,536 individuals or homes with “/64” blocks. Perhaps

I’m a bit unusual, but I already have two subnets in my home today (one dual stack,

one IPv6-only). Who knows, I might have a bunch someday! My company has a “/48”

(2001:df8:5403::/48), which we divided into 16 “/52” sub-blocks, each of which has 4096

subnets. I have one of these “/52” sub-blocks (subnets 3000–3fff) routed to my house.

That should just about take care of me for some time to come. A single “/64” block

should work for most home users.

ISPs are allocated really big “/32” blocks of addresses, which are enough to allocate

“/48” blocks for up to 65,536 customers. Should they use up an entire “/32” block, there

are plenty more “/32” blocks where that one came from (about 536 million of them just

in the 2000::/3 block marked for allocation). The RIRs (ARIN, RIPE, APNIC, LACNIC,

and AfriNIC) will be happy to give an ISP all they can use. If you assume there are 7

Chapter 6 Ipv6 Core protoCols

197

billion people alive, there are over 5000 “/48” blocks for every human alive, just out

of the 2000::/3 range currently marked for allocation. It is extremely unlikely that any

single human will ever be able to use any appreciable percentage of their “fair share” of

addresses, let alone have the IANA run out. The folks in Taiwan say they want to connect

3 billion devices to the Internet in the next couple of years. This would take three-fourths

of the entire Second Internet’s address space but could be handled with a tiny fraction

(less than 1 billionth) of a single “/64” block with IPv6, should they want to have them all

in one block for some bizarre reason. It will be quite a while before anyone worries about

IPv6 address space exhaustion (famous last words?).

The People’s Republic of China believes that they were cheated out of sufficient

IPv4 addresses to participate fully in the Second Internet. By the time China started

deploying IPv4, if they had taken all the remaining addresses, over 90% of the people

there would not have gotten one. The Second Internet recently passed an interesting

threshold. There are now more Chinese-speaking users on it than English-speaking

users. If you recall the chart of allocated addresses earlier in this book, the United States

has over 43% (28% ARIN + 15% legacy, both of which are mostly US users) of the total

IPv4 address space for less than 5% of the world’s population. In comparison, APNIC,

which includes China, India, and several other populous countries (all together about

50% of the world’s population), has only 16% of the IPv4 address space. When the IPv4

addresses were all gone in September 2011, APNIC would probably still have less than

20% of the IPv4 address space (about .28 addresses per person), while the United States

would probably have about 45% (about 6.4 addresses per person). However, note that

about one-third of that 45% are held by fewer than 50 organizations (like MIT, Apple, HP,

etc.). The distribution of addresses in the Second Internet was (and remains) anything

but equitable. It’s really pretty much impossible to do anything about that now. We’re

doing it right on the Third Internet. The Second Internet was really an American thing

that they shared (to some extent) with the rest of the world. The Third Internet is the

first truly global Internet. Every country can have as many public addresses as they can

conceivably use.

Should We Reserve Some IPv6 Addresses for Developing Nations?
There has been talk from the ITU (International Telecommunication Union) about

reserving some IPv6 address space for developing nations to make absolutely certain that

nobody ever gets left out again, as has happened in the Second Internet. There are so

many IPv6 addresses that there is essentially no chance of this ever happening. The ITU

might as well try to reserve a few trillion grains of sand (maybe a dump truck’s worth) to

Chapter 6 Ipv6 Core protoCols

198

make sure that every country can be assured of getting their fair share of grains of sand.

The total number of IPv6 addresses is on the same general scale as the number of grains

of sand on earth.

Note that block 2000::/3 (which you can also think of as blocks 2000::/16 through

3fff::/16) is currently the only part of the overall space marked for unicast address

allocation. This is only one-eighth of the total IPv6 address space. Even so, this is still

2125, or about 4.15 e+37, addresses. You can also view this as 245 (about 35.2 trillion) “/48”

blocks or just over 5000 “/48” blocks per human alive in 2010 (using the worldwide

population as 7 billion). Should we ever use this up, there are still at least 5.5 times that

much space currently not used for anything (from 4000::/16 to efff::/16) that we could

repurpose for additional allocation.

I personally don’t think there is any reason to reserve a special block of addresses for

anyone, including developing nations. Unlike with IPv4, there are plenty of addresses for

everyone this time around.

The People’s Republic of China (and every other country) will have plenty of

addresses in the Third Internet, and this is one reason they are investing so heavily in it.

India is now determined to deploy IPv6 nationwide and had quite a bit deployed by the

end of 2010. By some measure they were at 60% deployment in 2019. The inequitable

distribution of addresses in the Second Internet may also account for some of the lack

of urgency to migrate to the Third Internet in the United States. Unfortunately, it is not

simply a matter of still having enough IPv4 addresses. Imagine if the United States stayed

with Standard-Definition NTSC TV, while the entire rest of the world went with globally

standard High-Definition TV. The United States would not be able to export their

programming to anyone else nor import programming from the rest of the world. If they

choose to stay with IPv4, they will be isolating themselves in some very serious ways. It’s

not completely ridiculous to think that the United States might decide not to deploy the

Third Internet. Look what happened with the metric system. If IPv4 is “riding horses”

and IPv6 is “driving cars,” you don’t need to wait until the last horse dies before you get

a car. The “cars” (IPv6) are ready and widely available today. Those who adopt cars first

will leave those still riding horses way behind. I’d suggest you migrate to IPv6 as soon as

possible. Countries that master it and start creating products and applications based on

it will have a giant head start in the twenty-first century over those who wait until the last

possible minute.

Chapter 6 Ipv6 Core protoCols

199

How Is the Entire IPv6 Address Space Divided Up?
Here are the official allocations of the IPv6 address space as of May 13, 2008 (from

IANA), along with the RFCs that allocated the blocks listed:

IPv6 Prefix Allocation Reference Note

----------- ---------- --------- ----

0000::/8 Reserved by IETF [RFC4291] [1] [5]

0100::/8 Reserved by IETF [RFC4291]

0200::/7 Reserved by IETF [RFC4048] [2]

0400::/6 Reserved by IETF [RFC4291]

0800::/5 Reserved by IETF [RFC4291]

1000::/4 Reserved by IETF [RFC4291]

2000::/3 Global Unicast [RFC4291] [3]

4000::/3 Reserved by IETF [RFC4291]

6000::/3 Reserved by IETF [RFC4291]

8000::/3 Reserved by IETF [RFC4291]

A000::/3 Reserved by IETF [RFC4291]

C000::/3 Reserved by IETF [RFC4291]

E000::/4 Reserved by IETF [RFC4291]

F000::/5 Reserved by IETF [RFC4291]

F800::/6 Reserved by IETF [RFC4291]

FC00::/7 Unique Local Unicast [RFC4193]

FE00::/9 Reserved by IETF [RFC4291]

FE80::/10 Link Local Unicast [RFC4291]

FEC0::/10 Reserved by IETF [RFC3879] [4]

FF00::/8 Multicast [RFC4291]

Notes:

[0] The IPv6 address management function was formally delegated to

 IANA in December 1995 [RFC1881].

[1] The "unspecified address", the "loopback address", and the IPv6

 Addresses with Embedded IPv4 Addresses are assigned out of the

 0000::/8 address block.

[2] 0200::/7 was previously defined as an OSI NSAP-mapped prefix set

 [RFC4548]. This definition has been deprecated as of December

 2004 [RFC4048].

Chapter 6 Ipv6 Core protoCols

200

[3] The IPv6 Unicast space encompasses the entire IPv6 address range

 with the exception of FF00::/8. [RFC4291] IANA unicast address

 assignments are currently limited to the IPv6 unicast address

 range of 2000::/3. IANA assignments from this block are registered

 in the IANA registry: iana-IPv6-unicast-address-assignments.

[4] FEC0::/10 was previously defined as a Site-Local scoped address

 prefix. This definition has been deprecated as of September 2004

 [RFC3879].

[5] 0000::/96 was previously defined as the "IPv4-compatible IPv6

 address" prefix. This definition has been deprecated by [RFC4291].

The referenced RFCs are

RFC 1881, “IPv6 Address Allocation Management,”

December 1995

RFC 3879, “Deprecating Site Local Addresses,” September 2004

(affects FEC0::/10)

RFC 4048, “RFC 1888 Is Obsolete,” April 2005 (dropping mapping

of OSI addresses)

RFC 4193, “Unique Local IPv6 Unicast Addresses,” October 2005

RFC 4291, “IP Version 6 Addressing Architecture,” February 2006

The 6bone was an early worldwide IPv6 testbed. It used addresses from 3ffe::/16 (as

per RFC 2471,9 “IPv6 Testing Address Allocation,” December 1998). These have since

been returned to the overall allocation pool as per RFC 3701,10 “6bone (IPv6 Testing

Address Allocation) Phase-Out,” March 2004, once the 6bone had served its purpose and

was shut down. Interestingly, some addresses from this block still show up on the IPv6

backbone. Among other places, they are still used in IPv6-ready tests, so if an IPv6-ready

test network is connected to the main Internet, those addresses could be accidentally

routed. Even though they are just more IPv6 unicast addresses now, I would recommend

against using them in production systems, just in case. It’s not like there aren’t plenty of

other IPv6 unicast addresses to use.

9 https://tools.ietf.org/html/rfc2471 ‘
10 https://tools.ietf.org/html/rfc3701

Chapter 6 Ipv6 Core protoCols

https://tools.ietf.org/html/rfc1881
https://tools.ietf.org/html/rfc3879
https://tools.ietf.org/html/rfc4048
https://tools.ietf.org/html/rfc4193
https://tools.ietf.org/html/rfc4291
https://tools.ietf.org/html/rfc2471
https://tools.ietf.org/html/rfc3701
https://tools.ietf.org/html/rfc2471
https://tools.ietf.org/html/rfc3701

201

As of January 2010, the RIRs have the following number of IPv6 prefixes that actually

have traffic on the backbone:

RIPE 1998

ARIN 1207

APNIC 852

LACNIC 267

AfriNIC 82

Here are the top ten countries plus a few from Asia (from SixXS, January 24, 2010)

ranked by the number of IPv6 prefixes allocated. ‘V’ means visible (actual traffic

detected), ‘A’ means allocated (obtained from an ISP or RIR), and ‘VP’ is the percentage

of all allocated blocks that are visible (total for the world would be 100%):

Rank Country V A VP

 1 United States 422 1143 9.30%

 2 Germany 179 324 3.24%

 3 United Kingdom 100 225 2.20%

 4 Netherlands 102 176 2.25%

 5 Japan 93 176 2.05%

 6 Australia 41 152 0.90%

 7 Russia 54 117 1.19%

 8 France 49 111 1.08%

 9 Brazil 29 106 0.64%

10 Switzerland 56 102 1.23%

19 Korea 15 58 0.33%

20 China 21 54 0.46%

24 India 7 36 0.15%

31 Taiwan 19 33 0.42%

33 Vietnam 4 28 0.09%

34 Philippines 8 27 0.18%

35 Thailand 12 27 0.26%

Note that this data does not reflect the actual number of addresses or the volume

of traffic, just the number of distinct 48-bit prefixes, which is a rough indication of the

number of organizations investigating IPv6. Much of this in the United States is probably

Chapter 6 Ipv6 Core protoCols

202

research or academic. As percentages of the gigantic total number of “/48” blocks

available for allocation, all these are essentially zero (pretty much all the 2000::/3 IPv6

address space is still available for allocation). This tiny percentage is more an indication

of the colossal size of the IPv6 address space than of any lack of interest or activity.

Here is a graph of the percentage of traffic that is IPv6, for the world and the five RIRs,

as of late 2018. You can see how much things changed since 2010.

Classless Inter-Domain Routing (CIDR)
There is no reason to implement CIDR for IPv6. It was done in IPv4 only to extend the

lifetime of the IPv4 address space long enough for IPv6 to be fully developed, which has

now happened. There is no need to extend the lifetime of the IPv6 address space. If IPv6

had been ready and we had migrated to it in the mid-1990s, we would never have had

to suffer through the complexities brought about by CIDR and NAT. The reason we are

having to deal with these issues today is that we have already stayed with IPv4 far too long.

Imagine trying to do serious work today with an 8-bit processor and 64K bytes of RAM.

Figure 6-5. IPv6 deployment by region

Chapter 6 Ipv6 Core protoCols

203

Network Ports
Network ports work exactly the same way under IPv6 as they do in IPv4. There are

still 65,536 of them associated with every IPv6 address. They could have gone to 32-bit

port numbers (yielding 4.3 billion ports for each address), but this would have required

even more changes in packet headers and other places, so this was not done. 65,536 is

plenty for almost any need, especially since you can assign any number of global unicast

addresses to a single interface (each of which has 65,536 ports). The same well-known

port numbers are used in IPv6 as in IPv4. The only difference is that you will never see

port numbers on IPv6 addresses being shifted by a NAPT gateway, since there is no NAT

for IPv6 to IPv6. Note that a given port being used over IPv4 does not prevent it from

being used by the same or even a different application, over IPv6 (and vice versa).

 Subnetting in IPv6
There is no CIDR in IPv6 (although the CIDR “slash notation” is still used). As a result,

subnetting is much simpler in IPv6. All subnets are “/64.” The only exception is if you do

supernetting (e.g., a “/60” subnet) to allow multiple “/64” blocks to be used on a single

network link. This will likely only be done in large, advanced corporate networks, so

most network engineers will never see anything but “/64” subnets.

The only reason for doing this might be to use different “/64” subnets for specific

purposes, such as 1000 for SLAAC, 1001 for DHCPv6-assigned addresses, and 1002

for manually assigned addresses. If you use EUI-64 interface identifiers for SLAAC, it

is not difficult to partition a single “/64” so there will be no overlap between SLAAC,

DHCPv6, and manual assignments. If you use random interface identifiers, they may

fall anywhere in a “/64” address space. However, the probability of one colliding with an

address assigned manually or via DHCPv6 stateful mode is incredibly low, and Duplicate

Address Detection should prevent the odd collision. Having at least two “/64” subnets

in a single network (one for SLAAC, one for manually and DHCPv6-assigned addresses)

removes all possibility of an address collision.

Each subnet needs to be at least a “/64,” since EUI-64 can generate “node within

subnet” values that are 64 bits long. Randomized interface identifiers are also 64 bits in

length. But a “/64” subnet is already larger than any organization could conceivably use

(18 billion, billion addresses). There are so many “/64” blocks in a single “/48” (65,536)

that we can use them even for subnets between a border router and a firewall, which

have only two addresses. There is never an excuse to use any subnet smaller than a “/64,”

although I have seen some old-school IPv4-trained administrators allocate “/124” IPv6

Chapter 6 Ipv6 Core protoCols

204

subnets for the link between a border gateway and firewall case (in IPv4, tiny subnets

like /30 would be used in such a case). Old habits die hard. After living with increasing

scarcity with IPv4 addresses, it is hard for some of us to realize that there are PLENTY of

addresses this time around.

 Link Layer Addresses
The software in the Application Layer, the Transport Layer, and the Internet Layer of the

IPv6 stack think in terms of IP addresses. But the Link Layer (and the hardware) thinks

in terms of MAC addresses. In IPv6 the mapping from IPv6 address to Link Layer (MAC)

address is done with the Neighbor Discovery protocol. Note that in this book, I often use

the terms Link Layer address and MAC address interchangeably.

NOTE a link layer address is a “MaC address” only for ethernet-based network
hardware (and a few others), so when I use the term MaC address, think “physical
layer address for the actual network hardware in use.” the term link layer
address is more accurate (a MaC address is just a special case of Link Layer
address), but it is easy to confuse it with the similar-sounding term link-local
address. Just realize that if the actual network in use is not ethernet, there may
be some other name for the physical layer addresses that Ip addresses have to be
mapped onto, and it may not look anything like the 48-bit MaC address.

IPv6 addresses are not actually used at the lowest layer of the IPv6 network stack (the

Link Layer). The 48-bit MAC addresses covered in Chapter 3 still exist and are used the

same way at the Link Layer (at least for Ethernet networks).

 Neighbor Discovery (ND) Protocol
There is no ARP (Address Resolution Protocol) in IPv6. The new ND (Neighbor

Discovery) protocol, which is defined in RFC 4861,11 “Neighbor Discovery for IP version

6 (IPv6),” September 2007, accomplishes the same thing and many other functions as

well, including the following:

11 https://tools.ietf.org/html/rfc4861

Chapter 6 Ipv6 Core protoCols

https://tools.ietf.org/html/rfc4861
https://tools.ietf.org/html/rfc4861

205

• Router discovery: A host can locate router(s) residing on any link to

which it is attached.

• Prefix discovery: A host can discover the correct 64-bit prefix for any

link to which it is attached.

• Parameter discovery: A host can determine the correct IPv6

parameters, for any link to which it is attached, such as MTU.

• Stateless Address Autoconfiguration (SLAAC): A host can

automatically obtain a link-local address and, if a Router

Advertisement Daemon exists, also a global unicast address.

• Address resolution: Mapping IPv6 addresses to MAC addresses (as the

replacement for ARP).

• Next-hop determination: Hosts can determine the next-hop router for

a given destination address.

• Neighbor Unreachability Detection (NUD): Determine that a given

neighbor is no longer reachable on any attached link (there is no

corresponding IPv4 functionality).

• Duplicate Address Detection (DAD): Hosts can determine if a

proposed address is already in use.

• Redirect: A router can inform a host about a better (or working) first hop.

There are five ICMPv6 messages that ND uses to accomplish these things:

• Router Solicitation: Request a Router Advertisement message.

• Router Advertisement: Router advertises the 64-bit prefix and

parameters for a link, usually sent by a Router Advertisement

Daemon living in a gateway router or firewall. The Router

Advertisement Daemon can send different information into each

attached link, if there are multiple links. This also tells nodes whether

or not there is a DHCPv6 server available.

• Neighbor Solicitation: Any node can say “Howdy, neighbor” to

another node to see if it responds.

• Neighbor Advertisement: Response to a “Howdy, neighbor” message

from someone else.

Chapter 6 Ipv6 Core protoCols

206

• Redirect: A router can inform any node that there is a better first hop

available than one it has just tried (“there’s a bridge out along that

road; try going down this road”), based on its discovered knowledge

of the surrounding network.

By the way, some people use “NDP” as the initialism for the Neighbor Discovery

protocol (see Wikipedia). If you read the RFCs, the creators of the protocol use just “ND,”

so we will use that convention in this book. The initialisms of some protocols include

the “P” (for Protocol) (e.g., TCP), while others don’t (like MLD). I follow the conventions

used in the RFCs.

IPv6 Router Advertisement messages carry link-layer (MAC) addresses, so no

additional packet exchange is required to resolve the router’s Link Layer address. They

also carry prefixes, so no separate mechanism is needed to configure a netmask.

By using link-local addresses to uniquely identify routers, hosts can maintain router

associations. This capability is necessary for Router Advertisements and for redirects.

Hosts need to maintain router associations if the site switches to a new global prefix.

ND is immune to spoofing attacks that originate from off-link nodes. In IPv4, off-link

nodes can send ICMPv4 Redirect messages and IPv4 Router Advertisement messages.

In the following, DAD refers to Duplicate Address Detection, which is one of the

functions performed by ND. Addresses may be in any one of the following states at any

given time:

• TENTATIVE: Generated, but not yet determined by DAD to be

unique – attempts to bind() to the address fail with EADDRNOTAVAIL,

as if the address doesn’t exist (this can cause race conditions)

• DUPLICATED: Generated and determined by DAD to be duplicated

(hence unusable)

• PREFERRED: Generated and determined by DAD to be unique

(hence valid)

• DEPRECATED: A preferred address that has passed its preferred

lifetime (still valid, and incoming packets addressed to it will be

accepted, but no further outgoing packets will be sent using it)

• INVALID: A deprecated address that has passed its valid lifetime

(may no longer be used for sending or receiving packets)

Here are the details of the various functions that ND can perform.

Chapter 6 Ipv6 Core protoCols

207

 Router Discovery
At any time (but typically at power on), any node can determine the link-local address of

the router(s) on the local link.

Step 1: The node sends a Router Solicitation message to the “all

routers on link” multicast group (ff02::2). If the node’s link-local

address has already been created, then that will be used as the

source address; else, the unspecified address (“::”) will be used as

the source address.

Step 2: All routers on the link will respond with Router

Advertisement messages, usually to the “all nodes on link” multicast

group (ff02::1), but if the source address of the Router Solicitation

message was a link-local address, the router can choose to send the

Router Advertisement message directly to that address. The source

address of each received Router Advertisement message is added to

a default gateway table (from which the preferred link-local default

gateway will be chosen). The Prefix Information option in all the

responses should be the same, so the subnet prefix from the last

received Router Advertisement message will be used.

IPv6 router discovery corresponds roughly to IPv4 router discovery (which was

defined in RFC 1256, “ICMP Router Discovery Messages,” September 1991), but in

IPv6 it is a part of the base protocol. There is no need for hosts to snoop the routing

protocols to discover a router. IPv4 router discovery contains a preference field,

which is not needed in IPv6 router discovery because of Neighbor Unreachability

Detection. IPv4 Router Advertisements and Solicitations (ICMP type 9) work only

with multicast-capable IPv4 routers and are not commonly used. All IPv6 nodes

support multicast, and Router Advertisements are a fundamental part of almost

every nontrivial network.

Chapter 6 Ipv6 Core protoCols

208

 Address Resolution (Mapping IPv6 Addresses
to MAC Addresses)
Say Alice (one IPv6 node) is trying to send a packet to Bob (another IPv6 node). Address

resolution is done as follows:

Step 1: Alice checks her Neighbor Cache (similar to the ARP table

in IPv4) to see if it already has an entry with Bob’s IPv6 address.

If it does, then Alice sends the packet immediately to Bob using

Bob’s MAC address from her Neighbor Cache, and she is finished.

If Alice’s Neighbor Cache doesn’t have an entry for Bob’s IPv6

address, the process continues.

Step 2: Alice adds a new Neighbor Cache entry for Bob, in the

INCOMPLETE state. Alice then sends a Neighbor Solicitation

message to Bob, using Bob’s solicited node multicast address as

the destination address. Any of the addresses assigned to Alice’s

interface can be used as the source address of this packet, but if

possible, it should match the source address of the original packet

Alice wanted to send. Alice includes her MAC address as the

Source Link Layer Address option in this packet. This ensures Bob

will have Alice’s MAC address when it’s time for him to reply.

Step 3: Bob receives the Neighbor Solicitation message and

responds with a Neighbor Advertisement message, sent to Alice’s

MAC address.

Step 4: Alice receives the Neighbor Advertisement message from

Bob and then updates Bob’s entry in her Neighbor Cache.

Step 5: Alice can now send the original packet she wanted to send

to Bob using his MAC address.

 Prefix Discovery
At any time, a node can discover the default network prefix. A Router Advertisement

message can contain up to three “options”:

Chapter 6 Ipv6 Core protoCols

209

• The Source Link Layer Address (the sending router’s MAC address.

• The MTU (the maximum packet size supported on this link)

• The Prefix Information (the preferred address prefix for this subnet).

When a router sends an unsolicited Router Advertisement message, it includes

all three options. In a solicited Router Advertisement message, at least the Prefix

Information and MTU options will be included, so in either case, the node will obtain

the preferred prefix for the link.

Step 1: The node wanting to discover the subnet prefix sends a

Router Solicitation message, using its own link-local address

as the source and the “all routers in local link” multicast group

(ff02::02) as the destination address.

Step 2: All routers on the local link respond with Router

Advertisement messages, with their own link-local address as

source and the “all nodes on local link” multicast group (ff02::1)

as the destination. The Router Advertisement message includes

at least the subnet prefix option. This prefix is extracted from

the prefix option and stored as the subnet prefix. All routers will

respond with the same prefix, but the last Router Advertisement

message received will have the subnet prefix that is used.

 Duplicate Address Detection (DAD)
DAD is used to determine if a proposed (tentative) address is a duplicate of any address

on the local link. Both hosts and routers perform DAD on all unicast and anycast

addresses regardless of how they are obtained (Stateless Address Autoconfiguration,

DHCPv6, or even manual assignment). DAD is accomplished using Neighbor

Solicitation and Neighbor Advertisement messages.

Step 1: The node owning the tentative address sends a number

of Neighbor Solicitation messages using the unspecified address

(::) as the source address, the solicited node multicast address as

the destination address, and the TENTATIVE address as the target

address.

Chapter 6 Ipv6 Core protoCols

210

Step 2: If any node on the link is already using the TENTATIVE

address, it will respond by sending a Neighbor Advertisement to

the “all nodes on local link” multicast group (ff02::1). If no such

response is seen during a short interval (configurable), then the

TENTATIVE address is considered to be unique.

 Stateless Address Autoconfiguration (SLAAC)
This is one of the most important new aspects of IPv6. It is specified in RFC 4682,12 “IPv6

Stateless Address Autoconfiguration,” September 2007. It is primarily used to allow

IPv6-capable hosts (as opposed to routers) to automatically obtain address information

(link-local and global unicast node addresses and link-local default gateway). Routers

use it to generate and validate their link-local addresses (but not their global addresses,

which must be statically configured). The process makes strong use of link-local and

multicast addresses, and all network communication is done with ICMPv6 messages that

are part of ND. If a source of Router Advertisement messages (e.g., a router or firewall)

is available, then at least one global unicast IPv6 address will also be generated. The

acronym for Stateless Address Autoconfiguration is “SLAAC.”

12 https://tools.ietf.org/html/rfc4862

Figure 6-6. SLAAC operation, M=0, O=0

Chapter 6 Ipv6 Core protoCols

https://tools.ietf.org/html/rfc4862
https://tools.ietf.org/html/rfc4862

211

There are four steps involved in Stateless Address Autoconfiguration:

Step 1: The node creates a 64-bit interface identifier. This can

be created using the MAC address and the EUI-64 algorithm

or can be a randomly generated value (“randomized interface

identifier”).

Step 2: The host creates a TENTATIVE link-local address. This is

done by appending the chosen interface identifier to the prefix

fe80://10. DAD is performed to determine if the link-local address

is unique. If so, that address goes to the PREFERRED state, its

lifetime starts counting, and the process continues. If the address

is duplicated, the address goes to the DUPLICATED state, the

interface is disabled, and the SLAAC process fails without having

generated any addresses.

Step 3: The host sends a Router Solicitation message to the “all

routers on link” multicast group (ff02::2). If the node’s link-local

address has already been created, then that will be used as the

source address; else, the unspecified address (“::”) will be used

as the source address. All routers on the link will respond with

Router Advertisement messages, usually to the “all nodes on link”

multicast group (ff02::1), but if the source address of the Router

Solicitation message was a link-local address, the router can

choose to send the Router Advertisement message via unicast

to just that address. The source address of each received Router

Advertisement message is added to a default gateway table (from

which the preferred link-local default gateway will be chosen).

The Prefix Information option in all of the responses should

be the same, so the subnet prefix from the last received Router

Advertisement message will be used.

If no router responds to the Router Solicitation message within a

certain time, then the SLAAC process terminates, having created

a valid link-local node address, but no link-local default gateway

and no global unicast address.

Chapter 6 Ipv6 Core protoCols

212

Step 4: If we reach this step, a valid Router Advertisement

was received with a subnet prefix, so the host combines the

discovered subnet prefix with the created interface identifier, to

create a TENTATIVE global unicast address for the node. DAD

is performed on the tentative global unicast address, and if the

address is unique, it goes to the PREFERRED state, and its lifetime

starts counting. If not, the address goes to the DUPLICATED state,

the interface is disabled, and the SLAAC process terminates, again

having created a valid link-local address and a link-local default

gateway address (but no global unicast address).

Anytime a link-local or global address lifetime expires (enters the INVALID state),

address regeneration is done. If using randomized interface identifiers, a different

random interface identifier is created for each address regeneration. If using EUI-64

interface identifiers, the regeneration process basically just confirms that the addresses

are still valid – they don’t actually change. If something has changed since the last

validation (e.g., gateway down, link broken, etc.), the SLAAC process may fail, and the

address is marked INVALID.

 Next-Hop Determination
When one node needs to send a packet to another node, the sending node must

determine whether the destination address is on-link or off-link. To be considered on-

link, the address must match at least one of the following criteria:

• The prefix of the address must match one of the prefixes assigned to

the link.

• The address is the target of a Redirect message sent by a router.

• The address is the target address of a Neighbor Advertisement

message.

• The address is the source address of any Neighbor Discovery message

received by the node.

If the address is on-link, then the next-hop address is the same as the destination

address. If the address is off-link, then the next-hop address is selected from the default

router list.

Chapter 6 Ipv6 Core protoCols

213

 Neighbor Unreachability Detection (NUD)
Each entry in the Neighbor Cache contains the IP address, the link-layer (MAC) address,

and the reachability status for that node. There are five possible values for that status,

and the state transition rules are as follows:

INCOMPLETE: Cache entry is newly created, and address

resolution is in progress. Any transmitted packets are queued.

When the address resolution completes, the link-layer address

is added into the Neighbor Cache, and the state changes to

REACHABLE.

REACHABLE: Any queued packets are immediately sent. Any

newly transmitted packets are sent normally. If more than a

certain time passes without any traffic to or from the address, the

state changes to STALE.

STALE: The reachability of the node is UNKNOWN. The address

remains in this state until traffic to that node is generated. At that

point, the traffic is queued, and the state changes to DELAY.

DELAY: The address remains in the DELAY state for a short

period. The status is still UNKNOWN. Once the delay expires, the

probe packet is sent, and the state changes to PROBE.

PROBE: A probe packet has been sent to determine reachability

(after the delay), but the result has not yet been obtained. The

status is still UNKNOWN. When the result is seen, REACHABILITY

is confirmed, and the state changes to REACHABLE. If a certain

amount of time elapses without any response, then the node is

considered unreachable, any queued traffic is discarded, and an

error is generated to the sender.

Note that there is nothing comparable to Neighbor Unreachability Detection in IPv4.

IPv6 NUD improves packet delivery in the presence of failing routers and over partially

failing or partitioned links. It improves delivery to nodes that change their link-layer

(MAC) addresses. For example, mobile nodes can move off-link without losing any

connectivity due to stale ARP caches. NUD detects dead routers and dead switches that

block access to working routers.

Chapter 6 Ipv6 Core protoCols

214

 Redirect
A router can send a Redirect message to a packet sender, if there is a better first-hop

router or if the destination is an on-link neighbor. In the first case, the Target Address

field contains the link-local address of the better first-hop router. In the second case,

the Target Address field contains a copy of the destination address. The Destination

Address field contains the address of the ultimate packet destination. The router uses its

knowledge of the larger environment to generate this information. You might think of

a Redirect message as saying something like “There is a bridge out down that road – try

going down this road, instead.”

IPv6 redirects contain the link-layer (MAC) address of the new first hop, which

eliminates the need for an additional packet exchange to resolve the IP address. Unlike

with IPv4 redirects, the recipient of an IPv6 redirect assumes that the new next hop is on-

link. The IPv6 redirect is useful on non-broadcast and shared media links. On such links,

nodes should not check for all prefixes for on-link destinations.

Viewing the Neighbor Cache

To view the Neighbor Cache in Windows 7 or later:

 1. Start a command prompt (cmd) and enter the following

commands in it.

 2. Enter the command netsh –c “interface ipv6”.

 3. At the netsh prompt, enter the command show interface.

 4. In the resulting list, find the interface index for “Local Area

Connection” (say it is 11).

 5. At the netsh prompt, enter the command show neighbors 11 (or

whatever interface index).

 6. You should see global unicast addresses, link-local addresses, and

a lot of multicast addresses:

C:\>netsh -c "interface IPv6"

netsh interface IPv6>show interface

Chapter 6 Ipv6 Core protoCols

215

Idx Met MTU State Name

--- ---------- ---------- ------------ ---------------------------

 1 50 4294967295 connected Loopback Pseudo-Interface 1

 12 50 1280 disconnected isatap.infoweapons.com

 13 50 1280 connected Local Area Connection* 11

 11 10 1500 connected Local Area Connection

netsh interface IPv6>show neighbors 11

Interface 11: Local Area Connection

Internet Address Physical Address Type

-- ----------------- ----------

2001:df8:5403:2410::fff2 00-15-17-30-b8-ec Reachable

(Router)

2001:df8:5403:2410::10:11 00-e0-81-48-62-7a Stale

fe80::215:17ff:fe30:b8ec 00-15-17-30-b8-ec Reachable

(Router)

fe80::230:48ff:fe61:d6be 00-30-48-61-d6-be Stale

ff02::2 33-33-00-00-00-02 Permanent

ff02::c 33-33-00-00-00-0c Permanent

ff02::16 33-33-00-00-00-16 Permanent

ff02::1:2 33-33-00-01-00-02 Permanent

ff02::1:3 33-33-00-01-00-03 Permanent

ff02::1:ff00:69 33-33-ff-00-00-69 Permanent

ff02::1:ff00:fff2 33-33-ff-00-ff-f2 Permanent

ff02::1:ff03:186 33-33-ff-03-01-86 Permanent

ff02::1:ff10:11 33-33-ff-10-00-11 Permanent

ff02::1:ff10:14 33-33-ff-10-00-14 Permanent

ff02::1:ff10:26 33-33-ff-10-00-26 Permanent

ff02::1:ff13:f5 33-33-ff-13-00-f5 Permanent

ff02::1:ff2b:6589 33-33-ff-2b-65-89 Permanent

ff02::1:ff30:b8ec 33-33-ff-30-b8-ec Permanent

ff02::1:ff3f:58e5 33-33-ff-3f-58-e5 Permanent

ff02::1:ff61:d6be 33-33-ff-61-d6-be Permanent

ff02::1:ff62:62 33-33-ff-62-00-62 Permanent

ff02::1:ffc6:ed59 33-33-ff-c6-ed-59 Permanent

ff02::1:ffce:5d59 33-33-ff-ce-5d-59 Permanent

ff05::1:3 33-33-00-01-00-03 Permanent

Chapter 6 Ipv6 Core protoCols

216

 SEcure Network Discovery (SEND)
Note that there are some potentially exploitable vulnerabilities in ND. ARP in IPv4 has

several well-known and easily exploited vulnerabilities, used in many hacking attacks.

For details of these, search for “ARP Vulnerabilities Black Hat.” You should find an

excellent PowerPoint presentation that was presented by Mike Beekey at a Black Hat

Briefing security conference. It shows exactly how ARP is vulnerable and how this is

exploited by hackers. ARP does not exist in IPv6, so its vulnerabilities do not affect IPv6

networks. However, ND (which replaces ARP) has some new vulnerabilities that do not

affect IPv4 networks.

A secure version of ND is defined in RFC 3971,13 “SEcure Neighbor Discovery

(SEND),” March 2005. This is still a Proposed Standard. SEND uses cryptographically

generated addresses, which are defined in RFC 2972,14 “Cryptographically Generated

Addresses (CGA),”, March 2005 (this is also a Proposed Standard and has already been

updated by RFCs 4581 and 4982). SEND does not depend on IPsec. It is still very much in

experimental status even in 2019.

Note that SEND only digitally signs ND packets; it does not encrypt them.

 Types of IPv6 Packet Transmission
Unicast, anycast, multicast, and broadcast have already been covered in section 5.3.2.2,

because in IPv6, this is considered to be part of the addressing model.

 IPv6 Broadcast
Most things that you would use broadcast for in IPv4, you would use some form of

multicast, with a more restricted scope, in IPv6. A multicast transmission to the address

ff01::2 would go to the same nodes (all nodes on local link) as an IPv4 broadcast.

However, there are other scopes, such as site, organization, and global for multicast,

that (unlike IPv4 broadcast) will cross routers, but other than “all nodes in local link,”

multicast to the wider scopes requires that all recipients intentionally add the necessary

multicast address to their node.

13 https://tools.ietf.org/html/rfc3971
14 https://tools.ietf.org/html/rfc2972

Chapter 6 Ipv6 Core protoCols

https://tools.ietf.org/html/rfc3971
https://tools.ietf.org/html/rfc2972
https://tools.ietf.org/html/rfc3971
https://tools.ietf.org/html/rfc2972

217

 IPv6 Multicast
The basic multicast address type has been covered, but there is a lot more to a full

multicast system, as you saw in the section “IPv4 Multicast.” For an in-depth discussion

of all aspects of IPv6 multicast, I recommend Chapter 6, “Providing IPv6 Multicast

Services,” from the book Deploying IPv6 Networks,15 by Ciprian Popoviciu, Eric Levy-

Abegnoli, and Patrick Grossetete, Cisco Press, 2006.

Multicast exists in IPv4, but there are some serious problems with it, which are

resolved in IPv6.

Not all IPv4 routers support multicast. In general, it is difficult to deploy except in a

“walled garden,” such as the customers of a single ISP like Comcast. In IPv6, support for

multicast is mandatory – all compliant routers support it, and it works across ISPs, even

worldwide.

The Internet Group Management Protocol (IGMP) is not part of IPv4, and not all

IPv4 routers include it. In IPv6, the Multicast Listener Discovery (MLD) protocol is

standardized and is actually just a subset of the ICMPv6 messages. Because of this, all

IPv6-compliant routers include it.

Multicast in IPv4 was an afterthought, grafted on long after the original protocol

was designed. In IPv6, multicast was incorporated from the beginning and is present

in all address scopes. Multicast link-local addresses are used extensively in SLAAC and

other places.

For IPTV applications, IPv6 networks will be the first time that really global Internet

TV services can be deployed and work reliably. This is as exciting as when Ted Turner

first relayed the signal from his small UHF TV station via a satellite. That breakthrough

resulted in WTBS, CNN, CNN Headline News, TNT, Cartoon Network, and, indirectly,

the entire multibillion-dollar satellite/cable television network industry.

There are many other areas in which working, scalable multicast can be used to

improve applications. You could build chat, VoIP, or even video conferencing clients that

could build fully meshed networks, with each new participant subscribing to all existing

clients’ multicast “channels” and all existing clients subscribing to the new participant’s

multicast “channel.” Even if the initial participant left, all remaining participants would

15 www.amazon.com/Deploying-IPv6-Networks-Author-Popoviciu/dp/B010BALRUK/ref=sr_1_1?
keywords=deploying+ipv6+networks&qid=1554605574&s=gateway&sr=8-1

Chapter 6 Ipv6 Core protoCols

https://www.amazon.com/Deploying-IPv6-Networks-Author-Popoviciu/dp/B010BALRUK/ref=sr_1_1?keywords=deploying+ipv6+networks&qid=1554605574&s=gateway&sr=8-1
http://www.amazon.com/Deploying-IPv6-Networks-Author-Popoviciu/dp/B010BALRUK/ref=sr_1_1?keywords=deploying+ipv6+networks&qid=1554605574&s=gateway&sr=8-1
http://www.amazon.com/Deploying-IPv6-Networks-Author-Popoviciu/dp/B010BALRUK/ref=sr_1_1?keywords=deploying+ipv6+networks&qid=1554605574&s=gateway&sr=8-1

218

still have a fully functional mesh network. This also eliminates the need for any central

exchange point (other than perhaps a search or directory facility to help in setting up the

conference and allowing participants to locate each other).

The following standards are relevant to multicast in IPv6:

RFC 2375, “IPv6 Multicast Address Assignments,” July 1998

(Informational)

RFC 2710, “Multicast Listener Discovery (MLD) for IPv6,” October

1999 (Standards Track)

RFC 3306, “Unicast-Prefix-based IPv6 Multicast Addresses,”

August 2002 (Standards Track)

RFC 3307, “Allocation Guidelines for IPv6 Multicast Addresses,”
August 2002 (Standards Track)

RFC 3590, “Source Address Selection for the Multicast Listener

Discover (MLD) Protocol,” September 2003 (Standards Track)

RFC 3810, “Multicast Listener Discovery Version 2 (MLDv2) for
IPv6,” June 2004 (Standards Track)

RFC 3956, “Embedding the Rendezvous Point (RP) Address in an

IPv6 Multicast Address,” November 2004 (Standards Track)

RFC 4489, “A Method for Generating Link-Scoped IPv6 Multicast

Addresses,” April 2006 (Standards Track)

RFC 4607, “Source-Specific Multicast for IP,” August 2006

(Standards Track)

Multicast Listener Discovery (MLD) Protocol
MLD is used by IPv6 routers to discover the presence of multicast listeners (nodes

that wish to receive multicast packets) and the specific multicast addresses to which

they want to subscribe. MLD (defined in RFC 2710) is commonly referred to as MLDv1.

It is the IPv6 equivalent to IPv4’s IGMPv2 (defined in RFC 2236). MLDv1 and IGMPv2

multicast protocols are used to set up any-source multicast (ASM), which allows multiple

sources in a group (*,G) or “channel.” This is also known as traditional multicast.

MLDv2 extends the definition of MLDv1 by adding support for “source filtering.”

It includes all the functionality of MLDv1, so there is no need to deploy both on a

given node. This allows a node to indicate interest only in packets from specific source

Chapter 6 Ipv6 Core protoCols

https://tools.ietf.org/html/rfc2375
https://tools.ietf.org/html/rfc2710
https://tools.ietf.org/html/rfc3306
https://tools.ietf.org/html/rfc3307
https://tools.ietf.org/html/rfc3509
https://tools.ietf.org/html/rfc3810
https://tools.ietf.org/html/rfc3956
https://tools.ietf.org/html/rfc4489
https://tools.ietf.org/html/rfc4607

219

addresses (INCLUDE mode) or in packets from all multicast addresses except for specific

source addresses (EXCLUDE mode). MLDv2 is the IPv6 equivalent of IPv4’s IGMPv3.

MLDv2 and IGMPv3 multicast protocols are used to set up source-specific multicast

(SSM), which allows a specific source (S) in a group (G) to deliver packets to all members

that join (S,G) known as a “channel.” This is described in RFC 4604,16 “Using Internet

Group Management Protocol Version 3 (IGMPv3) and Multicast Listener Discovery

Protocol Version 2 (MLDv2) for Source-Specific Multicast,” and in RFC 4607,17 “Source-

Specific Multicast (SSM) for IP.”

There is another RFC that defines MLD proxying: RFC 4605,18 “Internet Group

Management Protocol (IGMP)/Multicast Listener Discovery (MLD)-Based Multicast

Forwarding (“IGMP/MLD Proxying”).” A proxy would exist on a forwarding gateway that

links together multiple subnets and relay messages across that gateway between an MLD

Querier on one subnet and MLD listeners on a different subnet.

MLDv1 and MLDv2 are sub-protocols of ICMPv6. All MLDv2 messages are just

additional ICMPv6 messages. All IPv6-compliant devices should include support for

MLD. MLD messages must be sent with a link-local IPv6 source address, a Hop Limit of

1, and an IPv6 Router Alert Option in the Hop-by-Hop Options extension packet header.

When used in Neighbor Discovery protocol’s Stateless Address Autoconfiguration,

the source address can be the unspecified address (::). IGMP is not a sub-protocol of

ICMPv4. It does not use ICMPv4 messages, but an entirely new protocol. IGMP is not

mandatory on all IPv4 routers.

MLD can co-exist with IGMPv3 in a dual-stack network, as MLD (v1 or v2) will

only involve IPv6 messages and IGMP (v1, v2, or v3) will only involve IPv4 messages.

However, in general, multicast will work far better on IPv6 than on IPv4.

With MLD, there is a “router role” (performed by at most one router in a subnet) and a

“listener role” (performed by any number of listener nodes in that subnet) in the protocol.

For the router role, only one router on a subnet can be the Querier at any given time.

If there is more than one router on a subnet, there is an election mechanism that selects

one of them to be the Querier. Should that router fail at some point, all other routers on

that subnet have been listening in and maintaining state, so another election will select

one of the surviving routers on that subnet to become the Querier. Only the Querier

sends periodic or triggered Query messages on its subnet.

16 https://tools.ietf.org/html/rfc4604
17 https://tools.ietf.org/html/rfc4607
18 https://tools.ietf.org/html/rfc4605

Chapter 6 Ipv6 Core protoCols

https://tools.ietf.org/html/rfc4604
https://tools.ietf.org/html/rfc4607
https://tools.ietf.org/html/rfc4605
https://tools.ietf.org/html/rfc4604
https://tools.ietf.org/html/rfc4607
https://tools.ietf.org/html/rfc4605

220

There are three types of MLDv2 Query messages sent by the Querier to the “all nodes

on local link” multicast address (ff02::1). They should be sent with a valid IPv6 link-

local source address. Any Query message received with the source address being the

unspecified address (::), or any other address that is not a valid IPv6 link-local address,

should be silently discarded.

• General queries

• Multicast address–specific queries

• Multicast address– and source-specific queries

There are two types of reports sent by listeners to the Querier, to a special multicast

address (ff02::16) to which all MLDv2-compliant multicast routers listen. If a single

Report message is not large enough to hold all of the state information, multiple Report

messages can be sent.

• Current State Report (sent in response to a query)

• State Change Report (sent unsolicited in response to some change on

the listener)

General queries are sent from the Querier to all listeners on the subnet periodically

to learn multicast address listener information, to build and refresh state inside all

multicast routers on the subnet. Even though only the Querier sends out periodic

queries, all routers listen to the responses and update their state.

When a listener node gets a General Query message, it responds by sending a

Current State Report, with its per-interface state information. It is also possible for a

listener node to immediately report a state change (such as someone “unsubscribing” to

a multicast channel) through an unsolicited State Change Report. Current State Reports

are sent only once (if one is lost, it will probably be received in response to the next

periodic query). State Change Reports are sent multiple times for robustness (to increase

the probability of all routers getting the message).

When the Querier gets a State Change Report from a listener, it sends a multicast

address–specific query to see if there are still any other listeners to that multicast address.

If not, the Querier will delete that multicast address from its multicast address listener

state table, which stops relaying the corresponding traffic. If there are source-specific

listeners, the Querier will send a multicast address– and source-specific query instead.

Chapter 6 Ipv6 Core protoCols

221

There must be a service interface (API routines) available, which allows an

application to cause a State Change Report to be sent to the Querier. A sample API is

documented in RFC 3678,19 “Socket Interface Extensions for Multicast Source Filters,”

January 2004. The full API includes the ability to JOIN or LEAVE a multicast group

(“subscribe to a multicast channel”) and to BLOCK and UNBLOCK specific source

addresses, as well as to set and retrieve source filter sets.

For details on the syntax of the various MLDv2 messages, see RFC 3810.20

Protocol Independent Multicast (PIM) for IPv6
PIM is a multicast protocol, which deals with router-to-router communications.

IPv6 PIM is similar to IPv4 PIM, has the same variants (Dense Mode, Sparse Mode,

and Bidirectional Mode), and is defined in the same RFCs (in the sections relevant

to IPv6). The IPv6 implementation uses the Neighbor Discovery protocol, Multicast

Listener Discovery protocol, Path MTU Discovery, and IPv6 multicast, rather than the

corresponding IPv4 mechanisms. As with TCP, the PIM message checksum factors in the

source and destination IP addresses, so the pseudo header used in the calculation of the

checksum (which includes IPv6 addresses) is different from the one used in IPv4. The

following items are IP version specific in all variants:

Item IPv4 IPv6

source-specific multicast 232.0.0.0/8 ff3x:/32

Wildcard Group set 224.0.0.0/3 ff00::/8

all-pIM-roUters group 224.0.0.13 ff02::d

PIM for IPv6 does not include routing, but provides multicast forwarding by using

static IPv6 routes or routing tables created by IPv6 unicast routing protocols, such as

RIPng, OSPFv3, IS-ISv6, or BGP4+.

PIM Dense Mode is defined in RFC 3973,21 “Protocol Independent Multicast – Dense

Mode (PIM-DM),” January 2005 (for both IPv4 and IPv6). This uses dense multicast

routing, which builds shortest-path trees by flooding multicast traffic domain-wide and

then pruning branches where no receivers are present. It does not scale well.

19 https://tools.ietf.org/html/rfc3678
20 https://tools.ietf.org/html/rfc3810
21 https://tools.ietf.org/html/rfc3973

Chapter 6 Ipv6 Core protoCols

https://tools.ietf.org/html/rfc3678
https://tools.ietf.org/html/rfc3810
https://tools.ietf.org/html/rfc3973
https://tools.ietf.org/html/rfc3678
https://tools.ietf.org/html/rfc3810
https://tools.ietf.org/html/rfc3973

222

PIM Sparse Mode is defined in RFC 4601,22 “Protocol Independent Multicast – Sparse

Mode (PIM-SM): Protocol Specification (Revised),” August 2006 (for both IPv4 and IPv6).

As in IPv4, PIM-SM builds unidirectional shared trees routed at a rendezvous point

per group and can create shortest-path trees per source. It scales fairly well for wide-

area use.

Bidirectional PIM is defined in RFC 5015,23 “Bidirectional Protocol Independent

Multicast (BIDIR-PIM),” October 2007 (for both IPv4 and IPv6). It builds shared

bidirectional trees. It never builds a shortest-path tree, so there may be longer end-to-

end delays, but it scales very well.

There is one new standard specific to IPv6 PIM, RFC 3956,24 “Embedding the

rendezvous point (RP) Address in an IPv6 Multicast Address,” November 2004. This

defines an address allocation policy in which the address of the Rendezvous Point

(RP) is encoded in an IPv6 multicast group address. For PIM-SM, this can be seen as a

specification of a group-to-RP mapping mechanism. This supports easy deployment of

scalable inter-domain multicast and simplifies configuration as well.

Example 1: An ISP manages 2001:db8::/32 and wants an RP for the

network and all its customers, on an existing subnet, for example,

2001:db8:beef:feed::/64. The group address would be something

like ff7x:y40:2001:db8:beef:feed::/96, and the RP address would be

2001:db8:beef:feed::y (y can be any value from 1 to F, but not 0).

Example 2: An organization wants to have its own PIM-

SM domain. It should pick multicast addresses such as

ff7x:y30:2001:db8:beef::/80. The RP address would be

2001:db8:beef::y (y can be any value from 1 to F, but not 0).

22 https://tools.ietf.org/html/rfc4601
23 https://tools.ietf.org/html/rfc5015
24 https://tools.ietf.org/html/rfc3956

Chapter 6 Ipv6 Core protoCols

https://tools.ietf.org/html/rfc4601
https://tools.ietf.org/html/rfc5015
https://tools.ietf.org/html/rfc3956
https://tools.ietf.org/html/rfc4601
https://tools.ietf.org/html/rfc5015
https://tools.ietf.org/html/rfc3956

223

 ICMPv6: Internet Control Message Protocol for IPv6
ICMPv6 is a key protocol in the Internet Layer that complements version 6 of the

Internet Protocol (IPv6). It was originally defined in RFC 1885 (December 1995) and

then enhanced in RFC 2463 (December 1998). It is currently defined in RFC 4443,25

“Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version 6 (IPv6)

Specification,” March 2006.

There are many more ICMPv6 messages defined than there are ICMPv4 messages

(in fact, Neighbor Discovery and Multicast Listener Discovery protocols are just subsets

of the ICMPv6 messages). ICMPv6 messages have a much greater range of functionality

than ICMPv4 messages. Even if you block all ICMPv4 messages (common practice by

some IPv4 network administrators), normal network operation will usually occur. This is

not true with ICMPv6. ICMPv6 messages are used in normal operation of IPv6.

There are two classes of ICMPv6 messages:

• Error messages, with message type ranging from 0 to 127

• Informational messages, with message type ranging from 128 to 255

ICMPv6 Error Messages

1 Destination Unreachable (ICMPv6, RFC 4443)

2 Packet Too Big (ICMPv6, RFC 4443)

3 Time Exceeded (ICMPv6, RFC 4443)

4 Parameter Problem (ICMPv6, RFC 4443)

ICMPv6 Informational Messages

128 Echo Request (ICMPv6, RFC 4443)

129 Echo Reply (ICMPv6, RFC 4443)

130 Multicast Listener Query message (MLDv2, RFC 3810)

131 Multicast Listener Report (MLDv1, RFC 2710)

132 Multicast Listener Done (MLDv1, RFC 2710)

133 Router Solicitation message (ND, RFC 2461)

25 https://tools.ietf.org/html/rfc4443

Chapter 6 Ipv6 Core protoCols

https://tools.ietf.org/html/rfc4443
https://tools.ietf.org/html/rfc4443

224

134 Router Advertisement message (ND, RFC 2461)

135 Neighbor Solicitation message (ND, RFC 2461)

136 Neighbor Advertisement message (ND, RFC 2461)

137 Redirect message (ND, RFC 2461)

138 Router Renumbering (RR, RFC 2894)

139 ICMP Node Information Query (NIQ, RFC 4620)

140 ICMP Node Information Response (NIQ, RFC 4620)

141 Inverse Neighbor Discovery Solicitation message (IND,

RFC 3122)

142 Inverse Neighbor Discovery Advertisement message (IND,

RFC 3122)

143 Multicast Listener Report message (MLDv2, RFC 3810)

144 Home Agent Address Discovery Request message (MIPv6,

RFC 3775)

145 Home Agent Address Discovery Reply message (MIPv6,

RFC 3775)

146 Mobile Prefix Solicitation (MIPv6, RFC 3775)

147 Mobile Prefix Advertisement (MIPv6, RFC 3775)

148 Certification Path Solicitation (SEND, RFC 3971)

149 Certification Path Advertisement (SEND, RFC 3971)

151 Multicast Router Advertisement (MRD, RFC 4286)

152 Multicast Router Solicitation (MRD, RFC 4286)

153 Multicast Router Termination (MRD, RFC 4286)

154 FMIPv6 messages (MIPv6, RFC 5568)

IND Inverse Neighbor Discovery

MIPv6 Mobile IPv6

MLDv1 Multicast Listener Discovery, version 1

Chapter 6 Ipv6 Core protoCols

225

MLDv2 Multicast Listener Discovery, version 2

MRD Multicast Router Discovery

ND Neighbor Discovery

NIQ Node Information Query

RR Router Renumbering

SEND SEcure Neighbor Discovery

Note that there is no equivalent ICMPv6 message corresponding to the following

ICMPv4 messages (or else its function is now contained in another message).

4 Source Quench

5 Redirect

13 Timestamp

14 Timestamp Reply

15 Information Request

16 Information Reply

Destination Unreachable Error

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | Type | Code | Checksum |

 +-+

 | Unused |

 +-+

 | As much of invoking packet |

 + as possible without the ICMPv6 packet +

 | exceeding the minimum IPv6 MTU |

 IPv6 Fields:

 Destination Address

 Copied from the Source Address field of the invoking

 packet.

Chapter 6 Ipv6 Core protoCols

226

 ICMPv6 Fields:

 Type 1

 Code 0 - No route to destination

 1 - Communication with destination

 administratively prohibited

 2 - Beyond scope of source address

 3 - Address unreachable

 4 - Port unreachable

 5 - Source address failed ingress/egress policy

 6 - Reject route to destination

 Unused This field is unused for all code values.

 It must be initialized to zero by the originator

 and ignored by the receiver.

 Description

 A Destination Unreachable message SHOULD be generated by a router, or

 by the IPv6 layer in the originating node, in response to a packet

 that cannot be delivered to its destination address for reasons other

 than congestion. (An ICMPv6 message MUST NOT be generated if a

 packet is dropped due to congestion.)

Packet Too Big Message

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | Type | Code | Checksum |

 +-+

 | MTU |

 +-+

 | As much of invoking packet |

 + as possible without the ICMPv6 packet +

 | exceeding the minimum IPv6 MTU |

 IPv6 Fields:

Chapter 6 Ipv6 Core protoCols

227

 Destination Address

 Copied from the Source Address field of the invoking

 packet.

 ICMPv6 Fields:

 Type 2

 Code Set to 0 (zero) by the originator and ignored by the

 receiver.

 MTU The Maximum Transmission Unit of the next-hop link.

 Description

 A Packet Too Big MUST be sent by a router in response to a packet

 that it cannot forward because the packet is larger than the MTU of

 the outgoing link. The information in this message is used as part

 of the Path MTU Discovery process.

Time Exceeded Message

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | Type | Code | Checksum |

 +-+

 | Unused |

 +-+

 | As much of invoking packet |

 + as possible without the ICMPv6 packet +

 | exceeding the minimum IPv6 MTU |

 IPv6 Fields:

 Destination Address

 Copied from the Source Address field of the invoking

 packet.

Chapter 6 Ipv6 Core protoCols

228

 ICMPv6 Fields:

 Type 3

 Code 0 - Hop limit exceeded in transit

 1 - Fragment reassembly time exceeded

 Unused This field is unused for all code values.

 It must be initialized to zero by the originator

 and ignored by the receiver.

 Description

 If a router receives a packet with a Hop Limit of zero, or if a

 router decrements a packet's Hop Limit to zero, it MUST discard the

 packet and originate an ICMPv6 Time Exceeded message with Code 0 to

 the source of the packet. This indicates either a routing loop or

 too small an initial Hop Limit value.

Parameter Problem Message

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | Type | Code | Checksum |

 +-+

 | Pointer |

 +-+

 | As much of invoking packet |

 + as possible without the ICMPv6 packet +

 | exceeding the minimum IPv6 MTU |

 IPv6 Fields:

 Destination Address

 Copied from the Source Address field of the invoking

 packet.

 ICMPv6 Fields:

Chapter 6 Ipv6 Core protoCols

229

 Type 4

 Code 0 - Erroneous header field encountered

 1 - Unrecognized Next Header type encountered

 2 - Unrecognized IPv6 option encountered

 Pointer Identifies the octet offset within the

 invoking packet where the error was detected.

 The pointer will point beyond the end of the ICMPv6

 packet if the field in error is beyond what can fit

 in the maximum size of an ICMPv6 error message.

 Description

 If an IPv6 node processing a packet finds a problem with a field in

 the IPv6 header or extension headers such that it cannot complete

 processing the packet, it MUST discard the packet and SHOULD

 originate an ICMPv6 Parameter Problem message to the packet's source,

 indicating the type and location of the problem.

Echo Request Message

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | Type | Code | Checksum |

 +-+

 | Identifier | Sequence Number |

 +-+

 | Data ...

 +-+-+-+-+-

 IPv6 Fields:

 Destination Address

 Any legal IPv6 address.

Chapter 6 Ipv6 Core protoCols

230

 ICMPv6 Fields:

 Type 128

 Code 0

 Identifier An identifier to aid in matching Echo Replies

 to this Echo Request. May be zero.

 Sequence Number

 A sequence number to aid in matching Echo Replies

 to this Echo Request. May be zero.

 Data Zero or more octets of arbitrary data.

 Description

 Every node MUST implement an ICMPv6 Echo responder function that

 receives Echo Requests and originates corresponding Echo Replies.

 A node SHOULD also implement an application-layer interface for

 originating Echo Requests and receiving Echo Replies, for diagnostic

 purposes.

Echo Reply Message

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | Type | Code | Checksum |

 +-+

 | Identifier | Sequence Number |

 +-+

 | Data ...

 +-+-+-+-+-

 IPv6 Fields:

 Destination Address

Chapter 6 Ipv6 Core protoCols

231

 Copied from the Source Address field of the invoking

 Echo Request packet.

 ICMPv6 Fields:

 Type 129

 Code 0

 Identifier The identifier from the invoking Echo Request message.

 Sequence Number

 The sequence number from the invoking Echo Request

 message.

 Data The data from the invoking Echo Request message.

 Description

 Every node MUST implement an ICMPv6 Echo responder function that

 receives Echo Requests and originates corresponding Echo Replies.

 A node SHOULD also implement an application-layer interface for

 originating Echo Requests and receiving Echo Replies, for diagnostic

 purposes.

 The source address of an Echo Reply sent in response to a unicast

 Echo Request message MUST be the same as the destination address of

 that Echo Request message.

 An Echo Reply SHOULD be sent in response to an Echo Request message

 sent to an IPv6 multicast or anycast address. In this case, the

 source address of the reply MUST be a unicast address belonging to

 the interface on which the Echo Request message was received.

 The data received in the ICMPv6 Echo Request message MUST be returned

 entirely and unmodified in the ICMPv6 Echo Reply message.

Chapter 6 Ipv6 Core protoCols

232

 IPv6 Routing
IPv6 has to solve the same problems as IPv4 in terms of how to get packets from one

point to another through a packet-switched network. However, the differences in IP

address length and addressing model mean that the existing routing protocols for IPv4

do not work. All the popular routing protocols have been extended to support IPv6.

These include RIPng, EIGRP, IS-ISv6, OSPF for IPv6, and BGP4 with Multiprotocol

Extensions (BGP4+).

The following standards are relevant to routing in IPv6:

RFC 2080, “RIPng for IPv6,” January 1997 (Standards Track)

RFC 2185, “Routing Aspects of IPv6 Transition,” September 1997

(Informational)

RFC 2545, “Use of BGP-4 Multiprotocol Extensions for IPv6
Inter-Domain Routing,” March 1999 (Standards Track)

RFC 5308, “Routing IPv6 with IS-IS,” October 2008

(Standards Track)

RFC 5340, “OSPF for IPv6,” July 2008 (Standards Track)

RIPng: RIP Next Generation. Defined in RFC 2080, “RIPng for IPv6,” January 1997.

This IETF standard specifies extensions to the RIP (as defined in RFCs 1058 and 1723),

to support IPv6. Like RIP for IPv4, RIPng also uses the distance vector algorithm. Unlike

RIP for IPv4, RIPng is implemented only in routers. IPv6 itself provides mechanisms

for router discovery (part of ND). RIPng is a UDP-based protocol, using port 521

(compare with port 520 for RIP). It supports 128-bit IPv6 addresses instead of 32-bit

IPv4 addresses. It has the same limitations as RIP, such as being useful only in small

networks, with less than 15 hops. It does have some of the extensions of RIPv2. When

a response is sent to all neighbors, the multicast group ff02::9 (all-rip-routers) is used.

RIPng only routes IPv6. On a dual-stack network, you would need both RIP (for IPv4)

and RIPng. Since RIPng runs over IPv6, it can use the IPsec Authentication header

(AH) and Encapsulating Security Payload (ESP) mechanisms to ensure integrity and

authentication/confidentiality of routing exchanges.

EIGRP: Enhanced Interior Gateway Routing Protocol (proprietary Cisco routing

protocol). This already includes extensions to allow it to route IPv4 and/or IPv6 packets.

For details, see Cisco documentation.

Chapter 6 Ipv6 Core protoCols

https://tools.ietf.org/html/rfc2080
https://tools.ietf.org/html/rfc2185
https://tools.ietf.org/html/rfc2545
https://tools.ietf.org/html/rfc5308
https://tools.ietf.org/html/rfc5340

233

IS-ISv6: Extension of IS-IS to support IPv6. Based on two levels, L2 = Backbone, L1 =

Stub, L2L1 = Interconnected L2 and L1. It runs over CLNS (Connectionless Network

Service, an OSI Network Layer protocol, similar to IP). Each IS node still sends out Link

State Packets and sends information via Tag/Length/Values. There are two new TLVs,

IPv6 Reachability and IPv6 Interface Address, and a new Network Layer Identifier, IPv6

NLPID (Network Layer Protocol IDentifier). Other than that, IS-ISv6 is pretty much the

same as the original IS-IS. It is still suitable mainly for large ISPs.

OSPF for IPv6: Open Shortest Path First for IPv6 (also known as OSPFv3). Defined in

RFC 5340, “OSPF for IPv6,” July 2008. This is still an Interior Gateway Routing Protocol

and is suitable for use within organizations, but not between autonomous systems

(BGP4+ is needed for this).

The basic OSPF for IPv4 mechanisms (flooding, designated router election, area

support, Short Path First calculations) are unchanged. Some changes are required

because of new protocol semantics or larger address size. Most fields and packet-size

limitations in OSPF for IPv4 have been relaxed, and option handling is more flexible. The

protocol processing is now per link, instead of per subnet. There is now a flooding scope

to reflect the scopes of IPv6 addresses. It uses IPv6 link-local addresses. The addressing

semantics have been removed (with a few exceptions), leaving a mostly network

protocol–independent core. OSPF Router IDs, Area IDs, and Link State IDs are still 32

bits, so those can no longer be IP addresses (which in IPv6 are 128 bits).

The new flooding scope allows control over how widely to flood information: link

local, area wide, or AS wide (the entire routing domain). It is now possible to run

multiple instances of the OSPF protocol on a single link (every message now includes

an Instance ID value). Link-local addresses are used where they are meaningful (for

transactions completely within a link), but global-scope IPv6 addresses must still be

used in some places (e.g., source address for OSPF protocol packets). The AuType and

Authentication fields have been removed from OSPF for IPv4, as IPsec AH and ESP are

available and superior. As with TCP, the header checksum covers the entire OSPF packet

and a prepended IPv6 pseudo header. All support for MOSPF (Multicast OSPF) has been

removed.

OSPF for IPv6 runs only over IPv6 and only routes IPv6. On a dual-stack network, you

would need both OSPF for IPv4 (OSPFv2) and OSPF for IPv6 (OSPFv3) deployed, similar

to RIP and RIPng. It is possible that a future version of OSPF will support both IPv4 and

IPv6 routing.

Chapter 6 Ipv6 Core protoCols

234

BGP4 with Multiprotocol Extensions (also known informally as BGP4+): Defined in

RFC 4760, “Multiprotocol Extensions for BGP-4,” January 2007. BGP4 is currently defined

in RFC 4271, “A Border Gateway Protocol 4 (BGP-4),” January 2006. BGP4 supports only

IPv4. The multiprotocol extensions have been around since RFC 2283, February 1998,

but have been updated with each new version of BGP4.

These extensions allow BGP4+ to carry routing information for multiple Network

Layer protocols,(e.g., IPv6, IPX, L3VPN, etc.). L3VPN is a “layer 3 Virtual Private

Network.” BGP4+ is designed to be backward compatible, such that a BGP4+-compliant

router can exchange IPv4 routing information with a router that does not support the

multiprotocol extensions (basic BGP4).

Currently BGP4+ is the primary protocol used for routing IPv6 packets between

autonomous systems (very large networks under the control of a single entity, such as

ISPs or major corporations). Most IPv6 engineers will never work with it, unless they

work for an ISP or a really large company.

One of the issues that ISPs face when supporting IPv6 is to migrate their BGP4

gateways to BGP4+ gateways. They typically must also upgrade many routers to

dual stack. At the ISP level, many routers have hardware acceleration, so this can be

expensive. These may involve “forklift” upgrades, where entirely new high-end routers

must be purchased, and there may be relatively little resale value for legacy IPv4-only

equipment (hint to ISPs: migrate to IPv6 now and sell your old gear while it still has

SOME value!).

Looking at Local Routing Information
In Windows, you can view all currently known routes with the “route print”

command. If you have enabled IPv6 and are connected to an IPv6 network, you might

see something like the following (the “-6” tells it to print only IPv6 route information):

C:\Users\lhughes>route print -6

===

Interface List

 11...00 18 8b 78 da 1aBroadcom NetXtreme 57xx Gigabit Controller

 1...........................Software Loopback Interface 1

 12...00 00 00 00 00 00 00 e0 Microsoft ISATAP Adapter

 13...00 00 00 00 00 00 00 e0 Teredo Tunneling Pseudo-Interface

===

Chapter 6 Ipv6 Core protoCols

235

IPv6 Route Table

===

Active Routes:

 If Metric Network Destination Gateway

 11 26 ::/0 fe80::21b:21ff:fe1e:f4

 1 306 ::1/128 On-link

 13 58 2001::/32 On-link

 13 306 2001:0:cf2e:3096:30c3:380d:f5fd:fa12/128

 On-link

 11 18 2001:df8:5403:2410::/64 On-link

 11 266 2001:df8:5403:2410:3c79:b2ca:90ce:5d59/128

 On-link

 11 266 2001:df8:5403:2410:a446:d5ef:d313:f5/128

 On-link

 11 266 fe80::/64 On-link

 13 306 fe80::/64 On-link

 13 306 fe80::30c3:380d:f5fd:fa12/128

 On-link

 11 266 fe80::3c79:b2ca:90ce:5d59/128

 On-link

 1 306 ff00::/8 On-link

 13 306 ff00::/8 On-link

 11 266 ff00::/8 On-link

===

Persistent Routes:

 None

 Network Address Translation
NAT (Network Address Translation) was introduced to extend the lifetime of the IPv4

address space long enough for its replacement, IPv6, to be defined and refined and

compliant infrastructure products and applications to be developed. IPv6 is now fully

developed and ready for prime time. NAT has served its purpose. It is time to put it out to

pasture.

Chapter 6 Ipv6 Core protoCols

236

There is a common belief that the practice of hiding nodes behind a single routable

IPv4 address (“hide-mode NAT”) adds security. It really doesn’t.

First, anytime you make an outgoing connection, either directly or via NAT, the

connection you make is a two-way path, and the node you connect to can easily attack

you right through your packet filtering firewall and Network Address Translation. You

should have “defense in depth” and protect your node with a host-based firewall whether

or not you are behind a firewall and NAT gateway.

Second, if a hacker manages to breach your firewall by installing a Trojan horse onto

any node in your network, they can attack you from that compromised node. Hackers

have a term for networks that have a strong perimeter defense but limited internal

defenses. It is “hard crunchy outside, soft chewy inside.” Again, host-based firewalls on

all nodes are a good idea.

Third, if you are using almost any peer-to-peer software, VoIP (e.g., Skype), or IPsec

VPN, it probably includes a mechanism called NAT traversal (e.g., STUN, TURN, SOCKS,

etc.). NAT traversal basically bores a hole right through your NAT protection (required

for any of the preceding applications). Anything that includes NAT traversal can easily

be used to attack you. Many people think Skype is a productivity tool. Network security

people think it is a security vulnerability.

Fourth, any time you open a document from outside (Word document, Excel

spreadsheet, JPEG image, etc.), it may contain malware that infects your node right

through firewalls and NAT.

It is better to allow direct connections to your node over IPv6, through various layers

of firewalls, including a host-based firewall, together with good active anti-malware

software, than to have NAT giving you a false sense of security.

On the other hand, NAT causes problems with any connectivity model other than

simple client server outgoing connections, such as web browser to web server. This was

covered in some detail in Chapter 3, section “Network Address translation (NAT).”

The real kicker is that NAT is the hacker’s friend! It is easy for a hacker to hide

behind a NAT gateway and do all kinds of mischief, sending of malware, etc. It is quite

difficult for the authorities to figure out which of the nodes hidden behind the common

address is doing the bad stuff. To do this, the ISP must log EVERY connection, including

source address, destination address, timestamp, and port. This mounts up to several

TERABYTES for each ISP customer over a year, which is not a trivial amount of storage.

With a flat address space (as in IPv6), it is far easier to figure out where the attack is

coming from.

Chapter 6 Ipv6 Core protoCols

237

Because of these issues, there is no IPv6-to-IPv6 NAT defined in any IETF standard.

There is no need for it to extend the IPv6 address space lifetime, it has no other real

benefit, it causes many problems, and it is greatly impeding innovation. Other than those

minor things, I guess it’s okay (sarcasm warning!).

On the other hand, there is a real need for IPv4-to-IPv6 (and IPv6-to-IPv4) Network

Address Translation, and there are about eight proposed methods in the IETF now. All

of them have various problems and tradeoffs (that is the nature of NAT). One of the more

promising schemes is NAT64 in combination with DNS64. These will be discussed in

more detail in Chapter 8 on migration to IPv6.

 TCP: The Transmission Control Protocol in IPv6
There is very little difference between TCP over IPv4 and TCP over IPv6. The main

difference is that more storage must be provided in the implementations to hold the

four times larger addresses (16 bytes vs. 4 bytes, for each address). The other aspect

involves the TCP header checksum, which uses a pseudo header to allow inclusion of

the IP addresses in the calculation of the checksum (in addition to the contents of the

payload). Of course, there is a different pseudo header format for IPv4 and IPv6, given

the difference in address size. There are no new RFCs for TCP over IPv6.

There is one new feature for both TCP and UDP over IPv6 called “Jumbograms.”

This is defined in RFC 2675,26 “IPv6 Jumbograms,” August 1999. Jumbograms are very

large packets, with a payload containing more than 65,535 bytes. The standard Payload

Length field is only 16 bits, so the maximum payload size is 65,535 bytes. RFC 2675

defines a new Hop-by-Hop Option that includes a 32-bit Payload Length field, allowing

packet lengths of up to 4.3 billion bytes. Of course, such packets require paths with

very large MTUs. The simple 16-bit checksum becomes a less reliable error detection

scheme as the payload length increases significantly. Of course, even a 1-bit error would

require retransmission of an entire packet, so this should be used only on extremely

reliable links.

26 https://tools.ietf.org/html/rfc2675

Chapter 6 Ipv6 Core protoCols

https://tools.ietf.org/html/rfc2675
https://tools.ietf.org/html/rfc2675

238

 TCP Packet Header
No changes are required to the TCP packet header, as port numbers are still 16 bits in

length. The only differences are in how the header checksum is calculated (using the

IPv6 pseudo header) and the availability of Jumbograms.

 UDP: The User Datagram Protocol in IPv6
UDP over IPv6 has basically the same differences from UDP over IPv4 as was described

for TCP.

 DHCPv6: Dynamic Host Configuration Protocol
for IPv6
Unlike with DNS, it was not possible to add new functionality into DHCPv4 to support

IPv6 (let alone a single server that could handle both IPv4 and IPv6). DHCPv6 is pretty

much a new design from the ground up. DHCPv4 was built from an earlier protocol

called BOOTP and contains many now unnecessary features from that. DHCPv6 was

cleaned up considerably and contains none of the things left over from BOOTP.

DHCPv4 runs over IPv4 and supplies only 32-bit IPv4 information (assigned IPv4

addresses, IPv4 addresses of DNS servers, etc.). DHCPv6 runs only over IPv6 and

supplies only 128-bit IPv6 information (assigned IPv6 addresses, IPv6 addresses of

DNS servers, etc.). There is no conflict between DHCPv4 and DHCPv6 in terms of

functionality or ports used, so it is possible to run both on a single, dual-stack node.

Hosts communicate only with DHCPv6 servers or relay agents on their local link,

using link-local addresses (typically ff02::1:2, “all DHCPv6 relay agents and servers”).

DHCPv6 uses UDP ports 546 and 547 (compare with DHCPv4, which uses UDP ports

67 and 68). As with DHCPv4, relay agents are used to allow hosts to communicate with

remote DHCPv6 servers (ones not on the local link). This is still done via UDP but using

a site-scope address (ff05::1:3 “all DHCPv6 servers, but not relay agents”), which is used

only by relay agents.

In some simple networks, there is no need for DHCPv6 because of Stateless Address

Autoconfiguration. Currently, however, DHCPv6 is the only way for IPv6-capable nodes

to automatically learn the IPv6 addresses of DNS servers. This is particularly important

Chapter 6 Ipv6 Core protoCols

239

for IPv6-only (“pure IPv6”) networks, of which there are not many yet. For dual-stack

networks, there is no conflict between DHCPv4 and DHCPv6, and both can exist even on

a single node. In this case, the IPv4 side of a node would get its IPv4 configuration from

the DHCPv4 server, and the IPv6 side of a node would get its IPv6 configuration from the

DHCPv6 server.

DHCPv6 allows the administrator far better control over distribution of interface

identifiers (low 64 bits of each address) than with Stateless Address Autoconfiguration.

With SLAAC, interface identifiers can either make use of only a tiny percentage of the

possible 264 address space (when using EUI-64-generated interface identifiers) or have

interface identifiers scattered randomly all over the possible 264 address space (when

using cryptographically generated addresses). Either of these can lead to problems with

network access control (NAC) or firewall rules. In general, administrators like to cluster

IP addresses by department (or other groupings), so that a single firewall or NAC rule

can be used for an entire group, by specifying an address range (e.g., all addresses that

fall between 2001:df8:5403:3000::1000 and 2001:df8:5403:3000::1fff, inclusive).

IPv6-capable nodes can be informed that there is a DHCPv6 server available via 2

bits in the Router Advertisement message. The Router Advertisement message and the

relevant bits are described in RFC 4861, “Neighbor Discovery for IP version 6 (IPv6),”

September 2007. In the Router Advertisement message, there are 2 bits, M and O

(first and second bits of the sixth byte of the Router Advertisement message), with the

following semantics:

M: “Managed address configuration” flag. When set it indicates

that addresses are available via DHCPv6. If set, then the O flag

can be ignored. This enables stateful DHCPv6, where both the

stateless information (IPv6 addresses of DNS and other servers)

and global unicast addresses can be obtained from DHCPv6.

O: “Other configuration” flag. When set, it indicates that other

configuration information is available via DHCPv6. This includes

things such as IPv6 addresses of DNS or other servers. This

is called stateless DHCPv6 and is used in conjunction with

Stateless Address Autoconfiguration (for obtaining global unicast

addresses).

If both M and O bits are clear, then SLAAC is the only way to get addresses, and there

is no source of IPv6 addresses for any servers, including DNS.

Chapter 6 Ipv6 Core protoCols

240

 Relevant RFCs for DHCPv6
There are several RFCs that define DHCPv6. The most important ones are

RFC 3319, “Dynamic Host Configuration Protocol (DHCPv6)

Options for Session Initiation Protocol (SIP) Servers,” July 2003

RFC 3646, “DNS Configuration Options for Dynamic Host
Configuration Protocol for IPv6 (DHCPv6),” December 2003
(Standards Track)

RFC 3898, “Network Information Service (NIS) Configuration

Options for Dynamic Host Configuration Protocol for IPv6

(DHCPv6),” October 2004 (Standards Track)

RFC 4075, “Simple Network Time Protocol (SNTP) Configuration

Option for DHCPv6,” May 2005

RFC 4076, “Renumbering Requirements for Stateless Dynamic

Host Configuration Protocol for IPv6 (DHCPv6),” May 2005

(Informational)

RFC 4339, “IPv6 Host Configuration of DNS Server Information

Approaches,” February 2006 (Informational)

RFC 4477, “Dynamic Host Configuration Protocol (DHCP):
IPv4 and IPv6 Dual-Stack Issues,” May 2006 (Informational)

RFC 4580, “Dynamic Host Configuration Protocol for IPv6

(DHCPv6) Relay Agent Subscriber-ID Option,” June 2006

(Standards Track)

RFC 4649, “Dynamic Host Configuration Protocol for IPv6

(DHCPv6) Relay Agent Remote-ID Option,” August 2006

(Standards Track)

RFC 4704, “The Dynamic Host Configuration Protocol for IPv6

(DHCPv6) Client Fully Qualified Domain Name (FQDN) Option,”

October 2006 (Standards Track)

RFC 4994, “DHCPv6 Relay Agent Echo Request Option,”

September 2007 (Proposed Standard)

Chapter 6 Ipv6 Core protoCols

https://tools.ietf.org/html/rfc3319
https://tools.ietf.org/html/rfc3646
https://tools.ietf.org/html/rfc3898
https://tools.ietf.org/html/rfc4075
https://tools.ietf.org/html/rfc4076
https://tools.ietf.org/html/rfc4339
https://tools.ietf.org/html/rfc4477
https://tools.ietf.org/html/rfc4580
https://tools.ietf.org/html/rfc4649
https://tools.ietf.org/html/rfc4704
https://tools.ietf.org/html/rfc4994

241

RFC 5007, “DHCPv6 Leasequery,” September 2007

(Standards Track)

RFC 5460, “DHCPv6 Bulk Leasequery,” February 2009

(Standards Track)

RFC 5908, “Network Time Protocol (NTP) Server Option for

DHCPv6,” June 2010 (Proposed Standard)

RFC 5970, “DHCPv6 Options for Network Boot,” September 2010

(Proposed Standard)

RFC 6011, “Session Initiation Protocol (SIP) User Agent

Configuration,” October 2010 (Informational)

RFC 6221, “Lightweight DHCPv6 Relay Agent,” February 2011
(Proposed Standard)

RFC 6334, “Dynamic Host Configuration Protocol for IPv6
(DHCPv6) Option for Dual-Stack Lite,” August 2011 (Proposed
Standard)

RFC 6355, “Definition of the UUID-Based DHCPv6 Unique

Identifier (DUID-UUID),” August 2011 (Proposed Standard)

RFC 6422, “Relay Supplied DHCP Options,” December 2011

(Proposed Standard)

RFC 6603, “Prefix Exclude Option for DHCPv6-Based Prefix

Delegation,” May 2012 (Proposed Standard)

RFC 6607, “Virtual Subnet Selection Options for DHCPv4 and

DHCPv6,” April 2012 (Proposed Standard)

RFC 6644, “Rebind Capability in DHCPv6 Reconfigure Messages,”

July 2012 (Proposed Standard)

RFC 6653, “DHCPv6 Prefix Delegation in Long-Term Evolution

(LTE) Networks,” July 2012 (Informational)

RFC 6784, “Kerberos Options for DHCPv6,” November 2012

(Proposed Standard)

Chapter 6 Ipv6 Core protoCols

https://tools.ietf.org/html/rfc5007
https://tools.ietf.org/html/rfc5460
https://tools.ietf.org/html/rfc5908
https://tools.ietf.org/html/rfc5970
https://tools.ietf.org/html/rfc6011
https://tools.ietf.org/html/rfc6221
https://tools.ietf.org/html/rfc6334
https://tools.ietf.org/html/rfc6355
https://tools.ietf.org/html/rfc6422
https://tools.ietf.org/html/rfc6603
https://tools.ietf.org/html/rfc6607
https://tools.ietf.org/html/rfc6644
https://tools.ietf.org/html/rfc6653
https://tools.ietf.org/html/rfc6784

242

RFC 6853, “DHCPv6 Redundancy Deployment Considerations,”
February 2013 (Best Current Practice)

RFC 6939, “Client Link-Layer Address Option in DHCPv6,” May

2013 (Proposed Standard)

RFC 6977, “Triggering DHCPv6 Reconfiguration from Relay

Agents,” July 2013 (Proposed Standard)

RFC 7031, “DHCPv6 Failover Requirements,” September 2013
(Informational)

RFC 7037, “RADIUS Option for the DHCPv6 Relay Agent,” October

2013 (Proposed Standard)

RFC 7078, “Distributing Address Selection Policy Using DHCPv6,”

January 2014 (Proposed Standard)

RFC 7227, “Guidelines for Creating New DHCPv6 Options,” May

2014 (Best Current Practice)

RFC 7341, “DHCPv4-over-DHCPv6 (DHCP 4o6) Transport,”

August 2014 (Proposed Standard)

RFC 7598, “DHCPv6 Options for Configuration of Softwire Address

and Port-Mapped Clients,” July 2015 (Proposed Standard)

RFC 7610, “DHCPv6-Shield: Protecting Against Rogue DHCPv6
Servers,” August 2015 (Best Current Practice)

RFC 7653, “DHCPv6 Active Leasequery,” October 2015 (Proposed

Standard)

RFC 7774, “Multicast Protocol for Low-Power and Lossy Networks

(MPL) Parameter Configuration Option for DHCPv6,” March 2016

(Proposed Standard)

RFC 7824, “Privacy Considerations for DHCPv6,” May 2016
(Informational)

RFC 7839, “Access-Network-Identifier Option in DHCP,” June 2016

(Proposed Standard)

Chapter 6 Ipv6 Core protoCols

https://tools.ietf.org/html/rfc6853
https://tools.ietf.org/html/rfc6939
https://tools.ietf.org/html/rfc6977
https://tools.ietf.org/html/rfc7031
https://tools.ietf.org/html/rfc7037
https://tools.ietf.org/html/rfc7078
https://tools.ietf.org/html/rfc7227
https://tools.ietf.org/html/rfc7341
https://tools.ietf.org/html/rfc7598
https://tools.ietf.org/html/rfc7610
https://tools.ietf.org/html/rfc7653
https://tools.ietf.org/html/rfc7774
https://tools.ietf.org/html/rfc7824
https://tools.ietf.org/html/rfc7839

243

RFC 7844, “Anonymity Profiles for DHCP Clients,” May 2016,

(Proposed Standard)

RFC 7934, “Host Address Availability Recommendations,” July
2016 (Best Current Practice)

RFC 7943, “A Method for Generating Semantically Opaque

Interface Identifiers (IISs) with the Dynamic Host Configuration

Protocol for IPv6 (DHCPv6),” September 2016 (Informational)

RFC 7969, “Customizing DHCP Configuration on the Basis of

Network Topology,” October 2016 (Informational)

RFC 8026, “Unified IPv4-in-IPv6 Softwire Customer Premises

Equipment (CPE): A DHCPv6-Based Prioritization Mechanism,”

November 2016 (Proposed Standard)

RFC 8115, “DHCPv6 Option for IPv4-Embedded Multicast and

Unicast IPv6 Prefixes,” March 2017 (Proposed Standard)

RFC 8156, “DHCPv6 Failover Protocol,” June 2017 (Proposed
Standard)

RFC 8168, “DHCPv6 Prefix-Length Hint Issues,” May 2017

(Proposed Standard)

RFC 8415, “Dynamic Host Configuration Protocol for IPv6
(DHCPv6),” November 2018 (Standards Track)

RFC 8539, “Softwire Provisioning Using DHCPv4 over DHCPv6,”

March 2019 (Proposed Standard)

DHCPv6 has a failover mechanism. Two servers can manage a single pool of

addresses for redundancy (in case of failure of one of the servers). This also can be used

for load balancing.

All IPv6 hosts have automatically generated link-local addresses that can be used to

exchange packets with any other node on the local link. DHCPv4 requires some complex

hacks to allow hosts to communicate before they get an address. All IPv6 hosts support

link-local multicast. All DHCPv6 servers listen to DHCPv6 multicast groups. With

DHCPv4, clients have to do a general broadcast to all nodes on the link, which generates

significant broadcast traffic on the link and unnecessary traffic handling on all nodes.

Chapter 6 Ipv6 Core protoCols

https://tools.ietf.org/html/rfc7844
https://tools.ietf.org/html/rfc7934
https://tools.ietf.org/html/rfc7943
https://tools.ietf.org/html/rfc7969
https://tools.ietf.org/html/rfc8026
https://tools.ietf.org/html/rfc8115
https://tools.ietf.org/html/rfc8156
https://tools.ietf.org/html/rfc8168
https://tools.ietf.org/html/rfc8415
https://tools.ietf.org/html/rfc8539

244

With DHCPv6, a single request can configure all interfaces on a node. The server

can offer multiple addresses, one for each interface, and each interface can even

have different options. With DHCPv4, each interface would require a separate DHCP

operation.

Some of the stateless information (i.e., other than assigned IPv6 addresses for each

node) includes

• IPv6 prefix

• Vendor-specific options

• Addresses of SIP servers

• Addresses of DNS servers and search options

• NIS configuration

• SNTP servers

There are several implementations of DHCPv6 already on the market. Windows

Server 2008 contains a very complete implementation, in addition to its DHCPv4 server.

You can view the IPv6-ready phase 2 products list for other options, including my own

company’s Sixscape DNS appliance. Some implementations only support stateless

mode, which means they can supply stateless information (like DNS addresses) but not

actually allocate addresses. Be sure the DHCPv6 server you select includes full support

for stateful mode as well (where it can supply addresses to each node, in addition to

stateless information). You should also be sure that the gateway router or firewall you

select has the ability to inform nodes that DHCPv6 servers are available on the subnet.

Address Reservations with DHCPv6
In the case of DHCPv4, it is possible to make an address reservation, linked to the

MAC address of a node. Anytime the node with a MAC address for which an address

reservation has been made asks DHCPv4 for an address, it will get the specific address

that was reserved for that MAC address. In the case of DHCPv6, the same concept

applies, except that you use two identifiers called the IAID (Interface Association ID) and

DUID (DHCP Unique IDentifier).

A DUID consists of a 2-byte type code represented in network byte order, followed

by a variable number of bytes that make up the actual identifier. A DUID can be no more

than 128 bytes long (not including the type code). The following types are currently

defined:

Chapter 6 Ipv6 Core protoCols

245

Link Layer Address plus Time (DUID-LLT): This type is

recommended for all general-purpose computing devices, such as

desktop computers, printers, routers, etc. They must contain some

form of writable non-volatile storage. Note that the device should

configure the time on the node before this DUID is generated,

if possible. The only purpose of the timestamp is to lower the

chance of an identifier conflict. The Link Layer address is typically

the MAC address for Ethernet media. The DUID is defined as

follows:

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | 1 | hardware type (16 bits) |

 +-+

 | time (32 bits) |

 +-+

 . .

 . link-layer address (variable length) .

 . .

 +-+

Vendor-Assigned Based on Enterprise Number (DUID-EN): This

type is assigned to the device by the vendor. This type of DUID

is for devices that have some form of non-volatile storage (e.g.,

EEPROM). The enterprise number is the IANA 32-bit assigned

number for the vendor. The identifier can be anything the vendor

chooses but must be unique within that vendor for each device.

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | 2 | enterprise-number |

 +-+

 | enterprise-number (contd) | |

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |

Chapter 6 Ipv6 Core protoCols

246

 . identifier .

 . (variable length) .

 . .

 +-+

Link Layer Address (DUID-LL): This type is just like the DUID-

LLT, without the timestamp. It is recommended for permanently

connected devices that have a Link Layer address, but no non-

volatile, writeable stable storage.

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | 3 | hardware type (16 bits) |

 +-+

 . .

 . link-layer address (variable length) .

 . .

 +-+

Viewing Your Node’s DUID

In Windows 7, using a command prompt, type the command ipconfig /all. In the

section related to the interface you are interested in, look for the field DHCPv6 Client

DUID. Note that this is a DUID-LLT (type code 00-01). The next six hex digit pairs

(00-01-12-D6-97-E5) are the timestamp. The last six hex digit pairs (00-18-8B-78-DA-1A)

are the same as the physical address (MAC address).

Ethernet adapter Local Area Connection:

 Connection-specific DNS Suffix . : infoweapons.com

 Description : Broadcom NetXtreme 57xx Gigabit

Controller

 Physical Address. : 00-18-8B-78-DA-1A

 DHCP Enabled. : Yes

 Autoconfiguration Enabled : Yes

 IPv6 Address. : 2001:df8:5403:2410:3c79:b2ca:90ce:5d

59(Preferred)

Chapter 6 Ipv6 Core protoCols

247

 Temporary IPv6 Address. : 2001:df8:5403:2410:882:cf5c:e810:363

d(Preferred)

 Link-local IPv6 Address : fe80::3c79:b2ca:90ce:5d59%11(

Preferred)

 IPv4 Address. : 10.2.5.237(Preferred)

 Subnet Mask : 255.240.0.0

 Lease Obtained. : Friday, March 12, 2010 10:52:52 AM

 Lease Expires : Friday, March 12, 2010 4:11:44 PM

 Default Gateway : fe80::21b:21ff:fe1e:f4%11

 10.0.0.10

 DHCP Server : 10.1.0.14

 DHCPv6 IAID : 234887307

 DHCPv6 Client DUID. : 00-01-00-01-12-D6-97-

E5-00-18-8B-78-DA-1A

 DNS Servers : 2001:df8:5403:2400::14

 2001:df8:5403:2400::13

 10.1.0.14

 10.1.0.13

 NetBIOS over Tcpip. : Enabled

 Connection-specific DNS Suffix Search List :

 cebu.infoweapons.com

You can also see a DHCPv6 IAID value (in this case 234887307). This identifies a

particular Identity Association, which allows a server and a client to identify, group, and

manage a set of related IPv6 addresses. Each IA consists of an IAID, one or more IPv6

addresses, and the time T1 and T2 for that IA. Each IA is associated with exactly one

interface. For further details, see RFC 3315, section 11.

DHCPv6 Ports and Messages
Clients and servers exchange DHCPv6 messages using UDP over IPv6. The client

uses a link-local address, or addresses obtained via other mechanisms, as the source

address for transmitting and receiving DHCPv6 messages. Servers receive messages

from clients using a reserved link-scoped multicast address, so that clients don’t need

to be configured with the addresses of DHCPv6 servers. To allow hosts to communicate

with servers on other links, DHCPv6 relay agents are used. Clients listen for DHCPv6

messages on UDP port 546. Servers and relay agents listen for DHCPv6 messages on

UDP port 547.

Chapter 6 Ipv6 Core protoCols

248

The link-scoped multicast address used by a client to communicate with an on-link

relay agent or server is ff02::1:2. All DHCPv6 servers and relay agents are members of this

multicast group.

The site-scoped multicast address used by a relay agent to communicate with servers

is ff05::1:3, if it wants to send a message to all DHCPv6 servers or does not know the

unicast address of the servers. All DHCPv6 servers in a given site are members of this

multicast group.

There are several DHCPv6 messages:

The SOLICIT message (1) is sent (multicast) by a client to locate

servers.

The ADVERTISE message (2) is sent (multicast) by a server to

indicate that it is available to provide DHCPv6 service, in response

to a Solicit message from a client.

The REQUEST message (3) is sent (unicast) by a client to

request configuration parameters, including IP addresses, from a

specific server.

The CONFIRM message (4) is sent (multicast) by a client to

any available server to determine whether the addresses it was

assigned are still appropriate on the link to which the client is

connected.

The RENEW message (5) is sent (unicast) by a client to the server

that originally provided the client’s address and configuration

parameters, to extend the lifetime on the addresses assigned to

the client and update other configuration parameters.

The REBIND message (6) is sent (multicast) by a client to any

available server to extend the lifetimes on the addresses assigned

to the client and to update other configuration parameters. This

message is sent after a client receives no response to a RENEW

message.

The REPLY message (7) is sent (unicast) by a server to a client in

response to a SOLICIT, REQUEST, RENEW, or REBIND message

received from a client. A server sends a REPLY message containing

Chapter 6 Ipv6 Core protoCols

249

configuration parameters in response to an INFORMATION-

REQUEST message. It sends a REPLY message in response to a

CONFIRM message confirming or denying that the addresses

assigned to the client are appropriate on the link to which

the client is connected. A server sends a REPLY message to

acknowledge receipt or a RELEASE or DECLINE message.

The RELEASE message (8) is sent (unicast) by a client to the

server that assigned addresses to the client to indicate that the

client will no longer use one or more of the assigned addresses.

The DECLINE message (9) is sent (unicast) to a server to indicate that

the client has determined that one or more addresses assigned by the

server are already in use on the link to which the client is connected.

The RECONFIGURE message (10) is sent (unicast) by a server

to a client to inform the client that the server has new or updated

configuration parameters and that the client should initiate a

RENEW/REPLY or INFORMATION-REQUEST/REPLY transaction

with the server in order to obtain the updated information.

The INFORMATION-REQUEST message (11) is sent (unicast) by

a client to a server to request configuration parameters, without

the assignment of any IP addresses to the client.

The RELAY-FORW message (12) is sent (multicast) by a relay

agent to forward messages to servers, either directly or through

another relay agent. The received message, either a client

message or a RELAY-FORW message from another relay agent, is

encapsulated in an option in the RELAY-FORW message.

The RELAY-REPL message (13) is sent (unicast) by the server to a

relay agent containing a message that the relay agent should then

deliver to a client. The RELAY-REPL message may be relayed by

other relay agents for delivery to the destination relay agent. The

server encapsulates the client message as an option in the RELAY-

REPL message, which the relay agent extracts and then relays to

the next relay agent or directly to the client.

Chapter 6 Ipv6 Core protoCols

250

DHCPv6 Status Codes
The following codes are used to communicate the success or failure of operations

requested in messages from clients and servers and additional information about the

specific cause in the event of a failure to perform the operation.

 Name Code Description

 ---------- ---- -----------

 Success 0 Success.

 UnspecFail 1 Failure, reason unspecified; this

 status code is sent by either a client

 or a server to indicate a failure

 not explicitly specified in this

 document.

 NoAddrsAvail 2 Server has no addresses available to assign to

 the IA(s).

 NoBinding 3 Client record (binding) unavailable.

 NotOnLink 4 The prefix for the address is not appropriate for

 the link to which the client is attached.

 UseMulticast 5 Sent by a server to a client to force the

 client to send messages to the server.

 using the All_DHCP_Relay_Agents_and_Servers

 address.

DHCPv6 Message Syntax
All messages sent between clients and servers share the following syntax:

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | msg-type | transaction-id |

 +-+

 | |

 . options .

 . (variable) .

 | |

 +-+

Chapter 6 Ipv6 Core protoCols

251

 msg-type Identifies the DHCP message type

 transaction-id The transaction ID for this message exchange.

 options Options carried in this message.

 The DHCPv6
DHCPv6 works in somewhat the same way as DHCPv4, except that different messages

are used and communication between client and server takes place using link-local

scoped multicast and unicast addresses.

When it first comes up, before any DHCPv6 operation, an IPv6-capable client

node obtains a link-local unicast address through ND (and possibly a global unicast

address as well, using information from a Router Advertisement message). If a Router

Advertisement message is seen, then the client can check the M and O bits in it to

determine if there is stateful DHCPv6, stateless DHCPv6, or no DHCPv6 available. If no

Router Advertisement is available, a client can still attempt DHCPv6 server discovery, as

follows.

The client sends a SOLICIT message to multicast group ff02::1:2. This address

specifies all DHCPv6 servers or relay agents on the local link. The included options are

ClientID

Option Request Option (IA-NA, DNS-Servers, Domain-List)

One or more DHCPv6 servers on the link (or servers on remote links, via DHCPv6

relay agents) will reply with an ADVERTISE message to the client that sent the SOLICIT

message (via unicast). The included options are

ServerID, ClientID

DNS-Servers, IA-NA (IAID, IAPREFIX).

The client will select one responding DHCPv6 server and send a REQUEST message

to it (via unicast). This will actually ask for an address lease. The included options are

ServerID, ClientID

Chapter 6 Ipv6 Core protoCols

252

Option Request Option (IA-NA, DNS-Servers, Domain-List)

The selected server will send a REPLY message to the client that sent the REQUEST

message (via unicast). This will confirm the address lease. The included options are

ServerID, ClientID

DNS-Servers: 2001:xxx:yyy:zzz::a, 2001:xxx:yyy:zzz::b

IA-NA: IAID: 1,

IAPREFIX: Preferred lifetime: nnnnnn,

Valid lifetime: nnnnnn,

Prefix: 2001:xxx:yyy:zzz::c/64

For Further Information on DHCPv6
For details on how clients send and respond to DHCPv6 messages, see RFC 3315,

section 17.

For details on DHCP Client-initiated Configuration Exchanges, see RFC 3315,

section 18.

For details on DHCP Server-initiated Configuration Exchanges, see RFC 3315,

section 19.

For details on relay agent behavior, see RFC 3315, section 20.

For details on the optional authentication mechanism, for use of DHCPv6 in

unsecured environments, such as wireless networks, see RFC 3315, section 21.

For available DHCPv6 message options and their syntax, see RFC 3315, section 22.

Stateless DHCPv6 assumes that assigned IPv6 addresses are obtained some other

way, such as Stateless Address Autoconfiguration, and that only stateless information

(IPv6 addresses of DNS servers, SIP servers, etc.) will be obtained from DHCPv6. RFC

3736, “Stateless Dynamic Host Configuration Protocol (DHCP) Server for IPv6,” April

2004, defines the subset of messages and options from the full (stateful) DHCPv6

functionality that are required to provide stateless DHCPv6 service.

For details on publishing the address of SIP servers with DHCPv6, see RFC 3633,

“IPv6 Prefix Options for Dynamic Host Configuration Protocol (DHCP) version 6,”

December 2003.

For details on publishing the address of DNS servers with DHCPv6, see RFC

3646, “DNS Configuration Options for Dynamic Host Configuration Protocol for IPv6

(DHCPv6),” December 2003.

Chapter 6 Ipv6 Core protoCols

253

For details on publishing the address of NIS (Network Information Service) servers

with DHCPv6, see RFC 3898, “Network Information Service (NIS) Configuration Options

for Dynamic Host Configuration Protocol for IPv6 (DHCPv6),” October 2004.

For details on publishing the address of SNTP (Simple Network Time Protocol)

servers with DHCPv6, see RFC 4075, “Simple Network Time Protocol (SNTP)

Configuration Option for DHCPv6,” May 2005.

 Useful Commands Related to DHCPv6
In Windows 7, there are some commands available in a command prompt box related

to DHCPv6:

ipconfig /release6: Release assigned IPv6 address (es) and de-

configure network.

ipconfig/renew 6: Do a new configuration request for IPv6.

ipconfig/all: View all network configuration settings (IPv4

and IPv6).

This is an example of the output from “ipconfig /all”:

...

Ethernet adapter Local Area Connection:

 Connection-specific DNS Suffix . : hughesnet.local

 Description : Realtek PCIe GBE Family Controller

 Physical Address. : 00-22-15-24-32-9C

 DHCP Enabled. : Yes

 Autoconfiguration Enabled : Yes

 IPv6 Address. : 2001:df8:5403:3000::2:1(Preferred)

 Lease Obtained. : Friday, March 12, 2010 9:43:06 PM

 Lease Expires : Wednesday, March 24, 2010 9:43:09 PM

 IPv6 Address. :

 2001:df8:5403:3000:b5ea:976d:679f:30

f5(Preferred)

 Temporary IPv6 Address. :

 2001:df8:5403:3000:218a:4956:7d8c:7c

2c(Preferred)

Chapter 6 Ipv6 Core protoCols

254

 Link-local IPv6 Address : fe80::b5ea:976d:679f:30f5%11(

Preferred)

 IPv4 Address. : 172.20.2.1(Preferred)

 Subnet Mask : 255.255.0.0

 Lease Obtained. : Friday, March 12, 2010 9:42:57 PM

 Lease Expires : Thursday, March 18, 2010 9:43:00 PM

 Default Gateway : fe80::21b:21ff:fe1d:c159%11

 172.20.0.1

 DHCP Server : 172.20.0.11

 DHCPv6 IAID : 218112533

 DHCPv6 Client DUID. : 00-01-00-01-11-99-BD-28-00-22-15-24

 -32-9C

 DNS Servers : 2001:df8:5403:3000::c

 2001:df8:5403:3000::b

 172.20.0.11

 172.20.0.12

 NetBIOS over Tcpip. : Enabled

 Connection-specific DNS Suffix Search List : hughesnet.local

...

In the preceding, notice the following:

• The MAC address (“physical address”) of the interface is

00-22-15-23-32-9C.

• A 64-bit interface identifier (b5ea:976d:679f:30f5) was created, which

is a cryptographically generated value (not from EUI-64). A link-local

unicast address was generated from this (by prepending fe80::/64).

The link-local address of the default gateway (fe80::21b:21ff:fe1d:c159)

was then obtained using ND router discovery.

• A Router Advertisement message supplied the subnet prefix

(2001:df8:5403:3000::/64), so the node used it to create two global

unicast addresses, one of which (2001:df8:5403:3000:b5ea:976d:679

f:30f5) used the 64-bit random interface identifier from ND and the

other (2001:df8:5403:3000:218a:4956:7d8c:7c2c) used yet another

random interface identifier.

Chapter 6 Ipv6 Core protoCols

255

• Obtain an IP address automatically and Obtain DNS server

address automatically were selected in the IPv4 GUI configuration

(“DHCP Enabled”), and a working DHCPv4 server was found

(“Autoconfiguration Enabled”). So an IPv4 address (172.20.2.1), the

subnet mask (255.255.0.0), the default gateway (172.20.0.1), and the

IPv4 addresses of two DNS servers were obtained from the DHCPv4

server. The lease for this was obtained on March 12, 2010, 9:42 p.m.,

and would expire on March 18, 2010, at 9:43 p.m. The MAC address

(00-22-15-23-32-9C) was used to make a DHCPv4 reservation for this

node, so this node will always get that IPv4 address.

• Obtain an IPv6 address automatically and Obtain DNS server address

automatically were selected in the IPv6 GUI configuration, and both

the M and O bits were set in the Router Advertisement message

(stateful and stateless DHCPv6 available), so another global unicast

IPv6 address (2001:df8:5403:3000::2:1) was obtained from DHCPv6,

plus the IPv6 addresses of two DNS servers. The lease for this was

obtained on March 12, 2010, at 9:43 p.m., and would expire on March

24, 2010, at 9:43 p.m.

• The DUID of the node is 00-01-00-01-11-99-BD-28-00-22-15-24-32-9C.

The first two hex digit pairs contain 00-01. That means this is a type

1 DUID (DUID-LLT), “Link Layer plus Timestamp.” The next six

hex digit pairs (00-01-11-99-BD-28) are the timestamp, and the last

six hex digit pairs (00-22-15-23-32-9C) contain the interface MAC

address. This DUID, along with the IAID (218112533), was used to

make a DHCPv6 address reservation for this node. So this node will

always get that IPv6 address.

 IPv6 Network Configuration
Let’s assume our LAN has the following configuration:

Network prefix: 2001:df8:5403:3000::/64

Default gateway: 2001:df8:5403:3000::1

DHCPv6 server address: 2001:df8:5403:3000::11

Chapter 6 Ipv6 Core protoCols

256

DNS server addresses: 2001:df8:5403:3000::11

2001:df8:5403:3000::12

Domain name: redwar.org

Furthermore, assume the DHCPv6 server is correctly configured with this

information and is managing the address range 2001:df8:5403:3100::1000 to

2001:df8:5403:3100::1fff (and that some leases have already been granted).

Any node connected to a network with IPv6 (that will access IPv6 nodes on the

Internet) must have certain items configured, including

• IPv6 link-local node address (obtained automatically)

• All nodes on link multicast address (ff01::1), there by default

• IPv6 global unicast address

• IPv6 address of default gateway (link-local address of gateway

obtained automatically)

• IPv6 addresses of DNS servers (manually configured or

from DHCPv6)

• Nodename

• DNS domain name

 Manual Network Configuration for IPv6-Only
It is possible to perform IPv6 configuration manually, either by editing ASCII

configuration files, as in FreeBSD or Linux, or via GUI configuration tools, as in

Windows. If you have understood the material in this chapter, it should be fairly easy to

configure your node(s). In most cases, if you have ISP service, the ISP will give you all the

information necessary to configure your node(s). In the coverage of dual-stack networks,

we will show configuration of both IPv4 and IPv6 on a single node.

Auto Network Configuration Using Stateless Address Autoconfiguration
It is easy for a FreeBSD node to be automatically configured using Stateless Address

Autoconfiguration. Note that the global unicast address will be created with the EUI-64

algorithm from your MAC address.

Let’s configure a FreeBSD 7.2 node automatically with SLAAC. Assign it the following

configuration:

Chapter 6 Ipv6 Core protoCols

257

FreeBSD interface name: vr0

Nodename: us1.redwar.org

Node IP address (whatever SLAAC comes up with)

Default gateway (whatever SLAAC comes up with)

DNS domain name: redwar.org

DNS Server 1: 2001:df8:5403:3000::11

DNS Server 2: 2001:df8:5403:3000::12

You need to edit the following files (you will need root privilege to do this):

/etc/rc.conf

...

hostname="us1.redwar.org"

IPv6_enable="YES"

...

/etc/resolv.conf

Domain redwar.org

nameserver 2001:df8:5403:3000::11

nameserver 2001:df8:5403:3000::12

If you make these changes, then reboot. You can check the configuration as shown:

$ ifconfig vr0

vr0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0 mtu 1500

 options=2808<VLAN_MTU,WOL_UCAST,WOL_MAGIC>

 ether 00:15:f2:2e:b4:1c

 inet6 2001:df8:5403:3000::215:f2ff:fe2e:b41c prefixlen 64

 inet6 fe80::215:f2ff:fe2e:b41c%vr0 prefixlen 64 scopeid 0x1

 media: Ethernet autoselect (100baseTX <full-duplex>)

 status: active

$ uname –n

us1.redwar.org

Chapter 6 Ipv6 Core protoCols

258

$ nslookup

> server

> exit

$ netstat –finet6 -rn

 Auto Network Configuration Using Manually
Specified (Static) IPv6 Address
Let’s configure a FreeBSD 7.2 node manually with a static node address. Assign it the

following configuration:

FreeBSD interface name: vr0

Nodename: us1.redwar.org

Node IP address: 2001:df8:5403:3000::13

Default gateway: 2001:df8:5403::1

DNS domain name: redwar.org

DNS Server 1: 2001:df8:5403:3000::11

DNS Server 2: 2001:df8:5403:3000::12

You need to edit the following files (you will need root privilege to do this):

/etc/rc.conf

...

hostname='us1.redwar.org'

IPv6_enable='YES'

IPv6_ifconfig_vr0='2001:df8:5403:3000::13 prefixlen 64'

IPv6_defaultrouter='2001:df8:5403:3000::1'

...

/etc/resolv.conf

Domain redwar.org

nameserver 2001:df8:5403:3000::11

nameserver 2001:df8:5403:3000::12

Chapter 6 Ipv6 Core protoCols

259

If you make these changes, then reboot. You can check the configuration as shown:

$ ifconfig vr0

vr0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0 mtu 1500

 options=2808<VLAN_MTU,WOL_UCAST,WOL_MAGIC>

 ether 00:15:f2:2e:b4:1c

 inet6 2001:df8:5403:3000::13 prefixlen 64

 inet6 fe80::215:f2ff:fe2e:b41c%vr0 prefixlen 64 scopeid 0x1

 media: Ethernet autoselect (100baseTX <full-duplex>)

 status: active

$ uname –n

us1.hughesnet.local

$ nslookup

> server

> exit

$ netstat –finet6 -rn

Note If you specify a static Ipv6 address in FreeBsD 7.x (“Ipv6-config_vr0=”...”),
the node will not obtain a link-local default gateway address automatically.
therefore, in this case it is essential that you also manually specify a default
gateway address (which can be global unicast or link local), using the
“Ipv6_defaultrouter=...” option in /etc/rc.conf. If no default gateway is defined,
communication with other on-link nodes will work okay, but communication with
off-link nodes will fail.

This is different from the behavior of Windows 7 and Linux, where the addition of a

manually configured global unicast address does not stop the node from obtaining the

link-local default gateway automatically.

Chapter 6 Ipv6 Core protoCols

260

 Summary
In this chapter, we covered the “core” protocols related to IPv6:

• IPv6 itself

• IPCMPv6 (the helper protocol)

• ND (Neighbor Discovery, which is really just a subset of ICMPv6)

• Stateless Address Autoconfiguration (SLAAC) (which is one of the ND

mechanisms)

We also covered the new IPv6 packet header, as well as the all-new packet header

extensions. We compared that with the older IPv4 packet header, noting that the basic

header is twice as long, but simpler. The advanced features have now been moved to the

header extensions.

We covered the IPv6 addressing model, which is more complex than the IPv4 model.

For the first time, address scopes have been fully implemented. IPv4 private addresses

were kind of an address scope, but in IPv6 that concept is fully realized.

We covered DHCPv6, although technically that does not live in the Internet Layer

(like DHCPv4, it lives in the Application Layer). With the new SLAAC, there is not much

need for DHCPv6, especially now that SLAAC advertises the DNS addresses for the

network. The only real need for DHCPv6 in current networks is for Prefix Delegation

(how ISPs advertise the network prefix to subscribers).

Finally, we covered how you actually configure IPv6 addresses in FreeBSD.

Chapter 6 Ipv6 Core protoCols

261

CHAPTER 7

IPsec and IKEv2
This chapter covers two advanced protocols for TCP/IP called IPsec and IKEv2. IPsec is

for “Internet Protocol Security” and adds authentication and encryption at the Internet

Layer. IKEv2 is the Internet Key Exchange protocol for use with IPsec, and the current

version is 2. You can use IPsec without IKEv2 with manual key management, but this is

not scalable or particularly secure. Both IPsec and IKEv2 are available for IPv4 and IPv6,

but NAT breaks both IPsec itself and IKEv2, so IPsec works far better over IPv6 (where

there is no NAT to break them). IPsec was created for both IPv4 and IPv6, in RFC 1825,1

“Security Architecture for the Internet Protocol,” August 1995:

This memo describes the security mechanisms for IP version 4 (IPv4) and
IP version 6 (IPv6) and the services that they provide.

You can deploy IPsec on IPv4 today, but if the path crosses a NAT gateway, you have

to also deploy NAT traversal, which introduces more security issues than IPsec solves.

Because of this, SSL- VPN2 is easier to work with and more widely used than IPsec on

IPv4. Unfortunately, SSL-VPN is a very badly designed scheme misusing SSL in the

wrong part of the network stack. There is also no IETF standard for SSL-VPN, because

the IETF doesn’t consider it a viable protocol. So there is no guarantee that two vendors’

implementations will actually interoperate. IPsec is the only IETF-approved scheme for

implementing VPNs, and as IPv6 becomes more widely deployed, it will finally become

widely used. The problems people run into today are more problems with IPv4 and NAT

than with IPsec. It works great on IPv6.

1 https://tools.ietf.org/html/rfc1825
2 https://openvpn.net/faq/why-ssl-vpn/

© Lawrence E. Hughes 2022
L. E. Hughes, Third Generation Internet Revealed, https://doi.org/10.1007/978-1-4842-8603-6_7

https://tools.ietf.org/html/rfc1825
https://openvpn.net/faq/why-ssl-vpn/
https://tools.ietf.org/html/rfc1825
https://openvpn.net/faq/why-ssl-vpn/
https://doi.org/10.1007/978-1-4842-8603-6_7

262

Originally IPsec was mandatory for IPv6 implementations (but of course did not

have to be enabled on every connection), leading to the myth that IPv6 was more secure

than IPv4. RFC 6434,3 “IPv6 Node Requirements,” December 2011, changed MUST to

SHOULD (IPsec became optional in implementations but is still strongly recommended).

Most IPv6 implementations I use (on real computers, not sensors) include IPsec.

Note that you can still build a subnet-to-subnet VPN with IPsec over IPv6 even if

both subnets are dual stack or even IPv4-only, if IPv6 is available on a path connecting

them. You can tunnel IPv4 through an IPv6 path.

These facts add strong incentives for organizations to begin supporting IPv6 sooner

rather than later.

 Internet Protocol Layer Security (IPsec)
The official name for this technology (as used by the IETF) is the Security Architecture for

the Internet Protocol. Since it takes place in the Internet Layer, protocols at the Transport

and Application Layers need not even be aware of it and do not need to be modified to

use it. In effect, you build secure tunnels at the IP Layer that the higher-layer protocols

go through unmodified. Compare with SSL/TLS where the Application Layer is heavily

impacted, both in the design and implementation stage (many changes to source code

and application design) and in the deployment stage (obtaining and installing server

digital certificates into the server application). You could say that all applications get a

“free ride” over IPsec, gaining security features (without having to include any support

for security themselves) simply by running over Internet Layer links secured with IPsec.

By security we are here referring to three specific aspects of security:

Privacy (keeping others from being able to view the content

of your transmissions), accomplished using the Encapsulating

Security Payload (ESP) feature

Authentication (knowing for sure whom the packets came from),

accomplished with the Authentication header (AH) feature

3 https://tools.ietf.org/html/rfc6434

Chapter 7 IpseC and IKev2

https://tools.ietf.org/html/rfc6434
https://tools.ietf.org/html/rfc6434

263

Message integrity (knowing if someone has made any changes

to the Data field or certain fields of the header, including the

source and destination addresses), also accomplished with the

Authentication header (AH) feature

The AH and ESP features are mutually independent. You can make use of neither,

either, or both, depending on your requirements. If you need only authentication and

message integrity, you can use only AH. If you need only privacy, you can use only ESP. If

you require both, you can use both AH and ESP (there is no conflict between them).

Note, however, that since AH protects the source and destination addresses in the

IP header and the source and destination ports in the TCP or UDP header, any changes

at all to these fields will be detected as tampering (to AH there is no way to distinguish

malicious tampering from changes your own network makes to these fields). This

means AH will report the changes to IP addresses and ports in the header by NAT to

be a hacking attack. It is possible to combine NAT traversal with IPsec (as discussed in

RFC 3715,4 “IPsec-Network Address Translation (NAT) Compatibility Requirements”),

but this greatly complicates the creation and deployment of IPsec applications and

introduces new security issues, which may outweigh the benefits of using IPsec in the

first place. IPsec is not very suitable for use on existing IPv4 networks since NAT is so

widely deployed. Many network professionals have gotten a bad impression of it, but

this is because of NAT in IPv4 networks, not any shortcoming of IPsec. There is no other

technology for building VPNs supported by the IETF. IPsec works great in IPv6 networks.

This is because of better support in IPv6 headers to some extent, but primarily because

there is no NAT.

Note that IPsec AH does not use a “heavyweight” scheme like PKI digital

signatures for authentication. It uses the much lighter-weight HMAC5 scheme (a hash

algorithm that uses a key). If it used real digital signatures (based on asymmetric key

cryptography), it would reduce throughput dramatically.

Any security features at this level (which must be performed once per packet) must

be very lightweight (they cannot use mechanisms that require a lot of CPU power). This

rules out the use of asymmetric key cryptography (as used in digital signatures and

digital envelopes), at least on a per-packet basis. Use of asymmetric key cryptography

would cause severe degradation of network throughput. Fortunately, there is a

4 https://tools.ietf.org/html/rfc3715
5 https://en.wikipedia.org/wiki/HMAC

Chapter 7 IpseC and IKev2

https://tools.ietf.org/html/rfc3715
https://en.wikipedia.org/wiki/HMAC
https://tools.ietf.org/html/rfc3715
https://en.wikipedia.org/wiki/HMAC

264

lightweight alternative to digital signatures, which is Hash-Based Message Authentication

Codes (essentially a key-driven message digest), which is used in AH. Encryption is

handled using only symmetric key encryption and decryption with the same symmetric

key for many packets. The key can be manually distributed (shared secret deployment)

or securely distributed via the Internet Key Exchange (IKE) protocol, which does use

asymmetric key cryptography (but IKE is used infrequently – the exchanged key is used

to encrypt or decrypt a large number of packets before another key is exchanged). Even

with these lightweight algorithms, there can still be an impact on network throughput

(especially on systems with lower-performance CPUs). Network Interface Cards (NICs)

are available that include hardware acceleration of the IPsec algorithms (HMAC

generation and checking, as well as symmetric key encryption/decryption). These allow

wire-speed network throughput even on systems with low-performance CPUs.

 Relevant Standards for IPsec
The following standards are relevant to IPsec and IKE:

RFC 2410, “The NULL Encryption Algorithm and Its Use with

IPsec,” November 1998 (Standards Track)

RFC 2412, “The Oakley Key Determination Protocol,” November

1998 (Informational)

RFC 2709, “Security Model with Tunnel-Mode IPsec for NAT

Domains,” October 1999 (Informational)

RFC 3193, “Securing L2TP Using IPsec,” November 2001

(Standards Track)

RFC 3554, “On the Use of Stream Control Transmission Protocol

(SCTP) with IPsec,” July 2003 (Standards Track)

RFC 3456, “Dynamic Host Configuration Protocol (DHCPv4)

Configuration of IPsec Tunnel Mode,” January 2003

(Standards Track)

RFC 3457, “Requirements for IPsec Remote Access Scenarios,”

January 2003 (Informational)

Chapter 7 IpseC and IKev2

http://ipv6forum.com/
https://tools.ietf.org/html/rfc2412
https://tools.ietf.org/html/rfc2709
https://tools.ietf.org/html/rfc3193
https://tools.ietf.org/html/rfc3554
https://tools.ietf.org/html/rfc3456
https://tools.ietf.org/html/rfc3457

265

RFC 3554, “On the Use of Stream Control Transmission Protocol

(SCTP) with IPsec,” July 2003 (Standards Track)

RFC 3566, “The AES-XCBC-MAC-96 Algorithm and Its Use with

IPsec,” September 2003 (Standards Track)

RFC 3585, “IPsec Configuration Policy Information Model,”

August 2003 (Standards Track)

RFC 3602, “The AES-CBC Cipher Algorithm and Its Use with
IPsec,” September 2003 (Standards Track)

RFC 3715, “IPsec-Network Address Translation (NAT)

Compatibility Requirements,” March 2004 (Informational)

RFC 3884, “Use of IPsec Transport Mode for Dynamic Routing,”

September 2004 (Informational)

RFC 3947, “Negotiation of NAT-Traversal in the IKE,” January 2005

(Standards Track)

RFC 3948, “UDP Encapsulation of IPsec ESP Packets,” January

2005 (Standards Track)

RFC 4025, “A Method for Storing IPsec Keying Material in DNS,”

March 2005 (Standards Track)

RFC 4106, “The Use of Galois/Counter Mode (GCM) in

IPsec Encapsulating Security Payload (ESP),” June 2005

(Standards Track)

RFC 4109, “Algorithms for Internet Key Exchange version 1

(IKEv1),” May 2005 (Standards Track)

RFC 4196, “The SEED Cipher Algorithm and Its Use with IPsec,”

January 2006 (Standards Track)

RFC 4301, “Security Architecture for the Internet Protocol,”
December 2005 (Standards Track)

RFC 4302, “IP Authentication Header,” December 2005
(Standards Track)

Chapter 7 IpseC and IKev2

https://tools.ietf.org/html/rfc3554
https://tools.ietf.org/html/rfc3566
https://tools.ietf.org/html/rfc3585
https://tools.ietf.org/html/rfc3602
https://tools.ietf.org/html/rfc3715
https://tools.ietf.org/html/rfc3884
https://tools.ietf.org/html/rfc3947
https://tools.ietf.org/html/rfc3948
https://tools.ietf.org/html/rfc4025
https://tools.ietf.org/html/rfc4106
https://tools.ietf.org/html/rfc4109
https://tools.ietf.org/html/rfc4196
https://tools.ietf.org/html/rfc4301
https://tools.ietf.org/html/rfc4301

266

RFC 4303, “IP Encapsulating Security Payload (ESP),”
December 2005 (Standards Track)

RFC 4304, “Extended Sequence Number (ESN) Addendum

to IPsec Domain of Interpretation (DOI) for Internet Security

Association and Key Management Protocol (ISAKMP),” December

2005 (Standards Track)

RFC 4308, “Cryptographic Suites for IPsec,” December 2005
(Standards Track)

RFC 4309, “Using Advanced Encryption Standard (AES) CCM
Mode with IPsec Encapsulating Security Payload (ESP),”
December 2005 (Standards Track)

RFC 4312, “The Camellia Cipher Algorithm and Its Use with

IPsec,” December 2005 (Standards Track)

RFC 4322, “Opportunistic Encryption Using the Internet Key

Exchange (IKE),” December 2005 (Informational)

RFC 4430, “Kerberized Internet Negotiation of Keys (KINK),”

March 2006 (Standards Track)

RFC 4434, “The AES-XCBC-PRF-128 Algorithm for the Internet

Exchange Protocol (IKE),” February 2006 (Standards Track)

RFC 4494, “The AES-CMAC-96 Algorithm and Its Use with IPsec,”

June 2006 (Standards Track)

RFC 4543, “The Use of Galois Message Authentication Code

(GMAC) in IPsec ERP and AH,” May 2006 (Standards Track)

RFC 4555, “IKEv2 Mobility and Multihoming Protocol (MOBIKE),”

June 2006 (Standards Track)

RFC 4615, “The Advanced Encryption Standard-Cipher-based
Message Authentication Code-Pseudo-Random Function-128
(AES-CMAC-PRF-128) Algorithm for the Internet Key
Exchange Protocol (IKE),” August 2006 (Standards Track)

RFC 4807, “IPsec Security Policy Database Configuration MIB,”

March 2007 (Standards Track)

Chapter 7 IpseC and IKev2

https://tools.ietf.org/html/rfc4303
https://tools.ietf.org/html/rfc4304
https://tools.ietf.org/html/rfc4308
https://tools.ietf.org/html/rfc4309
https://tools.ietf.org/html/rfc4312
https://tools.ietf.org/html/rfc4322
https://tools.ietf.org/html/rfc4430
https://tools.ietf.org/html/rfc4434
https://tools.ietf.org/html/rfc4494
https://tools.ietf.org/html/rfc4543
https://tools.ietf.org/html/rfc4555
https://tools.ietf.org/html/rfc4615
https://tools.ietf.org/html/rfc4807

267

RFC 4809, “Requirements for an IPsec Certificate Management
Profile,” February 2007 (Informational)

RFC 4868, “Using HMAC-SHA-256, HMAC-SHA-384, and
HMAC-SHA-512 with IPsec,” May 2007 (Standards Track)

RFC 4877, “Mobile IPv6 Operation with IKEv2 and the Revised

IPsec Architecture,” April 2007 (Standards Track)

RFC 4891, “Using IPsec to Secure IPv6-in-IPv4 Tunnels,” May
2007 (Informational)

RFC 4894, “Use of Hash Algorithms in Internet Key Exchange
(IKE) and IPsec,” May 2007 (Informational)

RFC 4945, “The Internet IP Security PKI Profile of IKEv1/
ISAKMP, IKEv2, and PKIX,” August 2007 (Standards track)

RFC 5265, “Mobile IPv4 Traversal Across IPsec-Based VPN

Gateways,” June 2008 (Standards Track)

RFC 5374, “Multicast Extensions to the Security Architecture
for the Internet Protocol,” November 2008 (Standards Track)

RFC 5386, “Better-Than-Nothing Security: An Unauthenticated

Mode of IPsec,” November 2008 (Standards Track)

RFC 5387, “Problem and Applicability Statement for Better-Than-

Nothing Security (BTNS),” November 2008 (Informational)

RFC 5406, “Guidelines for Specifying the Use of IPsec Version
2,” February 2009 (Best Current Practice)

RFC 5529, “Modes of Operation for Camellia for Use with IPsec,”

April 2009 (Standards Track)

RFC 5566, “BGP IPsec Tunnel Encapsulation Attribute,” June 2009

(Standards Track)

RFC 5660, “IPsec Channels: Connection Latching,” October 2009

(Standards Track)

RFC 5755, “An Internet Attribute Certificate Profile for

Authorization,” January 2010 (Standards Track)

Chapter 7 IpseC and IKev2

https://tools.ietf.org/html/rfc4809
https://tools.ietf.org/html/rfc4868
https://tools.ietf.org/html/rfc4877
https://tools.ietf.org/html/rfc4891
https://tools.ietf.org/html/rfc4894
https://tools.ietf.org/html/rfc4894
https://tools.ietf.org/html/rfc4894
https://tools.ietf.org/html/rfc5374
https://tools.ietf.org/html/rfc5386
https://tools.ietf.org/html/rfc5387
https://tools.ietf.org/html/rfc5406
https://tools.ietf.org/html/rfc5529
https://tools.ietf.org/html/rfc5566
https://tools.ietf.org/html/rfc5660
https://tools.ietf.org/html/rfc5755

268

RFC 5856, “Integration of Robust Header Compression over IPsec

Security Associations,” May 2010 (Informational)

RFC 5857, “IKEv2 Extensions to Support Robust Header

Compression over IPsec,” May 2010 (Standard)

RFC 5858, “IPsec Proposed Extensions to Support Robust Header

Compression over IPsec,” May 2010 (Proposed Standard)

RFC 5879, “Heuristics for Detecting ESP-NULL Packets,” May 2010

(Informational)

RFC 6027, “IPsec Cluster Problem Statement,” October 2010

(Informational)

RFC 6071, “IP Security (IPsec) and Internet Key Exchange (IKE)

Document Roadmap,” February 2011 (Informational)

RFC 6040, “Tunneling of Explicit Congestion Notification,”

November 2010 (Proposed Standard)

RFC 6071, “IP Security (IPsec) and Internet Key Exchange (IKE)

Document Roadmap,” February 2011 (Informational)

RFC 6151, “Updated Security Considerations for the MD5

Message-Digest and the HMAC-MD5 Algorithms,” March 2011

(Informational)

RFC 6193, “Media Description for the Internet Key Exchange

Protocol (IKE) in the Session Description Protocol (SDP),” April

2011 (Informational)

RFC 6311, “Protocol Support for High Availability of IKEv2/IPsec,”

(Standards Track)

RFC 6379, “Suite B Cryptographic Suites for IPsec,” October
2011 (Historic)

RFC 6380, “Suite B Profile for Internet Protocol Security
(IPsec),” October 2011 (Historic)

RFC 6467, “Secure Password Framework for Internet Key

Exchange Version 2 (IKEV2),” December 2011 (Informational)

Chapter 7 IpseC and IKev2

https://tools.ietf.org/html/rfc5856
https://tools.ietf.org/html/rfc5857
https://tools.ietf.org/html/rfc5858
https://tools.ietf.org/html/rfc5879
https://tools.ietf.org/html/rfc6027
https://tools.ietf.org/html/rfc6071
https://tools.ietf.org/html/rfc6040
https://tools.ietf.org/html/rfc6071
https://tools.ietf.org/html/rfc6151
https://tools.ietf.org/html/rfc6193
https://tools.ietf.org/html/rfc6311
https://tools.ietf.org/html/rfc4868
https://tools.ietf.org/html/rfc6380
https://tools.ietf.org/html/rfc6380

269

RFC 6479, “IPsec Anti-Reply Algorithm Without Bit Shifting,”

January 2012 (Informational)

RFC 6538, “The Host Identity Protocol (HIP) Experiment Report,”

March 2012 (Informational)

RFC 7018, “Auto-Discovery VN Problem Statement and

Requirements,” September 2012 (Informational)

RFC 7146, “Securing Block Storage Protocols over IP: RFC

3723 Requirements Update for IPsec v3,” April 2014 (Proposed

Standard)

RFC 7296, “Internet Key Exchange (IKEv2) Protocol,”
December 2005 (Standards Track)

RFC 7427, “Signature Authentication in the Internet Key
Exchange Version 2 (IKEv2),” October 2014 (Proposed
Standard)

RFC 7634, “ChaCha20, Poly1305 and Their Use in the Internet Key

Exchange Version 2 (IKEv2),” January 2015 (Proposed Standard)

RFC 7815, “Minimal Internet Key Exchange Version 2 (IKEV2)

Initiator Implementation,” March 2016 (Informational)

RFC 7236, “Guidelines on the Cryptographic Algorithms to

Accompany the Usage of Standards GOST R 34.10-2012 and GOST

R 34.11-2012,” October 2017 (Proposed Standard)

RFC 8221, “Cryptographic Algorithm Implementation
Requirements and Usage Guidance for Encapsulating Security
Payload (ESP) and Authentication Header (AH),” October 2017
(Proposed Standard)

RFC 8229, “TCP Encapsulation of IKE and IPsec Packets,” August

2017 (Proposed Standard)

RFC 8247, “Algorithm Implementation Requirements and
Usage Guidance for the Internet Key Exchange Version 2
(IKEv2),” September 2017 (Standards Track)

Chapter 7 IpseC and IKev2

https://tools.ietf.org/html/rfc6479
https://tools.ietf.org/html/rfc6538
https://tools.ietf.org/html/rfc7018
https://tools.ietf.org/html/rfc7146
https://tools.ietf.org/html/rfc7296
https://tools.ietf.org/html/rfc7427
https://tools.ietf.org/html/rfc7634
https://tools.ietf.org/html/rfc7815
https://tools.ietf.org/html/rfc7836
https://tools.ietf.org/html/rfc8221
https://tools.ietf.org/html/rfc8229
https://tools.ietf.org/html/rfc8247

270

 Security Association, Security Association Database,
and Security Parameter Index
A Security Association (SA) is a collection of which protocols and algorithms to use for

authentication and encryption, together with the keys used, for communication in one

direction between two IPsec-enabled nodes (e.g., from Alice to Bob). A different SA is

created for communication in the other direction, between the same two nodes (e.g.,

from Bob to Alice). Each pair of communicating IPsec nodes requires an SA for each

direction that data will be sent between them (normally both directions). Each node

stores both SAs for a connection in its Security Association Database (SADB). It refers

to the SA for outgoing traffic when it sends packets and the SA for incoming traffic when

it receives packets. When a secure connection is set up the first time (or if anything is

changed), then the relevant Security Associations are negotiated and stored.

A Security Association Database (SADB) is a collection of Security Associations, on

a given node. Each IPsec-enabled node has its own SADB (this is not stored in a central

DBMS and in fact does not resemble what most people would call a database – it’s really

more of a simple table). As the node negotiates Security Associations with other nodes, it

stores each new one into its SADB.

The Security Parameter Index (SPI) is an index into the SADB. An SPI together with a

destination IP address uniquely identifies a particular Security Association.

 IPsec Transport Mode and IPsec Tunnel Mode
There are two modes in which a given IPsec connection can operate: Transport Mode

and Tunnel Mode.

In Transport Mode, with AH, only the packet payload and certain fields in the packet

headers (including source and destination IP addresses and source and destination

port numbers) are authenticated. This means the contents of the payload and those

header fields are included in the calculation of the AH cryptographic checksum using

HMAC. None of those fields are modified in any way by IPsec. Therefore, the original

addresses are used for routing of the packet. However, if NAT modifies any of these

header fields as the packet goes through a NAT gateway (which is the normal behavior

of NAT), then the cryptographic checksum will fail when the packet is received (after all,

someone has tampered with the packet contents).

Chapter 7 IpseC and IKev2

271

In IPv4 Transport Mode, the AH packet header is inserted after the IP header, but

before the TCP (or UDP) header, as follows:

 BEFORE APPLYING AH

 IPv4 |orig IP hdr | | |

 |(any options)| TCP | Data |

 AFTER APPLYING AH

 IPv4 |original IP hdr (any options) | AH | TCP | Data |

 |<- mutable field processing ->|<- immutable fields ->|

 |<----- authenticated except for mutable fields ----->|

In IPv6 Transport Mode, the original IP packet header comes first, followed by one

or more extension headers, one of which is the new AH, followed by the TCP (or UDP)

header and then the Data field (payload).

 BEFORE APPLYING AH

 IPv6 | | ext hdrs | | |

 | orig IP hdr |if present| TCP | Data |

 AFTER APPLYING AH

 --

 IPv6 | |hop-by-hop, dest*, | | dest | | |

 |orig IP hdr |routing, fragment. | AH | opt* | TCP | Data |

 --

 |<--- mutable field processing -->|<-- immutable fields -->|

 |<---- authenticated except for mutable fields ----------->|

 * = if present, could be before AH, after AH, or both

In Transport Mode with ESP, only the TCP (or UDP) header and the Data field

(payload) are encrypted. No other header fields are encrypted, or the packet could not

be delivered. Transport mode is used only for host-to-host communications. No IPsec

Chapter 7 IpseC and IKev2

272

gateway is required. Any node involved in a Transport Mode IPsec connection must

have support for IPsec Transport Mode. If automated key exchange is to be used, those

nodes must also support a common key exchange protocol (IKEv1, IKEv2, or KINK).

If available, IKEv2 is preferred. If IKE is used, each node requires an appropriate IPsec

digital certificate that binds the public key to its IP address(es). If KINK is used, then a

Kerberos Key Distribution Center (KDC) must be available to all nodes using it.

In IPv4 Transport Mode with ESP, the original IP header comes first, followed by the

ESP header, followed by the TCP (or UDP) header, followed by the data. With ESP, after

the Data field, there is an ESP trailer and an Integrity Check Value (ICV). Encryption is

done on the TCP (or UDP) header, the Data field (payload), and the ESP trailer. Integrity

(for the ICV) covers those fields plus the ESP header.

 BEFORE APPLYING ESP

 IPv4 |orig IP hdr | | |

 |(any options)| TCP | Data |

 AFTER APPLYING ESP

 IPv4 |orig IP hdr | ESP | | | ESP | ESP|

 |(any options)| Hdr | TCP | Data | Trailer | ICV|

 |<---- encryption ---->|

 |<-------- integrity ------->|

In IPv6 Transport Mode with ESP, the original IP header comes first, followed by one

or more extension headers, one of which is the ESP extension header, followed by the

original TCP (or UDP) header and then the Data field (the packet payload). As with IPv4,

there is an ESP trailer and an ESP ICV. Encryption is done on any extension headers

after the ESP extension header, the TCP (or UDP) header, the Data field (payload), and

the ESP trailer. Integrity (for the ICV) covers those fields plus the ESP header.

 BEFORE APPLYING ESP

 IPv6 | | ext hdrs | | |

 | orig IP hdr |if present| TCP | Data |

Chapter 7 IpseC and IKev2

273

 AFTER APPLYING ESP

 IPv6 | orig |hop-by-hop,dest*,| |dest| | | ESP | ESP|

 |IP hdr|routing,fragment.|ESP|opt*|TCP|Data|Trailer| ICV|

 |<--- encryption ---->|

 |<------ integrity ------>|

 * = if present, could be before ESP, after ESP, or both

In Tunnel Mode (with AH and/or ESP), the entire original IP packet (all headers plus

the payload) is encrypted and/or authenticated. The result is encapsulated into a new

IP packet with new headers. This encapsulation is added to packets on the way out by

an IPsec tunnel gateway and removed on the way at the other end of the network path

by another IPsec tunnel gateway. In between, it looks like a normal IPv4 (or IPv6) packet

that has an odd-looking payload and is routed like any other packet. The IP version of

the inner packet does not have to be the same as the IP version of the outer packet. You

can tunnel IPv6 packets over IPv4 or IPv4 packets over IPv6. The node you connect

to must support the version(s) of IP you send to it, though. After the encapsulation is

removed and the authentication and/or encryption is removed, the resulting packet is

forwarded to the inside of the tunnel gateway, where it continues on to its destination.

In IPv4 Tunnel Mode with AH, the outer IP header comes first (possibly with

options), followed by the new AH header and followed by the original entire packet.

In IPv6 Tunnel Mode with AH, the outer IP header comes first, followed by one or

more extension headers, including the AH extension header, followed by the original

entire packet (which itself may contain extension packet headers, but they won’t be

processed until after the packet is de-tunneled).

 --

 IPv4 | | | orig IP hdr* | | |

 |new IP header * (any options) | AH | (any options) |TCP| Data |

 --

 |<- mutable field processing ->|<------ immutable fields ----->|

 |<- authenticated except for mutable fields in the new IP hdr->|

 --

Chapter 7 IpseC and IKev2

274

 IPv6 | | ext hdrs*| | | ext hdrs*| | |

 |new IP hdr*|if present| AH |orig IP hdr*|if present|TCP|Data|

 --

 |<--- mutable field -->|<--------- immutable fields -------->|

 | processing |

 |<-- authenticated except for mutable fields in new IP hdr ->|

 * = if present, construction of outer IP hdr/extensions and

 modification of inner IP hdr/extensions is discussed in

 the Security Architecture document.

In IPv4 Tunnel Mode with ESP, the outer IP header comes first, followed by the ESP

header, followed by any options from the original packet header, followed by the TCP

(or UDP) header, followed by the Data field (payload). Again, the data is followed by an

ESP trailer and ESP ICV. Encryption covers everything after the ESP header, up to and

including the ESP trailer. The integrity value covers all that plus the ESP header.

In IPv6 Tunnel Mode with ESP, the outer IP packet header comes first followed by

any new packet header extensions, followed by the ESP header and then the entire

original packet. As before, the Data field (payload) is now followed by the ESP trailer and

the ESP ICV. Encryption covers everything after the ESP header, up to and including the

ESP trailer. The integrity value covers all that plus the ESP header.

 BEFORE APPLYING ESP

 IPv4 |orig IP hdr | | |

 |(any options)| TCP | Data |

 AFTER APPLYING ESP

 IPv4 | new IP hdr* | | orig IP hdr* | | | ESP | ESP|

 |(any options)| ESP | (any options) |TCP|Data|Trailer| ICV|

 |<--------- encryption --------->|

 |<------------- integrity ------------>|

 BEFORE APPLYING ESP

Chapter 7 IpseC and IKev2

275

 IPv6 | | ext hdrs | | |

 | orig IP hdr |if present| TCP | Data |

 AFTER APPLYING ESP

 --

 IPv6 | new* |new ext | | orig*|orig ext | | | ESP | ESP|

 |IP hdr| hdrs* |ESP|IP hdr| hdrs * |TCP|Data|Trailer| ICV|

 --

 |<--------- encryption ---------->|

 |<------------ integrity ------------>|

 * = if present, construction of outer IP hdr/extensions and

 modification of inner IP hdr/extensions is discussed in

 the Security Architecture document.

The IPsec tunnel processing can be physically located inside a gateway firewall or

router, or it can be in a node that does just IPsec tunneling, on the inside of an existing

router or firewall. All IPsec-related processing (generating or validating the HMAC

cryptographic checksum and/or packet encryption/decryption) takes place in the

tunneling IPsec node. IPsec Tunnel Mode is primarily used for network-to-network

tunnels, but it can be used for host-to-network communications (e.g., a road warrior

connecting into the home network securely) or even host-to-host communications

(e.g., for private chat or VoIP). If any hosts (as opposed to gateways) are involved in an

IPsec Tunnel Mode connection, those hosts would need to support IPsec Tunnel Mode.

If the tunnel is built between two gateway nodes (network-to-network tunnel), then

any other node in either network can send things through that tunnel to nodes in the

other network without having to know anything about IPsec. If automated key exchange

is to be used, the participating nodes must also support a common key exchange

protocol (IKEv1, IKEv2, or KINK). If available, IKEv2 is preferred. If IKE is used, each

node requires an appropriate IPsec digital certificate that binds the public key to its IP

address(es), for mutual authentication. If KINK is used, then a Kerberos Key Distribution

Center must be available to all nodes using it.

An IPsec tunnel must be set up in the sending and receiving nodes so that the

sending node knows what address to put in the outer packet header. This configuration

would specify things like “All traffic destined for 123.45.56.00/24 is to be tunneled and

Chapter 7 IpseC and IKev2

276

sent to the gateway located at 123.45.67.1” or “Accept IPsec-tunneled traffic from the

node that is located at 87.65.34.21, de-tunnel it, and route the inside packet onto the

LAN.” Regardless of what transport the original traffic used (TCP or UDP), the tunneled

traffic will be over UDP. This introduces additional overhead and can complicate the

built-in error recovery mechanism in TCP. The IP addresses in the outer packet header

are not authenticated.

If IPv4-tunneled traffic crosses any router, the addresses of all nodes must be valid

global unicast IP addresses (although this could be simulated using BINAT with a node

that has a private IP address behind a NAT gateway). It would be possible to create

an IPsec path over IPv4 entirely within a routing domain using private IP addresses.

Basically, there must be a flat address space (or a reasonable facsimile thereof) over the

entire path of the connection. A classic problem with VPNs connecting nodes in disjoint

private networks is that the private address spaces in the two networks must not overlap.

If two companies are both using 10.0.0.0/8 as their private addresses, either VPNs will

not work between them or at least one network must renumber (e.g., to 172.16.0.0/12).

If you have an HQ network and several branch offices, you might want to use 10.0.0.0/16

for HQ, 10.1.0.0/16 for the first branch office, 10.2.0.0/16 for the second branch office,

etc. This would allow up to 256 branch offices, each with up to 65,535 nodes. This way, if

you do want to build VPNs between them someday, there will not be any overlap.

 IPsec over IPv6
In IPv6, none of the issues related to NAT arise, since all nodes can easily obtain global

unicast IPv6 addresses, and the entire world is a single flat address space. IPsec works

beautifully over IPv6, and this is one of the strongest arguments for migrating to dual

stack sooner rather than later. Use the IPv6 side for protocols that require a flat address

space, such as IPsec, SIP, P2P, etc. Use the IPv4 side for legacy applications like web

surfing, email, etc. You can gradually move those over to IPv6 as well.

The IPv6 packet header design supports IPsec very well. There are two packet

header extensions defined, one for AH and one for ESP. The AH extension header

will be inserted if and only if AH is used on that packet. For details, see RFC 4302,

“IP Authentication Header.” The ESP extension header will be inserted if and only

if ESP is used on that packet. For details, see RFC 4303, “IP Encapsulating Security

Payload (ESP).”

Chapter 7 IpseC and IKev2

277

 IPsec in Multicast Networks
It is possible to deploy IPsec in a multicast network. Security Association negotiation is

rather more complicated in a one-to-many connection than in a one-to-one connection.

RFC 5374, “Multicast Extensions to the Security Architecture for the Internet Protocol,”

covers the details. IPsec in multicast networks could allow content providers to control

access to multicast content using ESP and some clever key management. For example,

each valid subscriber could be issued a unique IPsec digital certificate (tied to their set

top box) that would allow decrypting the symmetric session key used to encrypt the

content. If they don’t pay their bill, their certificate could be revoked.

 Using IPsec to Secure L2TP Connections
L2TP (Layer 2 Tunneling Protocol) itself does not provide either privacy or

authentication. RFC 3193, “Securing L2TP Using IPsec,” specifies how to use IPsec in

conjunction with it to add privacy (with ESP) and/or authentication (with AH) to an

L2TP-based system.

 Internet Key Exchange (IKE)
The Internet Key Exchange (IKEv1 and IKEv2) is based on ISAKMP (Internet Security

Association and Key Management Protocol), which is a framework for key exchange.

It uses parts of the Oakley and SKEME (Secure Key Exchange MEchanism for Internet)

protocols within this framework. Oakley describes a series of key exchanges, known as

modes, and specifies things such as perfect forward secrecy for keys, identity protection,

and authentication. It is discussed in RFC 2412, “The Oakley Key Determination

Protocol.” SKEME is a key exchange technique that provides anonymity and quick key

refreshment. There is no RFC that covers SKEME, but there are some papers available

online. There is coverage of the parts of Oakley and SKEME used in IKE in RFCs 2408

and 2409.

IKE uses the Diffie-Hellman Key Agreement protocol to securely exchange a shared

secret, from which symmetric session keys for AH and ESP are derived. IKE is also used

to mutually authenticate nodes to each other. Authentication can be accomplished

with a pre-shared secret (manually distributed to each node) or by use of IPsec digital

certificates (ones that bind IPv4 and/or IPv6 addresses to the public key). Each pair

Chapter 7 IpseC and IKev2

278

of nodes that use IPsec use IKE to do key exchange and mutual authentication, which

results in setting up a Security Association (SA) at each end for the other node in the pair.

IKE is usually implemented as a daemon process (a software application that

starts running when the computer boots and stays running until shutdown) on each

IPsec- enabled node, in user space (the part of memory where user applications

run). IKE communicates via UDP over port 500. There is no client or server role; the

communication is between peers. Either node of a pair can initiate an IKE connection.

The other node of the pair will accept it. The AH and ESP packet processing is embedded

in the TCP/IP stack (specifically in the IP Layer), which usually runs in Kernel Space (the

part of memory where the operating system kernel runs, typically protected from access

by user applications).

Note in the following that Oakley defines modes: Main Mode, Aggressive Mode, and

Quick Mode. ISAKMP defines phases: phase 1 and phase 2. Main Mode and Aggressive

Mode take place during ISAKMP’s phase 1, while Quick Mode takes place during

ISAKMP’s phase 2.

IKE phase 1 establishes an encrypted, authenticated communication channel

between the two parties. It first uses the Diffie-Hellman Key Agreement protocol, which

produces a shared secret. A symmetric session key is derived from the shared secret

by both parties, which is used to encrypt further IKE exchanges. The goal of phase 1

is to create a bidirectional ISAKMP Security Association (SA). Mutual authentication

can be accomplished either using a pre-shared secret or via cryptographic challenge/

response using IPsec public key digital certificates. Either a pre-shared secret or an IPsec

certificate must be installed on each IPsec-enabled node when the system is deployed.

Phase 1 can operate in either Main Mode or Aggressive Mode. Main Mode protects the

identities of the nodes but takes longer. Aggressive Mode is faster but does not protect

the identities of the nodes.

IKE phase 2 uses the secure channel established in phase 1 to negotiate additional

Security Associations (SAs) for services such as IPsec. The output of phase 2 is a pair

of unidirectional SAs (one for traffic from Alice to Bob and one for traffic from Bob to

Alice). On each node, one of these SAs is used for inbound traffic and the other one for

outbound traffic. Phase 2 operates in Quick Mode.

Cryptographic challenge/response is used by each end to authenticate itself to the

other. This is based on public/private key pairs (asymmetric cryptography) and digital

certificates. Each direction works as follows (flipping roles A and B when the second

direction is done):

Chapter 7 IpseC and IKev2

279

Step 1: Node A sends its public key digital certificate to Node B.

Step 2: Node B verifies Node A’s digital certificate by checking its

digital signature, its expiration date, and its revocation status. It

also climbs the chain of trust to a trusted root key. If the identity in

the certificate is an IP address, it must match the source IP address

of the IKE connection.

Step 3: Node B generates a random string and encrypts it using

Node A’s public key (from its digital certificate) and sends it as a

challenge to Node A.

Step 4: Node A decrypts the challenge using its own private key

and returns the result to Node B as its response.

Step 5: Node B compares the response with the original string.

If they match, that is proof that Node A possesses the private

key associated with the public key in Node A’s digital certificate

(without Node A revealing its private key to anyone). This

authenticates Node A to Node B.

An IPsec digital certificate is like a server (SSL) digital certificate or a client digital

certificate. The primary difference is what identity information the public key is bound

to. In a server cert, the identity information is an FQDN (e.g., www.example.com) and an

organization name (in the distinguished name). In a client cert, the identity information

is a person’s name and email address (in the distinguished name). It is also possible

for an IPsec certificate to specifically include IKE as a valid key usage (id_kp_ipsecIKE

attribute). In an IPsec cert, there are several possibilities for the identity:

• Individual IPv4 and/or IPv6 address (ID_IPV4_ADDR and ID_

IPV6_ADDR). These do not work well if the connection traverses

NAT. There is no problem with using IPv6 addresses.

• IPv4 or IPv6 subnet (ID_IPv4_ADDR_SUBNET and ID_IPv6_ADDR_

SUBNET). The same issues are involved if the connection traverses

NAT. For example, you could identify your node as being in the

subnet 2001:418:5403:3000::/64.

Chapter 7 IpseC and IKev2

http://www.example.com

280

• IPv4 or IPv6 address range (ID_IPv4_ADDR_RANGE and ID_IPV6_

ADDR_RANGE). This is used for specifying a block of addresses that

doesn’t happen to fall on (power of 2) subnet boundaries (e.g., all

addresses from 2001:418:5403:3000::100 to 2001:418:5403:3000::200).

• FQDN (ID_FQDN). This depends on trusting the mapping from

FQDN to IP address; hence, DNS should only be used if DNSSEC is

deployed. Otherwise, the resolution from FQDN to IP address must

be handled by some other means, which is trusted. Again, NAT can

cause problems with this.

If IP addresses are specified, during the authentication process, the source IP

address of the IKE connection must match the IP address (byte for byte) in the IPsec

digital certificate. This is similar to SSL/TLS, where the nodename you are connecting to

must match the FQDN in the server certificate. In SSL, if you connect to an alias name or

a numeric IP address, you will get an error.

 Internet Key Exchange Version 2 (IKEv2)
IKEv1 was defined in November 1998. There are still some IPsec implementations that

support only IKEv1, so some IKEv2 implementations also support IKEv1 for backward

compatibility (e.g., RACOON2 in BSD). There were many issues with IKEv1, which led to

the creation of IKEv2 in December 2005. The issues with IKEv1 include the following:

• The specification of IKEv1 was spread over three basic RFCs (2407,

2408, and 2409), plus others for NAT traversal (3715) and so on. In

comparison, almost all of IKEv2 was specified in RFC 4306. The list

of supported cryptographic algorithms was split off into RFC 4307 for

ease of updating the algorithm suite in the future.

• IKEv1 had no support for SCTP or Mobile IP. Both are supported

in IKEv2. For SCTP, see RFC 3554, “On the Use of Stream Control

Transmission Protocol (SCTP) with IPsec.” For Mobile IP, see RFC

4877, “Mobile IPv6 Operation with IKEv2 and the Revised IPsec

Architecture” (section 7.3), and RFC 4555, “IKEv2 Mobility and

Multihoming Protocol (MOBIKE).”

Chapter 7 IpseC and IKev2

281

• IKEv1 had eight distinct initial exchange mechanisms, each of which

had advantages and disadvantages, vs. one four-message initial

exchange in IKEv2.

• IKEv1 included an excessive number of cryptographic algorithms,

which resulted in complex implementation and long (and costly)

certification processes (e.g., Common Criteria and FIPS 140-2). For

details, see RFC 2409, updated by RFC 4109, “Algorithms for Internet

Key Exchange version 1 (IKEv1).” In comparison, IKEv2 reduced

the number of supported cryptographic algorithms. For details, see

RFC 4306, “Cryptographic Algorithms for Use in the Internet Key

Exchange Version 2 (IKEv2).”

• IKEv1 had reliability issues due to poor state management. This

could result in a hung node, requiring Dead Peer Detection (which

was never standardized, leading to interoperability issues). IKEv2

added sequence numbers and acknowledgements to greatly improve

state management.

• IKEv1 had issues with Denial of Service attacks, where connections

from spoofed addresses could cause it to do expensive asymmetric

key processing. IKEv2 does such processing only after it verifies the

validity and existence of a client.

• The IPv6-ready test centers have no certification tests for IKEv1,

but they do for IKEv2. They also have certification tests for IPsec

over IPv6.

Some IPv4 routers (especially ones for home or small office) include an IPsec

Helper function. This routes all IPsec traffic to the first node that negotiates a Security

Association (SA). The assumption is that there is only one IPsec endpoint inside the

home network. This is yet another attempt to make IPsec work over NAT. In IPv6 routers,

there is no need for any IPsec Helper function.

Another issue with NAT involves fragmentation. During IKE, if an IPsec digital

certificate is sent, this often is larger than a single packet, which leads to packet

fragmentation. Many NAT gateways will simply drop fragmented packets, as these are

usually part of a hacking attack. This is never a problem in IPv6.

Chapter 7 IpseC and IKev2

282

It should be obvious by now why there are so many problems using IPsec in the

legacy Second Internet. NAT helped keep the Internet going while IPv6 was being

created, but now that IPv6 is complete and available, we should switch to it at least

for certain protocols (especially IPsec and SIP) rather than create ever more complex

workarounds to fix the problems caused by NAT.

 Kerberized Internet Negotiation of Keys: KINK
There is an alternative to IKE for securely exchanging keys among IPsec-enabled

nodes, called KINK. It is defined in RFC 4430,6 “Kerberized Internet Negotiation of Keys

(KINK).” With IKE, each node needs an IPsec digital certificate to authenticate itself

to other nodes, which is done on a peer-to-peer basis. A full PKI must be deployed to

support the issuance and maintenance of these certificates. With KINK, nodes need

only mutually authenticate with the authentication server of the Key Distribution Center

(KDC) of a Kerberos facility. No IPsec digital certificates are required for each node, and

no PKI is required. However, there must be a Kerberos KDC that can do the necessary

authentication, and all participating IPsec-enabled nodes need client-side support

for Kerberos and KINK. Deploying Kerberos securely can be just as big a challenge

as deploying a PKI. If your nodes will need to connect over IPsec to nodes in other

organizations, KINK is probably not the best way to go. IKE is clearly the preferred key

exchange technology.

 Summary
In this chapter we covered IPsec (IP Layer security) and IKE (Internet Key Exchange).

We compared it with SSL-VPN (which is not an IETF standard and uses HTTPS in

a nonstandard way). With IPv4, IPsec and IKE are blocked by NAT, so SSL-VPN has

become widely used there. In IPv6, there is no NAT to block IPsec and IKE, so it will

quickly replace SSL-VPN.

IKEv1 is now deprecated, so everyone should be using IKEv2 at this point.

It is possible to do mutual authentication with IPsec, which requires use of IPsec

VPN digital certificates at both ends. These are normally tied to the devices, not to users.

6 https://tools.ietf.org/html/rfc4430

Chapter 7 IpseC and IKev2

https://tools.ietf.org/html/rfc4430
https://tools.ietf.org/html/rfc4430

283

There was some confusion among early users of IPv6 that IPsec was mandatory on

all connections. It is mandatory for it to be supported in an IPv6 implementation, but it is

not mandatory to use it on every connection. Therefore, with regard to IPsec, IPv6 is no

more or less secure than IPv4. Either version of IP is more secure if IPsec is used and less

secure if IPsec is not used.

We also covered an alternative to IKE called KINK.

Chapter 7 IpseC and IKev2

285

CHAPTER 8

Transition Mechanisms
This chapter covers a variety of protocols and mechanisms that were created to

simplify the introduction of IPv6 into the Internet. The goal is not to make an abrupt

transition from all-IPv4 to all-IPv6 on some kind of “flag day” (as happened in the

transition from the First Internet to the Second Internet). That would be unbelievably

disruptive and unlikely to succeed. The goal is to gradually add new capabilities that

take advantage of IPv6, or work far better over it (e.g., IPsec VPN, SIP, IPTV,1 and most

other multicast), while continuing to use IPv4 for those things that work tolerably well

over IPv4 with NAT (e.g., web, email, FTP, SSH,2 and most client-server with intermediary

servers). This allows immediate alleviation of the most grievous problems caused by

widespread deployment of NAT and other shortcomings of IPv4 while allowing a longer,

more controlled migration of those protocols that do not benefit as much from IPv6.

Eventually, all protocols and applications will be migrated (with a few exceptions – likely

Skype can never be ported to IPv6, being heavily based on NAT traversal), and IPv4 can

quietly be dropped from operating systems and hardware. However, this will probably be

5–10 years from now. As more and more applications are transitioned to IPv6, that will

take the pressure off the remaining stock of IPv4 addresses.

Most of these transition mechanisms are defined in RFCs as part of the IPv6

standards. There are many mechanisms, some with confusingly similar names, such as

“6in4,” “6to4,” and “6over4,” which are all quite different. Most deployments of IPv6 will

use one or more of these transition mechanisms; none will use all of them. Some of the

transition mechanisms are designed for use in the early phases of the transition, where

there is an “ocean” of IPv4 with small (but growing) islands of IPv6 (e.g., 6in4 tunneling).

Some are for use in the later stages of the transition, where the Internet has flipped into

an “ocean” of IPv6, with small (and shrinking) islands of IPv4 (e.g., 4in6 tunneling, Dual-

Stack Lite). Some are for use in the end stages of the transition where some networks are

1 https://en.wikipedia.org/wiki/IPTV
2 https://en.wikipedia.org/wiki/Secure_Shell

© Lawrence E. Hughes 2022
L. E. Hughes, Third Generation Internet Revealed, https://doi.org/10.1007/978-1-4842-8603-6_8

https://en.wikipedia.org/wiki/IPTV
https://en.wikipedia.org/wiki/Secure_Shell
https://en.wikipedia.org/wiki/IPTV
https://en.wikipedia.org/wiki/Secure_Shell
https://doi.org/10.1007/978-1-4842-8603-6_8

286

“IPv6-only” with no IPv4 present (e.g., NAT64/DNS64 to allow reaching legacy external

IPv4-only servers from an IPv6-only node).

Since 2010, Teredo, ISATAP, and 6over4 have fallen out of favor, while 6in4, 6rd, and

NAT64/DNS64 have become more widely used. 6in4 has the disadvantage that the user

must have at least one public IPv4 address in their network to serve as one endpoint of

the tunnel. These are becoming extremely difficult to obtain. No phones have them, few

residential accounts have any, and even business accounts are getting fewer and fewer of

them over time. Again, the transition was supposed to be complete by 2010, before IPv4

public addresses were totally depleted. 6rd works relatively well even without a public

IPv4 address at the customer site.

A new standard, 464XLAT, has emerged for mobile devices, which allows telcos to

deploy IPv6-only service to customer phones while allowing legacy (IPv4-only) apps

to still work. All recent Android phones include support for 464XLAT. This approach is

being widely deployed in the United States today.

 Relevant Standards for Transition Mechanisms
RFCs related to transition mechanisms (except for Softwires) can be found in the

following.

RFCs from the Softwires working group (Dual-Stack Lite, MAP-E, MAP-T, 4in6) can

be found under Softwires.3

RFC 2473, “Generic Packet Tunneling in IPv6 Specification,”

December 1998 (Standards Track) [4in6]

RFC 2529, “Transmission of IPv6 over IPv4 Domains Without

Explicit Tunnels,” March 1999 (Standards Track) [6over4]

RFC 3053, “IPv6 Tunnel Broker,” January 2001 (Informational)

RFC 3056, “Connection of IPv6 Domains via IPv4 Clouds,”
February 2001 (Standards Track) [6to4]

RFC 3089, “A SOCKS-Based IPv6/IPv4 Gateway Mechanism,” April

2001 (Informational)

3 #_heading=h.4i7ojhp

Chapter 8 transition MeChanisMs

https://tools.ietf.org/html/rfc2473
https://tools.ietf.org/html/rfc2529
https://tools.ietf.org/html/rfc3053
https://tools.ietf.org/html/rfc3056
https://tools.ietf.org/html/rfc3089

287

RFC 3142, “An IPv6-to-IPv4 Transport Relay Translator,” June 2001

(Informational)

RFC 3964, “Security Considerations for 6to4,” December 2004
(Informational) [6to4]

RFC 4038, “Application Aspects of IPv6 Transition,” March 2005

(Informational)

RFC 4213, “Basic Transition Mechanisms for IPv6 Hosts and
Routers,” October 2005 (Standards Track) [Dual Stack, 6in4]

RFC 4241, “A Model of IPv6/IPv4 Dual Stack Internet Access
Service,” December 2005 (Informational)

RFC 4380, “Teredo: Tunneling IPv6 over UDP Through Network

Address Translations (NATs),” February 2006 (Standards Track)

[Teredo]

RFC 4798, “Connecting IPv6 Islands over IPv4 MPLS Using IPv6

Provider Edge Routers (6PE),” February 2007 (Standards Track)

RFC 4942, “IPv6 Transition/Co-existence Security
Considerations,” September 2007 (Informational)

RFC 5158, “6to4 Reverse DNS Delegation Specification,” March

2008 (Informational) [6to4]

RFC 5214, “Intra-Site Automatic Tunnel Addressing Protocol

(ISATAP),” March 2008 (Informational) [ISATAP]

RFC 5569, “IPv6 Rapid Deployment on IPv4 Infrastructures
(6rd),” January 2010 (Informational) [6rd]

RFC 5572, “IPv6 Tunnel Broker with the Tunnel Setup Protocol

(TSP),” February 2010 (Experimental) [TSP]

RFC 5579, “Transmission of IPv4 Packets over Intra-Site
Automatic Tunnel Addressing Protocol (ISATAP) Interfaces,”
February 2010 (Informational)

RFC 5902, “IAB Thoughts on IPv6 Network Address Translation,”

July 2010 (Informational)

Chapter 8 transition MeChanisMs

https://tools.ietf.org/html/rfc3142
https://tools.ietf.org/html/rfc3964
https://tools.ietf.org/html/rfc4038
https://tools.ietf.org/html/rfc4213
https://tools.ietf.org/html/rfc4241
https://tools.ietf.org/html/rfc4380
https://tools.ietf.org/html/rfc4798
https://tools.ietf.org/html/rfc4942
https://tools.ietf.org/html/rfc5158
https://tools.ietf.org/html/rfc5214
https://tools.ietf.org/html/rfc5569
https://tools.ietf.org/html/rfc5572
https://tools.ietf.org/html/rfc5579
https://tools.ietf.org/html/rfc5902

288

RFC 6052, “IPv6 Addressing of IPv4/IPv6 Translators,” October

2010 (Proposed Standard)

RFC 6127, “IPv4 Run-Out and IPv4-IPv6 Co-Existence
Scenarios,” May 2011 (Informational)

RFC 6146, “Stateful NAT64: Network Address and Protocol
Translation from IPv6 Clients to IPv4 Servers,” Aprille 2011
(Proposed Standard)

RFC 6147, “DNS64: DNS Extensions for Network Address
Translation from IPv6 Clients to IPv4 Servers,” April 2011
(Proposed Standard)

RFC 6180, “Guidelines for Using IPv6 Transition Mechanisms
During IPv6 Deployment,” May 2011 (Informational)

RFC 6219, “The China Education and Research Network

(CERNET) IVI Translation Design and Deployment for the IPv4/

IPv6 Coexistence and Transition,” May 2011 (Informational)

RFC 6324, “Routing Loop Attack Using IPv6 Automatic Tunnels:

Problem Statement and Proposed Mitigations,” August 2011

(Informational)

RFC 6343, “Advisory Guidelines for 6to4 Deployment,” August

2011 (Informational)

RFC 6384, “An FTP Application Layer Gateway (ALG) for IPv6-to-

IPv4 Translation,” October 2011 (Proposed Standard)

RFC 6535, “Dual Stack Hosts Using the Bump-In-the-Stack

Technique (BIS),” February 2012 (Informational)

RFC 6586, “Experiences from an IPv6-Only Network,” April 2012

(Informational)

RFC 6654, “Gateway-Initiated IPv6 Rapid Deployment on IPv4

Infrastructures (GI 6rd),” July 2012 (Informational)

Chapter 8 transition MeChanisMs

https://tools.ietf.org/html/rfc6052
https://tools.ietf.org/html/rfc6127
https://tools.ietf.org/html/rfc6146
https://tools.ietf.org/html/rfc6147
https://tools.ietf.org/html/rfc6180
https://tools.ietf.org/html/rfc6219
https://tools.ietf.org/html/rfc6324
https://tools.ietf.org/html/rfc6343
https://tools.ietf.org/html/rfc6384
https://tools.ietf.org/html/rfc6535
https://tools.ietf.org/html/rfc6586
https://tools.ietf.org/html/rfc6654

289

RFC 6889, “Analysis of Stateful 64 Translation,” April 2013

(Informational)

RFC 7021, “Assessing the Impact of Carrier-Grade NAT on
Network Applications,” September 2013 (Informational)

RFC 7050, “Discovery of the IPv6 Prefix User for IPv6 Address

Synthesis,” November 2013 (Standards Track)

RFC 7051, “Analysis of Solution Proposals for Hosts to Learn

NAT64 Prefix,” November 2013 (Informational)

RFC 7084, “Basic Requirements for IPv6 Customer Edge
Routers,” November 2013 (Informational)

RFC 7225, “Discovering NAT64 IPv6 Prefixes Using the Port

Control Protocol (PCP),” May 2014, (Proposed Standard)

RFC 7269, “NAT64 Deployment Options and Experience,” June
2014 (Informational)

RFC 7648, “Port Control Protocol (PCP) Proxy Function,”

September 2015 (Proposed Standard)

RFC 7857, “Updates to Network Address Translation (NAT)
Behavioral Requirements,” April 2016 (Best Current Practice)

RFC 7915, “IP/ICMP Translation Algorithm,” June 2016

(Standards Track)

RFC 8215, “Local-Use IPv4/IPv6 Translation Prefix,” August 2017

(Informational)

RFC 8219, “Benchmarking Methodology for IPv6 Transition
Technologies,” August 2017 (Informational)

 Transition Mechanisms
There are four general classes of transition mechanisms to help us get from all-IPv4

through a mixture of IPv4 and IPv6 (“dual stack”) to eventually all-IPv6.

Chapter 8 transition MeChanisMs

https://tools.ietf.org/html/rfc6889
https://tools.ietf.org/html/rfc7021
https://tools.ietf.org/html/rfc7050
https://tools.ietf.org/html/rfc7051
https://tools.ietf.org/html/rfc7084
https://tools.ietf.org/html/rfc7225
https://tools.ietf.org/html/rfc7269
https://tools.ietf.org/html/rfc7648
https://tools.ietf.org/html/rfc7648
https://tools.ietf.org/html/rfc7915
https://tools.ietf.org/html/rfc8215
https://tools.ietf.org/html/rfc8219

290

 Co-existence (Dual Stack and Dual-Stack Lite)
Co-existence involves all client and server nodes supporting both IPv4 and IPv6 in their

network stacks. The only mechanisms in this group are dual stack and Dual-Stack Lite.

This is the most general solution but also involves running essentially two complete

networks that share the same infrastructure. It does not double network traffic, as some

administrators fear. Any new connection over IPv6 is typically one less connection over

IPv4. Over time, an increasing percentage of the traffic on any network will be IPv6, but

the only increase in overall traffic will be from the usual suspects (increasing number of

applications, users, and/or customers), not from supporting dual stack. In fact, at some

point you will see the total amount of IPv4 traffic begin to decrease. You may see an

increase in incoming customer connections (on devices that support IPv6) due to the

ability of every IPv6 to now also accept connections. When YouTube started accepting

connections over IPv6, there was an enormous and almost instant jump in IPv6 traffic on

the backbone. Many nodes are ready to begin using IPv6 as soon as content is available,

because of automated tunneling. In many cases, the end users might not even have been

aware that they were now connecting over IPv6.

As an example, Facebook reports that over 90% of connections from US mobile

phones are now over IPv6. Few of these uses are even aware that they have IPv6 service.

There is a recent variant of the dual-stack concept called Dual-Stack Lite that uses

the basic dual-stack design but adds in IP-in-IP tunneling and ISP-based Network

Address Translation to allow an ISP to share precious IPv4 addresses among multiple

customers. It is defined in RFC 6333,4 “Dual-Stack Lite Broadband Deployments

Following IPv4 Exhaustion,” August 2011. There is additional information in RFC 6908,5

“Deployment Considerations for Dual-Stack Lite,” March 2013, and in RFC 7870,6 “Dual-

Stack Lite (DS-Lite) Management Information Base (MIB) for Address Family Transition

Routers (AFTRs),” June 2016. In my previous book (The Second Internet), there was only

an Internet Draft on Dual-Stack Lite.

4 https://tools.ietf.org/html/rfc6333
5 https://tools.ietf.org/html/rfc6908
6 https://tools.ietf.org/html/rfc7870

Chapter 8 transition MeChanisMs

https://tools.ietf.org/html/rfc6333
https://tools.ietf.org/html/rfc6908
https://tools.ietf.org/html/rfc7870
https://tools.ietf.org/html/rfc6333
https://tools.ietf.org/html/rfc6908
https://tools.ietf.org/html/rfc7870

291

Figure 8-1. Example dual-stack network

 Tunneling
Tunneling involves creating IP-in-IP tunnels with a variety of mechanisms to allow

sending IPv6 traffic over existing IPv4 infrastructures by adding an IPv4 packet header to

the front of an entire IPv6 packet. This treats the entire IPv6 packet, including IPv6 packet

header(s), TCP/UDP header, and payload fields, as a “black box” payload of an IPv4

packet. In the later phases of the transition, it reverses this: it treats an entire IPv4 packet,

including IPv4 packet header and options, TCP/UDP header, and payload fields, as a

“black box” payload of an IPv6 packet. Some of these tunnel mechanisms are “automatic”

(no setup required). Others require manual setup. Some require authentication, while

others do not. The benefit is to leverage the existing IPv4 infrastructure as a transport

for IPv6 traffic, without having to wait for ISPs and equipment vendors to support IPv6

everywhere before anyone can start using it. This allows early adopters to deploy nodes

and entire networks today, regardless of whether or not their ISP supports IPv6 today. In

some cases (e.g., tunnels to a gateway router or firewall), when the ISP does provide dual-

stack service, it is a simple process to change from tunneled service to direct service, and

the process is largely transparent to inside users. There are several organizations providing

free tunneled IPv6 service (using various tunnel mechanisms) during the transition, to

help with the adoption of IPv6. Tunneling mechanisms include 6in4, 4in6, 6to4, 6over4,

and Teredo. TSP has fallen by the way. There are many operating system features and

installable client software available to make use of these tunneling mechanisms.

Chapter 8 transition MeChanisMs

292

Figure 8-2. Typical 6in4 tunnel

 Translation
This is basically Network Address Translation (with all its attendant problems), this

time between IPv4 and IPv6 (as opposed to the more traditional NAT, which is IPv4 to

IPv4). An IPv6-to-IPv4 translation gateway allows an IPv6-only internal node to access

external IPv4-only nodes and allow replies from those legacy IPv4 nodes to be returned

to the originating internal IPv6 node. Connections from an internal IPv6-only node to

external IPv6-only or dual-stack nodes would be done as usual over IPv6 (without going

through the translation gateway). This would be useful for deploying IPv6-only nodes in

a predominantly IPv4 world. An IPv4-to-IPv6 gateway would allow an IPv4-only internal

node to access external IPv6-only nodes and allow replies from those external IPv6

nodes to be returned to the internal IPv4-only node. Connections from an internal IPv4-

only node to external IPv4-only nodes, or to dual-stack nodes, would be done as usual

over IPv4 (without going through the translation gateway). This would be useful for

deploying IPv4-only nodes in a predominantly IPv6 world. Some of these mechanisms

require considerable modification to (and interaction with) DNS, such as NAT-PT and

NAT64 + DNS64.

There are two broad classes of Network Address Translation between IPv4 and IPv6 –

those that work at the IP Layer and are transparent to upper layers and protocols and

those that work at the Application Layer (i.e., Application Layer gateways, also called

proxies). The IP Layer mechanisms need only be implemented once, for all possible

Application Layer protocols. Unfortunately, they also have the most technical issues.

Chapter 8 transition MeChanisMs

293

Figure 8-3. Typical NAT64/DNS64 translation

There has been a lot of work since 2010 on NAT64/DNS64, to provide access to

legacy IPv4 nodes from otherwise IPv6-only networks via a NAT64 gateway on the

network border. This was experimental and not very useful at the time of my previous

book. NAT64 is specified in RFC 6146,7 “Stateful NAT64: Network Address and Protocol

Translation from IPv6 Clients to IPv4 Servers,” April 2011. There is more information

available in RFC 7269,8 “NAT64 Deployment Options and Experience,” June 2014. There

are several commercial and open source implementations of NAT64 gateways. NAT64

requires use of DNS64 by all clients using the gateway. DNS64 is a variant of DNS,

specified in RFC 6147,9 “DNS64: DNS Extensions for Network Address Translation from

IPv6 Clients to IPv4 Servers,” April 2011.

464XLAT is specified in RFC 6877,10 “464XLAT: Combination of Stateful and Stateless

Translation,” April 2013.

7 https://tools.ietf.org/html/rfc6146
8 https://tools.ietf.org/html/rfc7269
9 https://tools.ietf.org/html/rfc6147
10 https://tools.ietf.org/html/rfc6877

Chapter 8 transition MeChanisMs

https://tools.ietf.org/html/rfc6146
https://tools.ietf.org/html/rfc7269
https://tools.ietf.org/html/rfc6147
https://tools.ietf.org/html/rfc6877
https://tools.ietf.org/html/rfc6146
https://tools.ietf.org/html/rfc7269
https://tools.ietf.org/html/rfc6147
https://tools.ietf.org/html/rfc6877

294

As pointed out in the 2014 OECD report, the big benefits from IPv6 deployment will

come when you can phase out IPv4 (at least in the main network). There will be legacy

(IPv4-only) nodes for some time to come that you might want to connect to, but that

can be handled by a NAT64/DNS64 gateway at the border of an IPv6-only network. Even

though there are problems with NAT6411 (as with any NAT), where there are problems

(e.g., VoIP, IPsec), people can switch to IPv6 for those protocols, while the easy stuff will

work via NAT64. Over time, as more and more external sites support IPv6, there will be

less and less need for NAT64. Meanwhile, we can get IPv4 out of our product networks,

which will make network management and security much better and cheaper.

The home and corporate networks of the near future will be IPv6-only with access to

legacy nodes via NAT64/DNS64.

 Proxies (Application Layer Gateways)
The other kind of translation mechanism takes place at the Application Layer. They are

called proxies, because they do things “on behalf of” other servers, much like a stock

proxy voter will vote your stock on your behalf. They are also called Application Layer

gateways (ALGs) because they are gateways (they do forwarding of traffic from one

interface to another), and they work at the Application Layer of the TCP/IP four-layer

model. They don’t have the serious problems found in IP Layer translation mechanisms,

such as dealing with IP addresses embedded in protocols (like SIP or FTP). However,

there are some problems unique to proxies.

A proxy must be written for every protocol to be translated, and often even different

proxies for incoming and outgoing traffic, even for a given protocol (e.g., “SMTP in”

and “SMTP out”). Typically, each proxy is a considerable amount of work. Often only

a handful of the most important protocols will be handled by proxies, while all other

protocols are handled by packet filtering.

Writing a proxy involves implementing most or all of the network protocol, although

sometimes in a simplified manner (e.g., there is no need to store incoming email

messages in a way suitable for retrieval by POP3 or IMAP; they just need to be queued by

destination domain for retransmission by SMTP).

Proxies can support SSL/TLS, but the secure connection extends only from client

to proxy and/or from proxy to server (not directly from client to server). This includes

11 www.cisco.com/web/learning/le21/le39/docs/TDW_130_Prezo.pdf

Chapter 8 transition MeChanisMs

https://www.cisco.com/web/learning/le21/le39/docs/TDW_130_Prezo.pdf
http://www.cisco.com/web/learning/le21/le39/docs/TDW_130_Prezo.pdf

295

both encryption (the traffic will be in plain text on the proxy) and authentication

(authentication is only from server to proxy and/or proxy to client, not from server to

client). Typically, another digital certificate is required for the proxy server if it supports

SSL/TLS (in addition to the one for the server).

Proxies can’t work with traffic secured in the IP Layer (IPsec ESP), without access to

the keys necessary to decrypt the packets.

Throughput is typically lower than with a packet filtering firewall, due to the need to

process the protocol. Of course, the security is much better – it won’t let through traffic

that is not a valid implementation of the specific protocol, while packet filtering might let

through almost anything so long as it uses the right port. There is typically no problem

dealing with IP addresses embedded in a protocol.

In many cases, the proxies are not transparent, which means the client must know

that it is talking not directly to a server, but via an intermediate proxy. Many protocols

support this kind of operation, for example, HTTP provides good support for an HTTP

proxy. Basically, there must be a way for a client to specify not only the nodename of the

final server but also the address or nodename of the proxy server. In a browser (HTTP

client), the nodename of the final server is specified as usual, and the address of the

proxy server is specified during the browser configuration (“use a proxy, which is at

address w.x.y.z”). When configured for proxy operation, the browser actually connects to

the proxy address and relays the address of the final server to the proxy. The proxy then

makes an ongoing connection to the final web server. Some protocols have no support

for proxy-type operation (e.g., FTP). It is possible for a firewall to recognize outgoing

traffic over a given port and automatically redirect it to a local proxy.

Application Layer gateways (e.g., for SIP, HTTP, and SMTP) work quite well. Basically,

they accept a connection on one interface of a gateway and make a second “ongoing”

connection (on behalf of the original node) via another interface of the same gateway.

It is easy for the two connections to use different IP versions (e.g., translate IPv4 traffic

to IPv6 traffic or vice versa). In some ALGs an entire message might be spooled onto

temporary storage (e.g., email messages) and then retransmitted later. In other cases,

the ongoing connection would be simultaneous with the incoming connection and

bidirectional (e.g., with HTTP). This would correspond to a human “simultaneous

translator” who hears one language (e.g., Chinese), translates, and simultaneously

speaks another language (e.g., English).

Chapter 8 transition MeChanisMs

296

Another example of this is an outgoing web proxy, which could accept connections

from either IPv4-only or IPv6-only browsers and then make an ongoing connection

to external servers using whatever version of IP those servers support (based on DNS

queries). Again, this is a traditional (forward) web proxy, with the addition of IP version

translation. This would allow IPv4-only or IPv6-only clients to access any external web

server, regardless of IP version they support. Such a proxy could of course also provide

any services normally done by an outgoing web proxy, such as caching and URL filtering.

Another example of this is a dual-stack façade that would accept incoming

connections from outside over either IPv4 or IPv6 and make an ongoing connection over

IPv4 to an internal IPv4-only (or over IPv6 to an IPv6-only) web server. It would relay the

web server’s responses using whatever version of IP was used in the original incoming

connection to the client. This is a typical “reverse” web proxy, with the addition of IP

version translation. This kind of translation can help you provide dual-stack versions

of your web services quickly and easily, without having to dual-stack the actual servers

themselves. The same technique could allow you to make your email services dual stack

without having to modify your existing mail server.

 Dual Stack
Dual stack is defined in RFC 4213,12 “Basic Transition Mechanisms for IPv6 Hosts and

Routers,” October 2005. A dual-stack node should include code in the Internet Layer of

its network stack to process both IPv4 and IPv6 packets. Typically, there is a single Link

Layer that can send and receive either IPv4 or IPv6 packets. The Link Layer also contains

both the IPv4 Address Resolution Protocol (ARP) and the IPv6 Neighbor Discovery

(ND) protocol. The Transport Layer has only minor differences in the way IPv4 and

IPv6 packets are handled, primarily concerning the way the TCP or UDP checksum is

calculated (the checksum also covers the source and destination IP addresses from the

IP header, which of course is different in the two IP versions). The Application Layer

code can make calls to routines in the IPv4 socket API, the IPv6 basic socket API, and the

IPv6 advanced socket API. IPv4 socket functions will access the IPv4 side of the IP Layer,

and IPv6 socket functions will access the IPv6 side of the IP Layer.

12 https://tools.ietf.org/html/rfc4213

Chapter 8 transition MeChanisMs

https://tools.ietf.org/html/rfc4213
https://tools.ietf.org/html/rfc4213

297

Figure 8-4. Four-layer network model for dual stack

The node should include the ability to do conventional IPv4 network configuration

(including a node address, default gateway, subnet mask, and addresses of DNS servers,

all as 32-bit IPv4 addresses). This configuration information can be done manually,

via DHCPv4, or some combination thereof. The node should also include the ability to

do conventional IPv6 network configuration (including a link-local IP address, one or

more global unicast addresses, a default gateway, the subnet length, and the addresses

of DNS servers, all 128-bit IPv6 addresses). This configuration information can be done

manually, automatically via Stateless Address Autoconfiguration, automatically by

DHCPv6, or by some combination thereof. There is usually a way to disable either the

IPv6 functionality (in which case the node behaves as an IPv4-only node) or the IPv4

functionality (in which case the node behaves as an IPv6-only node). There may or may

not also be some tunneling mechanism involved. If the node is in a native dual-stack

network, no tunnel mechanism is seen by the user (any tunnel involved will be between

the user’s Customer Premises Equipment and the IPv6 service provider, not inside the

network). If the node is in an IPv4-only or an IPv6-only network, there will need to be a

tunnel mechanism to bring in traffic of the other IP version (typically 6in4, 4in6, or 6rd).

IPv4-only and IPv6-only applications (client, server, and peer-to-peer) will work just

fine on a dual-stack node. They will make calls to system functions on only one side of

the network stack. They will not gain any new ability to accept or make connections over

the other IP version just because they are running on a dual-stack node.

Chapter 8 transition MeChanisMs

298

A dual-stack client can connect to IPv4-only servers, IPv6-only servers, or dual-stack

servers. A dual-stack server can accept connections from IPv4-only clients, IPv6-only

clients, or dual-stack clients. Dual stack is the most complete and flexible solution. The

only issues are the additional complexity of implementation and deployment and the

additional memory requirements. For very small devices (typically clients), dual stack

may not be an option. Some critics of IPv6 claim that dual stack is not viable because

we are running out of IPv4 addresses. What they are missing is that there are plenty of

private IPv4 addresses for use behind NAT, and the IPv4 side of dual-stack systems can

be used only for protocols where this is not a problem while using their IPv6 side for

those protocols that are incompatible with NAT (IPsec VPN, SIP, P2P, etc.) or can benefit

from other IPv6 features, which are superior to their IPv4 equivalents, such as multicast

and QoS (for SIP, IPTV, conferencing, P2P Direct, etc.). Also, any application running

on that node that needs to accept a connection from external nodes (e.g., your own web

server) can use a global unicast IPv6 address (for IPv6-capable clients). If you want to

accept connections from IPv4 clients, you would have needed a globally routable IPv4

address for that anyway or would need to deploy NAT traversal (with or without dual

stack). Dual stack cannot create more globally routable IPv4 addresses. It can, however,

allow you to easily make use of an almost unlimited number of globally routable IPv6

addresses (both unicast and multicast). It is common for only a few nodes in a dual-stack

network to have IPv4 public addresses (or forwarding via NAT from a border node with a

public IPv4 address), but every node can have a public (global) IPv6 address. If incoming

connections are not blocked at a firewall, those nodes are accessible over IPv6 from

anywhere on the global IPv6 Internet.

A key part of a dual-stack network is a correctly configured dual-stack DNS service.

It should not only be able to handle both A and AAAA records (as well as reverse PTR

records for IPv4 and IPv6); it should also be able to accept queries and do zone transfers

over both IPv4 and IPv6. A dual-stack network typically uses DHCPv4 to assign IPv4

addresses to each node and either Stateless Address Autoconfiguration and/or DHCPv6

to assign IPv6 addresses to each node. A dual-stack firewall can bring in either direct

dual-stack service (both IPv4 and IPv6 traffic) from an ISP (if available), routing both

to the inside network; or it can bring in direct IPv4 traffic from an ISP and terminate

tunneled IPv6 traffic (from a “virtual” ISP usually different from the IPv4 ISP) and route

both IPv4 and IPv6 into the inside network. In either case (direct dual-stack service or

tunneled IPv6 with endpoint in the gateway), inside nodes appear to have native dual-

stack service and require no support for tunneling.

Chapter 8 transition MeChanisMs

299

The DNS support does not require any modifications to a standard DNS server (e.g.,

BIND). Virtually all current DNS servers and appliances have (at least some) support for

IPv6. DNS just needs to be able to perform its normal forward and reverse lookups with

either IPv4 (A/PTR) or IPv6 (AAAA/PTR) resource records. There is no need for the DNS

server to do nonstandard mappings between IPv4 and IPv6 addresses as is required with

most IP Layer translation schemes (e.g., NAT64 + DNS64).

Migrating IPv4-only client or server applications to IPv6-only is quite simple. There

is essentially a one-to-one mapping of function calls from the IPv4 socket API to similar

ones in the IPv6 basic socket API. Of course, more storage is required for each IP address

in data structures (4 bytes for IPv4 addresses, 16 bytes for IPv6 addresses).

Modifying either IPv4-only clients or IPv4-only servers to dual-stack operation is

somewhat more complicated. A dual-stack client must be modified to retrieve multiple

addresses from a forward lookup (IPv4 and/or IPv6) and try connections sequentially

to the returned address list until a connection is accepted. The default (assuming IPv6

connectivity is available) is to attempt connections over IPv6 first. If DNS advertises an

IPv6 address and the node supports IPv6, but for some reason the client is unable to

connect over IPv6 (e.g., the tunnel is down), there will be a 30-second timeout and then

a fallback to IPv4. A dual-stack server must listen for connections on both IPv4 and IPv6

and process connections from either. It is also possible to deploy two copies of each

server, one being IPv4-only and the other IPv6-only. This might involve cross-process file

locking on any shared resource, such as a message store. Either approach to providing

dual-stack servers will work fine, and the user experience will be the same. Conditional

compilation could be used to have a single source code tree create both an IPv4-only

and an IPv6-only executable (depending on settings of system variables at compilation

time). For most server designs (process per connection or thread per connection), the

split model (an IPv4-only server and an IPv6-only server) would roughly double the

memory footprint compared with a single dual-stack server.

There has been an improvement on this scheme since 2010 called “Happy Eyeballs.”

The first version of this was specified in RFC 6555,13 “Happy Eyeballs: Success with

Dual-Stack Hosts,” April 2012. The second version of this was specified in RFC 8305,14

“Happy Eyeballs Version 2: Better Connectivity Using Concurrency,” December 2017.

This mechanism is actually implemented in clients, especially web browsers. It usually

connects over both IPv4 and IPv6 and uses whichever one responds first (with some

13 https://tools.ietf.org/html/rfc6555
14 https://tools.ietf.org/html/rfc8305

Chapter 8 transition MeChanisMs

https://tools.ietf.org/html/rfc6555
https://tools.ietf.org/html/rfc8305
https://tools.ietf.org/html/rfc6555
https://tools.ietf.org/html/rfc8305

300

allowance for a slightly slow IPv6 response). The results of this measurement are stored,

and that IP version is used for future connections to that server for some time. I have

found that sometimes even if I have IPv6 and the server is IPv6, Happy Eyeballs will

choose to connect over IPv4 (which violates the prior standard that IPv6 is preferred).

This also impacts the statistics on server access over IPv6 (as seen on Google IPv6

stats). It would be nice if there were some way to disable Happy Eyeballs on a browser

for people who know what they are doing, but no browser offers that option. It is

permanently ON, on every browser I’ve tested. There is an implicit assumption that there

is no difference in IPv6 and IPv4 (at least for web), which may not always be true. I may

want to provide a better or more complete experience to people who connect over IPv6,

but with Happy Eyeballs, the user has not control over this, unless they disable IPv4 on

their node, which may cause other issues.

Most open source servers today have good support for dual-stack operation. These

include the Apache web server, Postfix SMTP server, Dovecot IMAP/POP3 mail access

servers, etc. If you are a developer and want to see examples of how to deploy dual-

stack servers, there are numerous examples available in open source. Most open source

client software also has good support for IPv6 and dual stack. These include the Firefox

web browser, Thunderbird email client, etc. The open source community has done an

excellent job of supporting the migration to IPv6. Both the original IPv4-only socket

API and the newer IPv6 socket APIs are readily available on all UNIX and UNIX-like

platforms. The documentation for the newer IPv6 socket APIs is in RFC 3493,15 “Basic

Socket Interface Extensions for IPv6,” and RFC 3542,16 “Advanced Sockets Application

Program Interface (API) for IPv6.” There is also RFC 5014,17 “IPv6 Socket API for Source

Address Selection,” and RFC 4584,18 “Extension to Sockets API for Mobile IPv6.”

Virtually all Microsoft server products (since 2007) have had good support for dual-

stack operation. The Azure Cloud service has been promising IPv6 support from the

beginning, with very little progress. You can use load balancers to map an IPv6 address

to an IPv4 address on the Azure VM, but you cannot configure an IPv6 address or make

connections to IPv6 nodes, from an Azure node. AWS has provided at least some support

for IPv619 for some time. Microsoft products that support IPv6 well include Windows

15 https://tools.ietf.org/html/rfc3493
16 https://tools.ietf.org/html/rfc3542
17 https://tools.ietf.org/html/rfc5014
18 https://tools.ietf.org/html/rfc4584
19 http://thirdinternet.com/recipes-for-amazon-web-services-aws/

Chapter 8 transition MeChanisMs

https://tools.ietf.org/html/rfc3493
https://tools.ietf.org/html/rfc3542
https://tools.ietf.org/html/rfc5014
https://tools.ietf.org/html/rfc4584
http://thirdinternet.com/recipes-for-amazon-web-services-aws/
http://thirdinternet.com/recipes-for-amazon-web-services-aws/
https://tools.ietf.org/html/rfc3493
https://tools.ietf.org/html/rfc3542
https://tools.ietf.org/html/rfc5014
https://tools.ietf.org/html/rfc4584
http://thirdinternet.com/recipes-for-amazon-web-services-aws/

301

Server 2008 R2 and later (and all its components, such as DNS, file and printer sharing,

etc.), Exchange Server 2007 or later, and many others. Their client operating systems

have had good support for IPv6 since Vista. For Microsoft developers, both the original

IPv4-only socket API (Winsock) and the new IPv6 socket APIs (basic and advanced) are

available as part of the standard Microsoft developer libraries.

 Tunneling
Tunneling is very different from translation – the packets from the foreign IP are sent,

complete with packet headers, as the Data field of packets of the other IP. For example,

6in4 packets have an IPv4 header, followed by an IPv6 header and IPv6 body. 4in6

packets have an IPv6 header, followed by an IPv4 header and IPv4 body. Once they reach

the end of the tunnel, the extra header is stripped off, and the inside packet is routed on

its way.

Figure 8-5. How 6in4 tunnels work

Chapter 8 transition MeChanisMs

302

Figure 8-6. 6in4 tunneling – capture of IPv6 Echo Request showing nested
structure

If tunneled service is brought into the network by a gateway device (typically the

gateway router or firewall), which contains the tunnel endpoint, the internal network is

a native dual-stack network from the viewpoint of all internal nodes. No internal node

needs to have support for any tunneling mechanism. If at some point the tunneled

service is replaced with direct service (both IPv4 and IPv6 service direct from your ISP), a

minor reconfiguration at the gateway is all that is required. Internal nodes will probably

not require any reconfiguration at all. They will typically have a new IPv6 prefix (unless

you were getting tunneled service from your ISP), so you will likely have to update all

forward and reverse address references in your DNS server (only for IPv6 addresses), to

reflect the new IPv6 prefix. If your DNS server supports instant prefix renumbering like

Sixscape DNS, this is a quick, painless process. If you are using DHCPv6 in stateful mode

(where it assigns IP addresses) in conjunction with dynamic DNS registration, even DNS

changes due to change of IPv6 prefix may happen automatically.

A tunnel mechanism has both a server side and a client side. The server side typically

can accept one or more connections from tunnel clients. It is also commonly called a

Tunnel Broker. A tunnel client typically makes connections to a single tunnel server.

Some such connections (e.g., with 6in4) are not authenticated (although the server

Chapter 8 transition MeChanisMs

303

can typically be restricted to accepting connections only from specific IP addresses

or address ranges). Some such connections include authentication of the client to the

server before the tunnel will begin operation. Some connections (e.g., 6in4) require

a globally routable IPv4 address on the client (although this can be the same address

as the hide-mode NAT address). Other tunnel clients (e.g., 6rd) will work behind NAT,

even with a private address. These include a NAT traversal mechanism in the client,

and typically all tunneled packets are carried over UDP. Once a tunnel is created, it is

bidirectional. Packets can be sent either upstream or downstream. From a hop count

perspective, the tunnel counts as one hop, no matter how many hops the tunneled

packets traverse.

Typical Product Support for Tunneling: pfSense Open Source Dual-Stack
Firewall

As an example of a typical product that includes support for tunneling, pfSense20

is an open source dual-stack firewall. On the IPv4 side, it includes typical firewall

capabilities including routing, filtering by port and address, stateful packet inspection,

and various forms of NAPT (hide mode, BINAT or 1:1, and port forwarding). On the

IPv6 side, it includes all that (except for NAPT), plus a Router Advertisement Daemon

(to enable Stateless Address Autoconfiguration) and 6in4 server and client modes.

You could use the 6in4 client mode to bring in IPv6 tunneled service from any 6in4

virtual ISP (e.g., Hurricane Electric21). You could create your own IPv6 virtual ISP using

pfSense’s 6in4 tunnel server mode. For example, you could provide tunneled IPv6

service from your HQ or collocation facility to various branches, using the 6in4 tunnel

server at HQ and the 6in4 tunnel clients at each branch. You can carve off any number of

“/64” subnets into each branch office. For example, you could split a “/48” block into 16

“/52” blocks and route one “/52” block into each branch office.

Because the client-mode tunnel endpoint is located inside a firewall node, incoming

IPv6 packets from the tunnel can be filtered and routed into any inside network(s).

Outgoing IPv6 packets from any internal network can be filtered and routed out the

tunnel to the outside world (via the same 6in4 tunnel).

The server-mode tunnel endpoint is also located inside a firewall node, so the

firewall’s routing capabilities allow you to easily route any block of addresses from the

outside world into any tunnel (and hence to branch offices) and outgoing packets (from

tunnels coming from branch offices) to the outside world. Currently there is no support

20 www.pfsense.org/
21 https://tunnelbroker.net/

Chapter 8 transition MeChanisMs

https://tunnelbroker.net/
http://www.pfsense.org/
https://tunnelbroker.net/

304

for OSPFv3 or BGP4+, so you would need to relay outgoing IPv6 traffic onward via an ISP

(or virtual ISP) that can do further routing.

Because the tunnel mechanism used (6in4) is an IETF standard,22 pfSense’s tunnels

will interoperate with server- or client-mode 6in4 tunnel endpoints on any other

vendor’s products or even on other open source routers or firewalls.

 6in4 Tunneling
RFC 421323 (in addition to specification for dual stack) specifies 6in4 tunneling

(unfortunately they use the term “6over4” when you might recognize “6in4,” which

is very confusing). Technically, 6in4 is a tunneling mechanism. 6over4 is a transition

mechanism that uses 6in4 tunneling to create a virtual IPv6 link over an IPv4 multicast

infrastructure (see RFC 2529,24 “Transmission of IPv6 over IPv4 Domains Without

Explicit Tunnels,” March 1999). This book will use the term 6in4 unless we are

specifically talking about 6in4 tunnels over IPv4 multicast. 6in4 is also sometimes

referred to as “Protocol 41” tunneling. 6in4 tunneling requires both ends of the tunnel

to have globally routable IPv4 addresses (neither tunnel endpoint can be behind NAT).

It is possible for a firewall that is using a globally routable IPv4 address for HIDE-mode

NAT (with multiple internal nodes hidden behind it) to use that same address as one

endpoint of a 6in4 tunnel.

6in4 Encapsulation
This process is done to “push packets into the tunnel” for packets going from either

end of the tunnel to the other. The basic idea is to prepend a new IPv4 packet header

to a complete IPv6 packet (which itself consists of the basic IPv6 header, zero or more

extension headers, a TCP or UDP header, and a payload) and treat the entire IPv6 packet

as a “black box” payload for the IPv4 packet.

The encapsulation of an IPv6 datagram in IPv4 for 6in4 tunneling is shown in the

following.

22 https://tools.ietf.org/html/rfc4213
23 https://tools.ietf.org/html/rfc4213
24 https://tools.ietf.org/html/rfc2529

Chapter 8 transition MeChanisMs

https://tools.ietf.org/html/rfc4213
https://tools.ietf.org/html/rfc4213
https://tools.ietf.org/html/rfc2529
https://tools.ietf.org/html/rfc4213
https://tools.ietf.org/html/rfc4213
https://tools.ietf.org/html/rfc2529

305

Figure 8-7. Example of 6in4 encapsulation

The new IPv4 packet header is constructed as follows (from the RFC):

IP Version

4 (the encapsulating packet is IPv4)

IP Header Length

5 (in 32-bit words, so 20 bytes, and no IPv4 options are used in the

encapsulating header)

Type of Service

0 unless otherwise specified (see RFC 2983 and RFC 3168 for

details)

Total Length

IPv6 payload length plus IPv6 header length (40) plus IPv4 header

length (20), so IPv6 payload length + 60

Identification

Generated uniquely as for any IPv4 packet

Flags

DF (Don’t Fragment) flag set as specified in section 3.2 of

RFC 4213

MF (More Fragments) flag set as necessary if fragmenting

Fragment Offset

Set as necessary if fragmenting

Chapter 8 transition MeChanisMs

306

Time To Live (TTL)

Set as described in section 3.3 of RFC 4213

Protocol

41: This is the defined payload type for IPv6 tunneled over

IPv4 and is used regardless of whether the IPv6 transport is

UDP or TCP.

Header Checksum

Calculated as usual for an IPv4 packet header

Source Address

An IPv4 address of the encapsulator: either configured by the

administrator or an address of the outgoing interface

Destination Address

IPv4 address of the tunnel endpoint (i.e., the client side of

the tunnel)

6in4 Decapsulation
This is done for all packets received over the tunnel from the other end. The basic

idea is to strip the outer (IPv4) packet header off (and discard it) and then handle what is

left (the original IPv6 packet) as native IPv6 traffic.

From the RFC: When a dual-stack node receives an IPv4 datagram that is addressed

to one of its own IPv4 addresses (or a joined multicast group address), which has a

Protocol field of 41 (tunneled IPv6), the packet must be verified to belong to a configured

tunnel interface (according to source/destination addresses), be reassembled (if it was

fragmented), and have the IPv4 header removed, and then the resulting IPv6 datagram is

submitted to the IPv6 layer on the node for further processing.

The decapsulation process for 6over4 tunneling is shown in the following.

Figure 8-8. Sample 6in4 decapsulation

Chapter 8 transition MeChanisMs

307

According to RFC 4213, section 3.2, the MTU of the tunnel must be between 1280

and 1480 bytes (inclusive) but should be 1280 bytes. Section 3.3 specifies that the tunnel

counts as a single hop to IPv6, regardless of how many hops the underlying IPv4 packet

traverses. The actual TTL value in the outer IP header should be set as for any IPv4

packet (see RFC 3232 and RFC 4087).

RFC 4213 section 3.4 specifies how to handle errors that happen while the

encapsulated packet is inside the tunnel. Unfortunately, older routers may not return

enough of the packet to include both source and destination IPv6 addresses of the

encapsulated packet, so it may not be possible to construct a correct ICMPv6 error

message. Newer routers typically include enough of the failed packet for correct ICMPv6

error message creation.

 6over4 Tunneling
6over4 tunneling is defined in RFC 2529,25 “Transmission of IPv6 over IPv4 Domains

Without Explicit Tunnels,” March 1999. It is a transition mechanism that uses 6in4

tunneling over an IPv4 multicast–capable network. The term 6over4 is sometimes

confusingly used for 6in4 tunneling. Due to the requirement for IPv4 multicast, which is

very difficult to deploy, 6over4 is not commonly used. You can deploy a basic 6in4 tunnel

without IPv4 multicast.

 6to4 Tunneling
6to4 tunneling is described in the following RFCs:

• RFC 3056, “Connection of IPv6 Domains via IPv4 Clouds,”
February 2001

• RFC 3068, “An Anycast Prefix for 6to4 Relay Routers,” June 2001

(deprecated by RFC 7526, in May 2015)

• RFC 3964, “Security Considerations for 6to4,” December 2004
(Informational)

• RFC 5158, “6to4 Reverse DNS Delegation Specification,” March 2008

25 https://tools.ietf.org/html/rfc2529

Chapter 8 transition MeChanisMs

https://tools.ietf.org/html/rfc2529
https://tools.ietf.org/html/rfc3056
https://tools.ietf.org/html/rfc3068
https://tools.ietf.org/html/rfc7526
https://tools.ietf.org/html/rfc3964
https://tools.ietf.org/html/rfc5158
https://tools.ietf.org/html/rfc2529

308

6to4 is a transition mechanism that provides tunneled IPv6 over IPv4 without

explicitly configured tunnels. With the original 6to4 mechanism, the IPv4 addresses

involved must be valid globally routable IPv4 addresses (not behind NAT). Teredo is a

variant of 6to4 tunneling that will work even behind NAT.

6to4 does not provide general translation to IPv4 addresses for interoperation

between IPv6 hosts and IPv4 hosts (it is not a translator – it is a tunneling scheme). It

uses automatically created tunnels over IPv4 to facilitate communication between any

number of IPv6 hosts.

A “6to4 host” is a regular IPv6 host that also has at least one 6to4 address

assigned to it.

A “6to4 router” is a regular IPv6 router that includes a 6to4 pseudo interface. It is

normally a border router between an IPv6 site and a wide-area IPv4 network.

A “6to4 relay router” is a 6to4-capable router, which is also configured to support

transit routing between 6to4 addresses and native IPv6 addresses.

Without 6to4 relay routers, you can communicate with other nodes that use 6to4

tunneling over IPv6 (even though your ISP does not yet support IPv6). To communicate

with IPv6 users who are not using 6to4, you need to relay your traffic through a 6to4 relay

router. You can create your own relay router. It must have both a 6to4 pseudo interface

and native (not 6to4) IPv6 connectivity to the IPv6 Internet.

A 6to4 router will send an encapsulated packet directly over IPv4 if the first 16 bits

of an IPv6 destination address are 2002, using the next 32 bits as the IPv4 destination

(which must be another 6to4 node that will unpack the IPv6 packet being sent and use

it or relay it to other IPv6 hosts). For all other IPv6 destination addresses, a 6to4 router

will forward the packet to the IPv6 address of a well-known relay router that has access

to native IPv6 (or simply send it to the IPv6 anycast address 2002:c058:6301::/128, which

will send it to the nearest available 6to4 relay router).

For details on how to configure a FreeBSD node with 6to4 tunneling, see www.kfu.

com/~nsayer/6to4.

Chapter 8 transition MeChanisMs

https://en.wikipedia.org/wiki/Teredo_tunneling
http://www.kfu.com/~nsayer/6to4
http://www.kfu.com/~nsayer/6to4

309

An IPv6 address for use with 6to4 tunneling looks like the following:

 | 3 | 13 | 32 | 16 | 64 bits |

 +---+------+-----------+--------+--------------------------------+

 |FP | TLA | V4ADDR | SLA ID | Interface ID |

 |001|0x0002| | | |

 +---+------+-----------+--------+--------------------------------+

Essentially the IPv6 prefix for all 6to4 addresses is 2002:(ipv4addr)::/48.

RFC 2374 defines SLA ID as follows:

The SLA ID field is for a Site Level Aggregator Identifier. This

can be used by individual organizations to create its own local

addressing hierarchy and to identify subnets. It is analogous to

subnets in IPv4, except that each organization has a much greater

number of subnets.

RFC 3056 defines a 6to4 pseudo interface as follows:

6to4 encapsulation of IPv6 packets inside IPv4 packets occurs at

a point that is locally equivalent to an IPv6 interface, with the link

layer being the IPv4 unicast network. This point is referred to as

the pseudo-interface. Some implementers may treat it exactly like

any other interface, and others may treat it like a tunnel endpoint.

 Teredo
Teredo is one extension of basic 6to4 tunneling. It adds encapsulation over UDP

datagrams and uses a simplified version of STUN NAT traversal, allowing a Teredo

client to be behind NAT. It is defined in RFC 4380,26 “Teredo: Tunneling IPv6 over UDP

Through Network Address Translations (NATs),” February 2006. The name “Teredo” is

part of the Latin name for a little worm that bores holes through wooden ship hulls. This

gives you a pretty good idea of what the Teredo protocol does to your firewall. Teredo

is installed and enabled by default in Windows Vista and Windows 7. It is possible to

disable it, which everyone should do!

26 https://tools.ietf.org/html/rfc4380

Chapter 8 transition MeChanisMs

https://tools.ietf.org/html/rfc4380
https://tools.ietf.org/html/rfc4380

310

There is an open source Teredo client for Linux, BSD, and Mac OS X called Miredo.27

It can act as a client, relay, and server.

There are publicly available Teredo “relay routers” that allow any node with Teredo

to access the IPv6 Internet. Microsoft makes several very large ones available for use

from Windows nodes. Windows nodes are preconfigured to use these relay servers.

Unlike 6to4 and some other tunnel mechanisms, Teredo can only provide a single “/128”

IPv6 address per tunnel endpoint. Teredo allows you to let one node connect to the IPv6

Internet, not an entire network.

Teredo uses a different IPv6 address block than basic 6to4 tunneling. The rest of the

Teredo address is defined differently as well:

• Bits 0–31 contain the Teredo prefix, which is 2001:0000::/32. You

might want to block this range for both incoming and outgoing

connections on your border firewall.

• Bits 32–63 contain the IPv4 address of the Teredo server used.

• Bits 64–79 contain some flags. Currently only bit 64 is used. If set to 1,

the client is behind a cone NAT; otherwise, it is 0. More of these flag

bits are used in Vista, Windows 7, and Windows Server 2008.

• Bits 80–95 contain the obfuscated UDP port number (port number

that is mapped by NAT, with all bits inverted).

• Bits 96–127 contain the obfuscated IPv4 address of the node (public

IPv4 address of the NAT with all bits inverted).

As an example, a Teredo address might be 2001::4136:e378:8000:63bf:3fff:fdd2, which

broken into fields is as follows:

• Bits 0–31: 2001:0000 – the Teredo prefix

• Bits 32–63: 4136:e378 – IPv4 address 65.54.227.120 in hexadecimal

• Bits 64–79: 8000 – cone-mode NAT

• Bits 80–95: 63bf – obfuscated port number 40000

• Bits 96–127: 3fff:fdd2 – obfuscated public IPv4 address of the node

(192.0.2.45)

27 https://en.wikipedia.org/wiki/Miredo

Chapter 8 transition MeChanisMs

https://en.wikipedia.org/wiki/Miredo
https://en.wikipedia.org/wiki/Miredo

311

Hurricane Electric, as of Q1 2009, had deployed 14 public Teredo relays (via anycast),

in Seattle, Washington; Fremont, California; Los Angeles, California; Chicago, Illinois;

Dallas, Texas; Toronto, Ontario; New York, New York; Ashburn, Virginia; Miami, Florida;

London, England; Paris, France; Amsterdam, Netherlands; Frankfurt, Germany; and

Hong Kong SAR.

Usage of Teredo has dropped off to virtually zero as native IPv6 and 6in4 tunnels

have become more common.

 6rd: IPv6 Rapid Deployment
6rd is another extension of 6to4 tunneling that adds reliable routing. Normal 6to4

tunnels use the standard 2002://16 prefix and in theory scale to the entire world.

Unfortunately, there is no way to control who can connect to 6to4 public servers, and

there is no incentive to provide quality service. Also there is no guarantee that any 6to4

node will be reachable. The same is true of Teredo.

6rd instead works only within the confines of a single ISP, and instead of the

2000://16 prefix, each ISP uses a prefix that they own and control and runs the relay

router. They can ensure quality service and reachability of all nodes within their network.

6rd was deployed by a French ISP called “Free” (in spite of the name, this is a

commercial ISP). This was done in 5 weeks starting in December 2007. This gave France

the second highest IPv6 penetration in the world, 95% of which was via Free’s 6rd. RFC

5569 discusses Free’s 6rd deployment. The current Internet Draft that defines 6rd (draft-

ietf-softwire-IPv6-6rd-08, “IPv6 via IPv4 Service Provider Networks ‘6rd,’” March 23,

2010) should be approved soon. Meanwhile, you can read the draft.

In January 2010, Comcast (a large US ISP) announced plans to do a trial deployment

of IPv6 using 6rd. SoftBank (a large Japanese ISP) also has announced that they will roll

out IPv6 using 6rd.

 Intra-site Automatic Tunnel Addressing Protocol (ISATAP)
ISATAP is a transition mechanism that allows transmission of IPv6 packets between

dual-stack nodes on top of an IPv4 network. It is similar to 6over4, but it uses IPv4 as a

virtual non-broadcast multiple-access (NBMA) network Link Layer and does not require

IPv4 multicast (which 6over4 does require). It is discussed in RFC 5214, “Intra-Site

Automatic Tunnel Addressing Protocol (ISATAP).”

Chapter 8 transition MeChanisMs

312

ISATAP specifies a way to generate a link-local IPv6 address from an IPv4 address,

plus a mechanism for performing Neighbor Discovery on top of IPv4.

The generated link-local address is created by appending the 32-bit IPv4 address

onto the 96-bit prefix fe80:0:0:0:0:5efe::. For example, the IPv4 address 192.0.2.143 in

hexadecimal is c000028f. Therefore, the corresponding ISATAP link-local address is

fe80::5efe:c000:28f.

The Link Layer address for ISATAP is not a MAC address, but an IPv4 address

(remember IPv4 is used as a virtual Link Layer). Since the IPv4 address is just the low

32 bits of the ISATAP address, mapping onto the “Link Layer” address simply involves

extracting the low 32 bits (ND is not required). However, router discovery is more

difficult without multicast. ISATAP hosts are configured with a potential routers list

(PRL). Each of the routers on this list is probed by an ICMPv6 Router Discovery message,

to determine which of them are functioning and to then obtain the list of on-link IPv6

prefixes that can be used to create global unicast IPv6 addresses.

Current implementations create their PRL by querying the DNS. DHCPv4 is used to

determine the local domain. Then a DNS query is done for isatap.<localdomainame>.

For example, if the local domain is demo.com, it would do a DNS query for isatap.

demo.com.

ISATAP avoids circular references by only querying DNS over IPv4, but it is still a

lower-layer protocol that is using a higher-layer function (DNS). This is a violation of

network design principles.

ISATAP is implemented in Windows XP, Windows Vista, Windows 7, Windows

Mobile, and Linux (since Kernel 2.6.25). It is not currently implemented in *BSD28 due to

a potential patent issue.

 Softwires (Includes Dual-Stack Lite, MAP-E,
MAP-T, and 4in6)
The IETF has a very active Softwires working group. Essentially, they are trying to

create standards for tunneling IPv6 over IPv4 networks and for tunneling IPv4 over

IPv6 networks. There are two basic models for this; one is called hub and spoke. This is

similar to the way that airlines have a few large hub airports and many spokes or local

flights radiating from those hubs to smaller communities nearby. For example, Atlanta

28 *BSD refers to the family of BSD variants: FreeBSD, NetBSD, OpenBSD.

Chapter 8 transition MeChanisMs

313

International Airport is a hub for the entire Southeastern United States. If you fly in or

out of that region, you will likely interchange in Atlanta. There are several schemes that

vary in exactly what part of the network path the softwire is deployed:

• From ISP to customer modem/router

• From ISP via customer modem/router to an inside softwire router

• From ISP via customer modem/router to an end-user node

All the components necessary to deploy the various schemes are widely available,

including

• LNS: Large ISP-based L2TP Network Server

• Dual AF CPE: Customer Premises Equipment modem/router with

support for L2TPv2 softwires

• Dual AF router: Customer premise dual-stack router with support for

L2TPv2 softwires

• Dual AF host: Client software for end-user nodes with support for

L2TPv2 softwires

In the preceding, “Dual AF” means Dual Address Family, in other words, IPv4 + IPv6,

or dual stack.

The other softwire architecture is called mesh. This involves several peer nodes, with

multiple connections between them. If all nodes are connected to all other nodes, that

would be a fully meshed network.

The term softwire refers to a tunneled link between two or more nodes. In early RFCs

related to this technology, sometimes the term pseudowire is used instead. Softwires

are assumed to be long-lived, and the setup time is expected to be a very small fraction

of the total time required for the startup of the Customer Premises Equipment/Address

Family border router. The goal is to make cost-effective use of existing facilities and

equipment where possible.

Current softwire solutions are mostly based on L2TPv2, which is defined in RFC

2661,29 “Layer Two Tunneling Protocol ‘L2TP,’” August 1999. L2TPv1 was defined in RFC

2341,30 “Cisco Layer Two Forwarding (Protocol) ‘L2F,’” May 1998. L2TPv2 is layered on

29 https://tools.ietf.org/html/rfc2661
30 https://tools.ietf.org/html/rfc2341

Chapter 8 transition MeChanisMs

https://tools.ietf.org/html/rfc2661
https://tools.ietf.org/html/rfc2661
https://tools.ietf.org/html/rfc2341
https://tools.ietf.org/html/rfc2341
https://tools.ietf.org/html/rfc2661
https://tools.ietf.org/html/rfc2341

314

PPP, which is defined in RFC 1661,31 “The Point-to-Point Protocol (PPP),” July 1994.

All L2TPv2 connections use UDP encapsulation. There are already some very large

deployments of softwires on L2TPv2 in ISPs today. L2TPv2 meets all IPv6-over-IPv4

softwire requirements today. It is 99% ready for IPv4-over-IPv6 softwire today.

Future softwire solutions will be based on L2TPv3, which is defined in RFC 3931,32

“Layer Two Tunneling Protocol – Version 3 (L2TPv3),” March 2005. L2TPv3 can be

layered on PPP, but in v3 it is optional (it can layer directly on IP). UDP encapsulation

is also optional in v3. UDP encapsulation is useful for NAT traversal, but it increases

overhead and lowers throughput and reliability. If no NAT needs to be traversed, turning

off the UDP encapsulation can lower overhead. Session ID and Control Connection IDs

are 32 bits (vs. 16 in L2TPv2). L2TPv3 also provides better user authentication and data

channel security through use of optional cookies. An L2TPv3 cookie is an up to 64-bit

cryptographically generated random value, included in every packet. L2TPv3 is close to

meeting all softwire requirements.

 Relevant Standards for Softwires
RFC 4925, “Softwire Problem Statement,” July 2007
(Informational)

RFC 5512, “The BGP Encapsulation Subsequent Address Family

Indicator (SAFI) and the BGP Tunnel Encapsulation Attribute,”

April 2009 (Standards Track)

RFC 5543, “BGP Traffic Engineering Attribute,” May 2009

(Standards Track)

RFC 5549, “Advertising IPv4 Network Layer Reachability

Information with an IPv6 Next Hop,” May 2009 (Standards Track)

RFC 5565, “Softwire Mesh Framework,” June 2009
(Standards Track)

RFC 5566, “BGP IPsec Tunnel Encapsulation Attribute,” June 2009

(Standards Track)

31 https://tools.ietf.org/html/rfc1661
32 https://tools.ietf.org/html/rfc3931

Chapter 8 transition MeChanisMs

https://tools.ietf.org/html/rfc1661
https://tools.ietf.org/html/rfc3931
https://tools.ietf.org/html/rfc4925
https://tools.ietf.org/html/rfc5512
https://tools.ietf.org/html/rfc5543
https://tools.ietf.org/html/rfc5549
https://tools.ietf.org/html/rfc5565
https://tools.ietf.org/html/rfc5566
https://tools.ietf.org/html/rfc1661
https://tools.ietf.org/html/rfc3931

315

RFC 5571, “Softwire Hub and Spoke Deployment Framework
with Layer Two Tunneling Protocol Version 2 (L2TPv2),” June
2009 (Standards Track)

RFC 5619, “Softwire Security Analysis and Requirements,” August

2009 (Standards Track)

RFC 5640, “Load-Balancing for Mesh Softwires,” August 2009

(Standards Track)

RFC 5969, “IPv6 Rapid Deployment on IPv4 Infrastructures
(6rd) – Protocol Specification,” August 2010 (Standards Track)

RFC 6333, “Dual-Stack Lite Broadband Deployments Following
IPv4 Exhaustion,” August 2011 (Standards Track)

RFC 6334, “Dynamic Host Configuration Protocol for

IPv6 (DHCPv6) Option for Dual-Stack Lite,” August 2011

(Standards Track)

RFC 6519, “RADIUS Extensions for Dual-Stack Lite,” February

2012 (Standards Track)

RFC 6674, “Gateway-Initiated Dual-Stack Lite Deployment,”
July 2012 (Standards Track)

RFC 6908, “Deployment Considerations for Dual-Stack Lite,”
March 2013 (Informational)

RFC 7040, “Public IPv4-over-IPv6 Access Network,” November
2013 (Informational)

RFC 7596, “Lightweight 4over6: An Extension to the Dual-Stack
Lite Architecture,” July 2015 (Standards Track)

RFC 7597, “Mapping of Address and Port with Encapsulation
(MAP-E),” July 2015 (Standards Track)

RFC 7598, “DHCPv6 Options for Configuration of Softwire Address

and Port-Mapped Clients,” July 2015 (Standards Track)

RFC 7599, “Mapping of Address and Port Using Translation
(MAP-T),” July 2015 (Standards Track)

Chapter 8 transition MeChanisMs

https://tools.ietf.org/html/rfc5571
https://tools.ietf.org/html/rfc5619
https://tools.ietf.org/html/rfc5640
https://tools.ietf.org/html/rfc5969
https://tools.ietf.org/html/rfc6333
https://tools.ietf.org/html/rfc6334
https://tools.ietf.org/html/rfc6519
https://tools.ietf.org/html/rfc6674
https://tools.ietf.org/html/rfc6908
https://tools.ietf.org/html/rfc7040
https://tools.ietf.org/html/rfc7596
https://tools.ietf.org/html/rfc7597
https://tools.ietf.org/html/rfc7598
https://tools.ietf.org/html/rfc7599

316

RFC 7600, “IPv4 Residual Deployment via IPv6 – A Stateless
Solution (4rd),” July 2015 (Experimental)

RFC 7785, “Recommendations for Prefix Binding in the Context of

Softwire Dual-Stack Lite,” February 2016 (Informational)

RFC 7856, “Softwire Mesh Management Information Base (MIB),”

May 2016 (Standards Track)

RFC 7870, “Dual-Stack Lite (DS-Lite) Management Information

Base (MIB) for Address Family Transition Routers (AFTRs),” June

2016 (Standards Track)

RFC 8026, “Unified IPv4-in-IPv6 Softwire Customer
Premises Equipment (CPE): A DHCPv6-Based Prioritization
Mechanism,” November 2016 (Standards Track)

RFC 8114, “Delivery of IPv4 Multicast Services to IPv4
Clients over an IPv6 Multicast Network,” March 2017
(Standards Track)

RFC 8115, “DHCPv6 Option for IPv4-Embedded Multicast and

Unicast IPv6 Prefixes,” March 2017 (Standards Track)

RFC 8389, “Definitions of Managed Objects for Mapping of

Address and Port with Encapsulation (MAP-E),” December 2018

(Standards Track)

RFC 8513, “A YANG Data Model for Dual-Stack Lite (DS-Lite),”

January 2019 (Standards Track)

 Dual-Stack Lite
The IETF Softwires working group has come up with a variant on the basic dual-

stack network design, which is described in RFC 6333,33 “Dual-Stack Lite Broadband

Deployments Following IPv4 Exhaustion,” August 2011. There is additional information

on Dual-Stack Lite in RFC 6908,34 “Deployment Considerations for Dual-Stack Lite,”

March 2013.

33 https://tools.ietf.org/html/rfc6333
34 https://tools.ietf.org/html/rfc6908

Chapter 8 transition MeChanisMs

https://tools.ietf.org/html/rfc7600
https://tools.ietf.org/html/rfc7785
https://tools.ietf.org/html/rfc7856
https://tools.ietf.org/html/rfc7870
https://tools.ietf.org/html/rfc8026
https://tools.ietf.org/html/rfc8114
https://tools.ietf.org/html/rfc8115
https://tools.ietf.org/html/rfc8389
https://tools.ietf.org/html/rfc8513
https://tools.ietf.org/html/rfc6333
https://tools.ietf.org/html/rfc6908
https://tools.ietf.org/html/rfc6333
https://tools.ietf.org/html/rfc6908

317

Clients using Dual-Stack Lite will still need to support both IPv4 and IPv6, but

the service from the ISP to the customer will be IPv6-only, with IPv4 service tunneled

over IPv6 in both directions. If you examine the traffic between the CPE and the ISP,

there will only be IPv6 packets, but some of them will contain IPv4 packets as the Data

field. The IPv4 addresses provided to the customer will be RFC 1918 private addresses,

provided by a giant Carrier-Grade NAT (CGN) at the ISP. The NAT involved actually uses

the customer’s IPv6 address to tag the private IPv4 addresses used by the client, which

would allow multiple ISP clients to use the same private address range (e.g., all of them

could use 10.0.0.0/8, and the LSN would keep each organization’s addresses separate

based on their unique IPv6 address). There is a special new private address range

(100.64/10) that is used in the carrier-based mapping. So, if the address assigned to the

WAN node on your CPE is in 100.64/10, you are behind CGN. This is becoming more

and more common as unallocated IPv4 public addresses vanish. According to the CGN

RFC (659835), no one should deploy CGN without also deploying IPv6, but many telcos

and ISPs ignore this and deploy CGN without any IPv6, in order to keep providing their

customers with IPv4 service.

IPv6-only or dual-stack nodes at the client would be able to connect to any IPv6

node in the world directly, via the ISP’s IPv6 service. IPv4-only or dual-stack nodes at the

client would be able to connect to any IPv4 node in the outside world via IPv4 tunneled

over IPv6, with addresses from the ISP’s Carrier-Grade NAT. There is no 6to4 translation

that would allow an IPv6-only node to connect to external IPv4 nodes or 4to6 translation

that would allow an IPv4-only node to connect to external IPv6 nodes. Any internal

node that needs to connect to external IPv4 nodes should be configured to support dual

stack. The tunneling of IPv4 packets inside the outgoing IPv6 packets takes place inside

the CPE, as does the de-tunneling of IPv4 packets from the incoming IPv6 packets. It’s

basically 6in4 upside down. This scheme can be deployed for a very long time compared

with basic dual stack.

The way this differs from basic dual-stack operation is that there is no direct IPv4

service provided, and the IPv4 addresses used at the client are private and managed

by infrastructure at the ISP. This allows the ISP to share a relatively small number of

precious real IPv4 addresses among a large number of customers and also allows the

ISP to run IPv6 only to the customer. A major advantage of DS Lite is that no 6to4 or 4to6

translation is required. The downside is that all nodes on the internal network are still

35 https://tools.ietf.org/html/rfc6598

Chapter 8 transition MeChanisMs

https://tools.ietf.org/html/rfc6598
https://tools.ietf.org/html/rfc6598

318

dual stack – you must still manage two sets of IP addresses (IPv6 and IPv4). It is much

cleaner and less expensive to eliminate IPv4 altogether in the internal network, other

than via NAT64 border gateways.

This will require a firmware upgrade (or replacement) of the Customer Premises

Equipment (CPE), which is typically a DSL or cable modem, with embedded router

and NAT.

The Internet Systems Corporation (who also supplies the BIND DNS server and

dhcpd DHCPv4 server) has created a freeware implementation of the ISP-side facilities

to support DS Lite, called AFTR36 (Address Family Transition Router). This includes

IPv4-over-IPv6 tunneling, DHCPv4, DHCPv6, and some other pieces.

The CPE device for DS-Lite37 is called B4 (Basic Bridging BroadBand Element). There

is an open source implementation of this for the Linksys WRT-54GL. Some network

vendors are beginning to produce DS Lite–compatible CPE now.

 PET (Prefixing, Encapsulation, and Translation)
PET is one of the emerging softwire standards, which is trying to work out the optimal

combination of tunneling and translation mechanisms to provide a workable framework

for IPv4/IPv6 co-existence. The types of tunnels discussed are

• IP-in-IP tunnels (RFC 2893, RFC 4213)

• GRE tunnel (RFC 1702)

• 6to4 tunnel (RFC 3056)

• 6over4 tunnel (RFC 2529)

• Softwire transition technique (RFC 5565)

The translation mechanisms discussed include

• SIIT (RFC 2765)

• NAT-PT (RFC 2766 – deprecated)

• BIS (RFC 2767)

• SOCKS64 (RFC 3089)

36 www.isc.org/downloads/aftr/
37 www.isc.org/blogs/ds-lite-architecture-overview-and-automatic-configuration/

Chapter 8 transition MeChanisMs

https://www.isc.org/downloads/aftr/
https://www.isc.org/blogs/ds-lite-architecture-overview-and-automatic-configuration/
http://www.isc.org/downloads/aftr/
http://www.isc.org/blogs/ds-lite-architecture-overview-and-automatic-configuration/

319

• BIA (RFC 3338)

• IVI (RFC 6219)

These standards discuss various combinations of the preceding tunneling

and translation mechanisms to accomplish different kinds of co-existence. The

recommended tunneling scheme is the softwire transition technique (RFC 5565). It

also notes that DNS may have to interact with the co-existence solution using a DNS

Application Layer gateway, such as DNS64.

 Translation
Translation between IPv4 and IPv6 is by far the most complex transition mechanism.

It has all the issues of IPv4-to-IPv4 Network Address Translation, plus new issues that

complicate it even further. There is a great deal of activity in the IETF trying to create

standards that will be implementable and deployable.

Since IPv4 addresses are running out, many ISPs would like to deploy IPv6-only

service to their customers (as opposed to dual stack with both IPv4 and IPv6 services).

Without translation, an IPv6-only node cannot access legacy IPv4-only nodes on the

Second Internet (which currently includes most online sites). Over time, more and more

sites and services will be dual stack, which will make IPv6-only nodes more useful. Until

that time, translation gateways will be needed for IPv6-only nodes. It will be far simpler

and cheaper, resulting in a superior user experience if both IPv4 and IPv6 are deployed,

even if the IPv4 service is heavily NATted. However, ISPs seemed to be obsessed with

deploying translation. There are a variety of ways that this can be accomplished, but

most are quite complex and likely to be major sources of problems.

Tunneling cannot achieve IPv4-to-IPv6 interworking, but it’s highly transparent

and lightweight, can be implemented by hardware, and can keep IPv4 routing and IPv6

routing separated. It allows existing infrastructure (whether IPv4 or IPv6) to be used as a

transport to link two nodes (or networks) using the other version of IP.

Translation achieves direct intercommunication between IPv4 and IPv6 nodes or

networks by means of converting the semantics between IPv4 and IPv6. However, it has

limitations in operational complexity and scalability. Like any NAT, it may have serious

issues with transparency (some protocols may not work through it). Correct translation

requires

Chapter 8 transition MeChanisMs

320

• Address or (address, port) tuple substitution

• MTU discovery

• Fragmentation when necessary

• Translation of both IP and ICMP fields

• ICMP address substitution in payloads (e.g., with SIP)

• IP/TCP/UDP checksum recomputation

• Application Layer translation when necessary

Stateless translation consumes IPv4 addresses to satisfy IPv6 hosts, which does not

scale (for one thing we are running out of IPv4 addresses; for another, there are lots more

IPv6 addresses than IPv4 addresses). It can be implemented in hardware, but any ALG

translation is too complex for hardware.

Stateful translation requires maintaining complex state for dynamic mapping of

(address, port) tuples and cannot be implemented in hardware.

 NAT64/DNS64
This transition mechanism requires both a NAT64 gateway and either a DNS server that

supports DNS64 mapping or a DNS ALG that supports DNS64. What follows is a highly

simplified description of operation. The full details are covered in the RFCs (there is

quite a bit of complexity involved in the real operation).

The NAT64 gateway should have two interfaces, one connected to the IPv4 network

(with a valid IPv4 address on that network) and the other connected to the IPv6 network

(with a valid IPv6 address on that network). IPv6 traffic from a node on the IPv6 network

going to an IPv4 node is sent in IPv6 and routed to the NAT64 gateway. The gateway

does address translation and forwards the translated packets to the IPv4 interface, from

which they are routed to the destination node. Reply packets from the IPv4 node are sent

in IPv4 to the gateway and are translated into IPv6 and forwarded to the IPv6 interface,

from which they are routed back to the original sender. This process requires state,

binding an IPv6 address and TCP/UDP port (referred to as an IPv6 transport address) to

an IPv4 address and TCP/UDP port (referred to as an IPv4 transport address).

Packets that originate on the IPv4 side cannot be correctly translated, because there

would be no state from the packets coming through the gateway in the v6->v4 direction.

NAT64 is not symmetric. For traffic initiated by an IPv6 node, everything works right.

Chapter 8 transition MeChanisMs

321

Once the binding is created, that traffic flow can continue (from the IPv6 node to the

IPv4 and back).

For the traffic originating on the IPv4 side to be translated to IPv6, it requires some

additional mechanism, such as ICE or a static binding configuration.

This mechanism depends on constructing IPv4-converted IPv6 addresses. Each IPv4

address is mapped into a different IPv6 address by concatenating a special IPv6 prefix

assigned to the NAT64 device (Pref64::/n).

It also uses a small pool of IPv4 addresses, from which mappings will be created

and released dynamically, as needed (as opposed to permanently binding specific IPv4

addresses to specific IPv6 addresses). This implies that NAT64 does both address and

port translation.

When an IPv6 initiator does a DNS lookup to learn the address of the responder,

DNS64 is used to synthesize AAAA resource records from A resource records. The

synthesized AAAA resource records are passed back to the IPv6 initiator, which then

initiates an IPv6 connection with the IPv6 address that is associated with the IPv4

receiver. The packet will be routed to the NAT64 device, which will create the IPv6-to-

IPv4 address mapping as described before.

In general, dual-stack nodes should not use DNS64. If they get a synthesized IPv6

address and a native IPv4 address, the rule to prefer IPv6 will cause the dual-stack host

to do the access via the NAT64 gateway instead of direct using IPv4. If you deploy DNS64,

it should be used only by IPv6-only nodes, and there should be a regular DNS for use by

any dual-stack nodes.

 IVI
This address translation scheme is being used on a large scale between CERNET (IPv4-

only) and CERNET2 (IPv6-only) for nodes on either side to connect to nodes on the

other side, as well as allowing IPv6-only nodes to connect to IPv4 nodes out on the

public Internet.

The pros of using IVI are as follows:

• It is stateless, so it scales to a large number of nodes better than

NAT64/DNS64.

• The translation is decoupled from DNS.

Chapter 8 transition MeChanisMs

322

• It is symmetric, so can be used for connections initiated on either

side of the gateway (IPv4 to IPv6 side or IPv6 to IPv4 side).

• There is an open source implementation of the IVI gateway and

DNS64 ALG available on Linux.

The cons of using IVI are as follows:

• An ALG is still required for any protocol that embeds IP addresses in

the protocol, such as SIP.

• It restricts the IPv6 hosts to use a subset of the addresses inside the

ISP’s IPv6 block. Therefore, IPv6 Stateless Address Autoconfiguration

cannot be used to assign IPv6 addresses to nodes. You must either

manually assign addresses or use stateful DHCPv6.

• There are still some issues with end-to-end transparency, address

referrals, and incompatible semantics between protocol versions.

• You still need a DNS64 ALG for DNS.

 Preferred Network Implementation Going Forward:
IPv6-Only
As the 2014 OECD report points out, the real benefits of IPv6 only come once you remove

IPv4, except for gateway access to legacy IPv4-only nodes outside your network.

One very interesting discussion of this approach can be found in “Microsoft Works

Toward IPv6-Only Single Stack Network,”38 by Veronika McKillop (Microsoft CSEO), April

3, 2019.

This is a large-scale, real-world deployment of IPv6-only and will be fully realized

globally over time. It is already far enough along to provide some very good insights into

doing this from actual experience.

Here are key points from this writeup:

• IPv4 address depletion is already a serious problem, and not just

public addresses. Microsoft is now having problems allocating even

38 https://teamarin.net/2019/04/03/microsoft-works-toward-ipv6-only-single-stack- net
work/?fbclid=IwAR0iqDbK8uehU0uCC-NA1Da55RfjiHRPHFSky4jRyKZxB3TeF4Uh6IR54no

Chapter 8 transition MeChanisMs

https://teamarin.net/2019/04/03/microsoft-works-toward-ipv6-only-single-stack-network/?fbclid=IwAR0iqDbK8uehU0uCC-NA1Da55RfjiHRPHFSky4jRyKZxB3TeF4Uh6IR54no
https://teamarin.net/2019/04/03/microsoft-works-toward-ipv6-only-single-stack-network/?fbclid=IwAR0iqDbK8uehU0uCC-NA1Da55RfjiHRPHFSky4jRyKZxB3TeF4Uh6IR54no
https://teamarin.net/2019/04/03/microsoft-works-toward-ipv6-only-single-stack-network/?fbclid=IwAR0iqDbK8uehU0uCC-NA1Da55RfjiHRPHFSky4jRyKZxB3TeF4Uh6IR54no
https://teamarin.net/2019/04/03/microsoft-works-toward-ipv6-only-single-stack-network/?fbclid=IwAR0iqDbK8uehU0uCC-NA1Da55RfjiHRPHFSky4jRyKZxB3TeF4Uh6IR54no

323

private addresses company-wide. They have predicted that they will

no longer be able to use the 10/8 private address block in around 2–3

years. They have explored reclaiming unused IPv4 addresses, with

little success.

• There are big benefits to a single stack network in troubleshooting,

security, and QoS policies. Dual stack still involves having to work

with NAT44, which has many problems.

• Since all companies today use private IPv4, there are always

problems of address conflict in acquisitions, requiring even more

NAT44 and address renumbering. These problems are not present in

IPv6, even with ULA.

• Industry pressure is growing, such as Apple’s decision to require

IPv6 in all apps submitted to the App Store. It is critical that app

developers have an IPv6-only environment to test apps. MA currently

has 12 locations for this kind of work.

• A good IPv6 address plan is critical. The one they created in 2006 has

required very minor changes (one in 2015 and another in 2018). They

started with one /32 from ARIN and then in 2013 added /32s from

RIPE and APNIC.

• It is important that both DHCPv6 and RDNSS (IPv6 addresses for

DNS via RA messages) must be implemented everywhere, since some

nodes only support one way or the other.

• Extensive training in IPv6 for engineering staff is critical.

• Working with outside vendors often requires forcing them to support

IPv6 well.

• Clouds are still mostly IPv4-only, which causes major problems for

cloud-based security.

• Global routing works better with IPv6.

• Currently, 20–30% of their internal traffic is IPv6.

• NAT64/DNS64 is essential but still problematic.

Chapter 8 transition MeChanisMs

324

• They have a “scream test” that involves removing all IPv4 from a

network temporarily and seeing who screams and what about.

• “My advice is to take your deployment bit by bit. Focus on things that

give you the biggest benefit, the biggest learning, the biggest impact

on the largest group of users.”

• “Dual stack is only a temporary solution. The ultimate solution is

IPv6-only.”

 Supporting IPv6 for Developers at Sixscape
We develop products for Windows, MacOS, Android, and iOS. All must fully support IPv6

and even work in IPv6-only environments (where possible). This means our developers

must have access to three different network architectures, IPv4-only, dual stack, and

IPv6-only.

Most of our developers use notebooks, and even a desktop can be provided with a

Wi-Fi network adapter, so we chose to implement multiple Wi-Fi networks (and for both

2.4 GHz and 5.0 GHz). So we have six SSIDs in our office:

• V4-2.4: IPv4-only, 2.4 GHz, 172.18/16

• V4-5.0: IPv4-only, 5.0 GHz, 172.18/16

• DS-2.4: IPv4 + IPv6, 2.4 GHz, 172.17/16 and 2001:470:xxxx:1000::/64

• DS-5.0: IPv4 + IPv6, 5.0 GHz, 172.17/16 and 2001:470:xxxx:1000::/64

• V6-2.4: IPv6-only, 2.4 GHz, 2001:470:xxxx:2000::/64

• V6-5.0: IPv6-only, 5.0 GHz, 2001:470:xxxx:2000::/64

Depending on what Wi-Fi adapter your computer has, you may see only the 2.4 GHz

or both 2.4 GHz and 5.0 GHz SSIDs. From the visible SSIDs, choose the subnet you want

to test with. 5.0 GHz has higher speeds (up to 867 Mbps internally, although our ISP

connection is only 500 Mbps).

DHCPv4, DHCPv6, and RDNSS are all implemented. Static routes and firewall

rules allow the 172.18/16 and 2001:470:xxxx:2000::/64 subnets access anything in

the 172.17/16 and 2001:470:xxxx:1000::/64 subnets (and vice versa). The public IPv4

Internet is accessible from the V4-only and DS subnets, while the public IPv6 Internet

is accessible from the V6-only and DS subnets. All internal nodes can configure

Chapter 8 transition MeChanisMs

325

appropriate internal IP addresses and addresses of DNS and find the default gateways.

We can open incoming ports to any nodes on the V6-only or DS subnets and provide

limited access via incoming connections via our 6 public IPv4 addresses (either BINAT or

port mapped). I have IPv6 at home as well and often access the node at my desk via RDP

from home – it is just like being in the office. If needed, we can make a wired Ethernet

connection from any subnet to any internal node, but typically the wired connections

are only to the DS subnet.

Our firewall (pfSense based) supports four NICs – one for WAN, one for V4-only

LAN, one for DS LAN, and one for V6-only LAN. Those NICs are connected to three Wi-

Fi routers (via the LAN taps, not WAN taps). This bridges the Wi-Fi networks to the wired

networks. I have not yet implemented NAT64 on the V6-only subnet but will do that

soon. It is interesting currently (without NAT64) to see how much outside stuff works on

the V6-only subnet. Most things do, amazingly (Google, FB, DynDNS, etc.).

As an example, our DNSSEC appliance is fully functional in a V6-only network –

most have some IPv4 dependency (e.g., NTP, SNMP, etc.). I believe we need to extend

IPv6-ready certification to include working in an IPv6-only subnet (without NAT64), as a

higher-level certification.

Our ISP does not currently offer native IPv6, so we use 6in4 to bring a /48 block in

from Hurricane Electric (there is a tap here in Singapore, so performance is quite good).

Even if we only had a single IPv4 public address, we would be able to use that for both

cone NAT and our endpoint of the 6in4 tunnel. We route one /64 block to the DS subnet

and another to the V6-only subnet. The fact that we obtain IPv6 via a tunnel does not

impact this setup at all. However, if we had an ISP that only provided one /64, we would

not be able to do this.

 Summary
In this chapter, we covered the many transition mechanisms intended to help during the

transition from all-IPv4 to all-IPv6. Some of these (dual stack, 6in4 tunneling, etc.) have

been successful and are still in use. Some of these (6over4, Teredo, ISATAP) were used in

the early days but due to various problems have fallen out of use. We covered those here

in case you tun into an old implementation of them.

Chapter 8 transition MeChanisMs

326

Most of the translation mechanisms have not worked very well. The only one still in

use had to be severely restricted in terms of how it was deployed for it to actually work

(NAT64/DNS64). It now only supports connections from IPv6-only nodes in an IPv6-

only subnet to external IPv4 servers. This can help during the deployment of IPv6-only

subnets.

One of the hot topics today is finally doing away with IPv4 in entire subnets (IPv6-

only). The US DoD has now mandated that new equipment must work in dual-stack

and IPv6-only subnets. This means there can be no IPv4 dependencies (e.g., using IPv4

versions of ancillary protocols such as NDP or SNMP).

Chapter 8 transition MeChanisMs

327

CHAPTER 9

IPv6 on Mobile Devices
My telco in Singapore (M1) was providing IPv6 service on their cellular dataplan if you

knew how to configure your phone. The trick on Android was to change your service type

to “LTE/3G/2G” and set the APN protocol to “IPv4/IPv6.” On iPhone no special settings

were required – it just worked. In the United States, my service from AT&T includes IPv4

and IPv6 with no configuration required – it just works out of the box. They allocate a /64

block for every phone. My phone currently has block 2600:380:b0d0:f919::/64 allocated.

Note that with AT&T I can see both Wi-Fi and dataplan IPv6 addresses at the same time.

It is a bit tricky to find your mobile IP addresses on iOS – get the HE.NET app from

the App Store (shown in the following). In Android the Network Info II app allows you to

see IPv6 addresses. I will show examples of this later.

 Android
The IPv6 address 2401:7400:6000:93d9:1:1:9366:9705 is configured on my phone,

along with the private IPv4 address 10.194.78.202. The external public IPv4 address

is 246.106.56.119. Note that on Android, if the Wi-Fi configures an IPv6 address, no

additional IPv6 addresses are configured on the dataplan. This screenshot required

disabling the Wi-Fi. Note that on my ISP, if the phone goes to sleep, it will keep the

same /64 prefix when it wakes back up. If I reboot, I get a new /64 prefix. Your mileage

may differ.

Note that the phone actually gets a /64 block, not a single /128 address. If you set up

a hot spot, both IPv4 and IPv6 are shared, and devices that connect to the hot spot get an

IPv6 address in the same /64 block as the address on the phone. This may be significant

as we start running servers on phones! Sixscape has created a way to securely register

your IPv6 address from a mobile device (using IRP).

© Lawrence E. Hughes 2022
L. E. Hughes, Third Generation Internet Revealed, https://doi.org/10.1007/978-1-4842-8603-6_9

https://doi.org/10.1007/978-1-4842-8603-6_9

328

Figure 9-1. Network IP address allocation on Android

Chapter 9 Ipv6 on MobIle DevICes

329

Figure 9-2. IPv6test.com test of IPv6 on Android

Note that I can even ping this address from my Windows node:

C:\Windows\system32>ping 2401:7400:6000:93d9:1:1:9366:9705

Pinging 2401:7400:6000:93d9:1:1:9366:9705 with 32 bytes of data:

Reply from 2401:7400:6000:93d9:1:1:9366:9705: time<1ms

Reply from 2401:7400:6000:93d9:1:1:9366:9705: time=51ms

Reply from 2401:7400:6000:93d9:1:1:9366:9705: time=107ms

Reply from 2401:7400:6000:93d9:1:1:9366:9705: time=104ms

Ping statistics for 2401:7400:6000:93d9:1:1:9366:9705:

 Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),

Approximate round trip times in milli-seconds:

 Minimum = 0ms, Maximum = 107ms, Average = 65ms

Chapter 9 Ipv6 on MobIle DevICes

330

 iPhone

Figure 9-3. IP address allocation on iPhone 7 using HE network application

Chapter 9 Ipv6 on MobIle DevICes

331

Figure 9-4. Rest of IP allocation info on iPhone 7

On the Wi-Fi interface, a link-local IPv6 address and two global IPv6 addresses have

automatically configured.

On the dataplan (cellular data), another link-local IPv6 address and two more global

IPv6 addresses have automatically configured.

For outgoing IPv6, here is the result from surfing to ipv6-test.com on the iPhone

(with Wi-Fi disabled, so the dataplan IPv6 address was used).

Chapter 9 Ipv6 on MobIle DevICes

332

Figure 9-5. Ipv6-test.com site on iPhone 7

As on Android, I can ping both of these addresses from my Windows node:

C:\Windows\system32>ping 2401:7400:4000:da1d:957:287b:d2a7:3117

Pinging 2401:7400:4000:da1d:957:287b:d2a7:3117 with 32 bytes of data:

Reply from 2401:7400:4000:da1d:957:287b:d2a7:3117: time=258ms

Reply from 2401:7400:4000:da1d:957:287b:d2a7:3117: time=74ms

Reply from 2401:7400:4000:da1d:957:287b:d2a7:3117: time=92ms

Reply from 2401:7400:4000:da1d:957:287b:d2a7:3117: time=106ms

Ping statistics for 2401:7400:4000:da1d:957:287b:d2a7:3117:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),

Approximate round trip times in milli-seconds:

Chapter 9 Ipv6 on MobIle DevICes

333

Minimum = 74ms, Maximum = 258ms, Average = 132ms

C:\Windows\system32>ping 2401:7400:4000:da1d:8fa:de81:dd26:d505

Pinging 2401:7400:4000:da1d:8fa:de81:dd26:d505 with 32 bytes of data:

Reply from 2401:7400:4000:da1d:8fa:de81:dd26:d505: time=703ms

Reply from 2401:7400:4000:da1d:8fa:de81:dd26:d505: time=90ms

Reply from 2401:7400:4000:da1d:8fa:de81:dd26:d505: time=111ms

Reply from 2401:7400:4000:da1d:8fa:de81:dd26:d505: time=100ms

Ping statistics for 2401:7400:4000:da1d:8fa:de81:dd26:d505:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),

Approximate round trip times in milli-seconds:

Minimum = 90ms, Maximum = 703ms, Average = 251ms

On Android, if there is an IPv6 address on Wi-Fi, any IPv6 address on the dataplan

is ignored. On iOS, it will configure IPv6 from both Wi-Fi and dataplan, but if there is an

IPv6 Wi-Fi address available, connections will use it rather than the dataplan address.

 What Are the Implications of This?
For the first time ever since Internet access has been available on mobile devices, there

are finally public IP addresses for mobile devices. That is a major game changer. Up until

now, all IP addresses on mobile devices have been private (RFC 1918) addresses, behind

NAT (in some cases, behind multiple layers of NAT, with CGN). That means you can only

make outgoing connections from your mobile device to nodes with public addresses,

typically servers at telcos, ISPs, large content providers, etc. There is no way for external

nodes to make connections to your phone. So the only apps you can get or run on your

phone are clients.

Now, with IPv6 on mobile devices, you have public IP addresses (accessible only by

IPv6 users, but definitely public addresses). These addresses can not only be used for

outgoing connections; they will also accept incoming connections, from any IPv6 node

in the world (unless the ports involved are blocked somewhere along the way). You can

now run servers (FTP, web, email, LDAP, etc.) on your mobile device. If you publish this

address in DNS, anyone you allow can connect to those servers.

Chapter 9 Ipv6 on MobIle DevICes

334

This also opens up the possibility of end-to-end direct connections: straight from my

node to yours, with no intermediary server between us. The Second Internet (using IPv4

with NAT) forces us to use intermediary servers running on nodes with public addresses.

If I want to chat with you, with IPv4 I cannot make a connection directly to your node;

we both have to make outgoing connections to some intermediary server (XMPP and

so on). That server then relays messages back and forth between our two outgoing

connections. If the connections are secured by TLS, the messages will be in plain text

on that intermediary server. Most snooping takes place on intermediary servers, not

in transit between end users and the server. You can achieve end-to-end privacy and

sender-to-recipient authentication with S/MIME, but that requires all parties to have

mutually trusted client certificates and a PKI to manage them. S/MIME is primarily for

email, although I have made it work over FTP as well. I don’t know of any chat protocol

that supports S/MIME currently, although in theory it could be done (not with XMPP).

With end-to-end direct messaging, there is only one link involved and no

intermediary server(s). In this case, TLS is actually end to end. If both ends use a client

cert, this approach achieves strong mutual authentication (we both know for certain who

the other party is) and end-to-end privacy. I call this PeerTLS. Messages are encrypted

in my node and decrypted in yours. Most people are not aware that TLS can work with a

client cert at both ends, but I have verified that it works great. When I message you, I am

not really interested in verifying your nodename; I want to know your identity (in other

words the information in your client cert, not in a server cert). Note that this will work

over IPv4 but only within a private Internet (e.g., your company LAN) – it cannot cross a

NAT gateway. With IPv6, there are no NAT gateways, so assuming port 4605 is open from

my node to yours, my node can connect directly to yours, regardless of where we are in

the world.

Note that decentralized messaging uses existing protocols, just implemented in

an end-to-end model, using PeerTLS. This has been tested with chat, email (SMTP),

file transfer (FTP), and VoIP (SIP/RTP). With this model, every user has both a client

and a (personal) server running on their node (even on a phone). There is no need

for a centralized intermediary server (or an account from an ISP or telco). Anyone

can exchange messages directly with any other user (assuming both have IPv6). This

provides true end-to-end encryption (only one link is involved) and mutual strong

authentication (both parties know for certain who they are communicating with). This

may be one of the biggest wins of the migration to IPv6.

Chapter 9 Ipv6 on MobIle DevICes

335

This is 5G-style decentralized messaging, not possible on the Second Internet

because of NAT.

 Decentralized Messaging
There are many advantages to decentralized messaging over current client/server via

intermediary servers:

• As long as there is network connectivity between our nodes, it doesn’t

matter if our connection to the Internet is up or not. For comparison,

even when I'm chatting with the person next to me on Skype, if the

ISP connection goes down, the chat stops.

• The speed of the connection is limited only by the bandwidth on the

shortest network path between us.

• Traffic never leaves the shortest network path between us, although

that could involve going to our ISP if the other party is not local.

• PeerTLS with both ends using a client cert provides strong mutual

authentication in addition to end-to-end encryption.

• You are not dependent on any intermediary servers being up and

running or having an account on them (you will need an IRP account

if you want to publish and obtain IP addresses and/or client certs

for other parties, but the messaging traffic does not go through

this path).

• No one but the parties communicating have any control over the

message content.

• It is very difficult for anyone to snoop on decentralized connections,

especially if they are encrypted end to end – there can be no man-in-

the-middle attack if there is no “middle.”

Chapter 9 Ipv6 on MobIle DevICes

336

 Summary
IPv6 deployment is very far along with mobile service providers, as there are major and

obvious benefits over trying to splice together many IPv4 10.x.x.x subnets. The largest

IPv4 subnet is only a /8, which provides some 16 million private IP addresses. Most

mobile service providers have many more than 16M subscribers. With IPv6, a single

subnet can provide /64 blocks for every subscriber with no problem.

If you check on your phone today (and you may need to download an application,

like Network Info II on Android or HE.NET on iPhones), you can see the IPv6 addresses

on your phone. Even without those applications, if you surf to https://ipv6- test.com,

you can see whether you have IPv6 today. Most of the people reading this probably

already do have it. For mobile device users, the future has already arrived.

If your Wi-Fi supports IPv6, both Android and iOS phones can get IPv6 over Wi-Fi,

in addition to over your dataplan. If your service provider is not currently providing IPv6

for some reason, but you have IPv6 running in your local subnet, you can still connect to

nodes in the Third Internet via Wi-Fi.

This is one of the most exciting areas of IPv6 deployment. For the first time since

phones were given access to the Internet, they now can get public IP addresses. I’m

already pioneering several aspects of this, including direct end-to-end connections and

PeerTLS.

Chapter 9 Ipv6 on MobIle DevICes

https://ipv6-test.com

337

CHAPTER 10

DNS
DNS (the Domain Name System) is a critical part of today’s Internet. Without it, we

would have to keep massive (and always out-of-date) directories (like telephone books),

where you could look up the name of some site (such as Dell’s pages about their PCs)

and then find the “telephone number” (IP address) of that page, which you would then

“dial” (type into your browser). This is clearly not very practical. DNS is such a complex

and critical topic for both IPv4 and IPv6 that I have included a chapter just for it.

 How DNS Evolved
Various schemes have been used to keep track of nodenames and their corresponding IP

addresses. The end result is a remarkably powerful and flexible system called DNS.

 Host Files
In the early days of TCP/IP, a list of known “hosts” (computers, routers, firewalls, etc.)

was kept in a special file called hosts in the /etc directory of all UNIX computers (the

complete filename was /etc/hosts). This file included one or more lines, each of which

contained an IP address, followed by one or more nodenames (e.g., www) or even fully

qualified nodenames (e.g., www.ibm.com). If you told your copy of UNIX to use the hosts

file for “name resolution,” when you used one of the nodenames listed in your hosts file,

it would use the IP address associated with that name. This still works today – you can

override DNS with your hosts file if you specify it first in the search order. Even Windows

systems have a hosts file, typically located at

• C:\Windows\System32\drivers\etc\hosts

© Lawrence E. Hughes 2022
L. E. Hughes, Third Generation Internet Revealed, https://doi.org/10.1007/978-1-4842-8603-6_10

http://www.ibm.com
https://doi.org/10.1007/978-1-4842-8603-6_10

338

A typical hosts file might look like

 172.20.0.11 ws1 ws1.hughesnet.local

 172.20.0.12 ws2 ws2.hughesnet.local

 172.20.0.13 us1 us1.hughesnet.local

 Network Information Service (NIS)
In organizations with many UNIX computers, and especially once people started linking

networks together with TCP/IP, it became necessary to keep everyone’s hosts file up

to date and synchronized. This was done manually for a while. Then NIS (Network

Information Service) was created by Sun to automatically distribute copies of the official

hosts file (in addition to other important configuration files for UNIX) to every node, on a

periodic basis.

 DNS Was Invented
Soon even this became unwieldy, so in 1983, at the request of Jon Postel, Paul

Mockapetris designed DNS as a distributed database engine with distributed data. We

are still using this system today. You will find that with minor extensions, it even supports

IPv6 and dual-stack networks. There is a gigantic, worldwide hierarchical system of DNS

servers that allows each network administrator to manage the names and IP addresses of

nodes in their network that users anywhere in the world might need to know about (e.g.,

that organization’s web servers, email servers, etc.). DNS is also used to keep track of the

nodenames and IP addresses of all internal nodes in an organization’s private network,

which only users in that organization need to know about (the organization’s file servers,

network printers, intranet web servers, other users’ workstations, etc.).

 Domain Names
Domain names refer to the hierarchical namespace as defined by RFC 1035 (above); RFC

1123, “Requirements for Internet Hosts – Application and Support,” October 1989; and

RFC 2181, “Clarifications to the DNS Specification,” July 1997. Briefly, domain names

consist of a list of names (e.g., atlanta, usa, exampleco, and com), in most specific to least

specific order, separated by periods (e.g., atlanta.usa.exampleco.com). Here, com is the

Chapter 10 DNS

339

TLD (or top-level domain) name for commercial organizations. The name exampleco is

the name of a hypothetical company, which is a commercial organization, and all parts

of it use the domain exampleco.com. Within ExampleCo, there is a branch in the United

States, which uses the subdomain usa.exampleco.com. Finally, there is an office in

Atlanta, Georgia, which uses the subdomain atlanta.usa.exampleco.com. If there is a web

server named www in that office, it would have a fully qualified domain name of www.

atlanta.usa.exampleco.com. There is no way to tell (without more information) if the

first name in such a string is a node’s name or the first component of a domain name.

 Top-Level Domain Names
There are a number of TLDs including generic ones that have been in use for a long time:

com: For commercial organization (company)

org: Noncommercial organization

edu: Educational organization

net: Internet related, for example, ISP

gov: Government related

mil: Military related

Recently, this was opened up – anyone with sufficient funds can now have their own

top-level Domain and manage subdomains under it. There are now over 1500 top-level

domains.

There are also many ccTLDs (country code top-level domains), each of which uses

the ITU two-letter code for the country, such as us, uk, jp, and ph). There are a few

exceptions to the ITU code usage, for example, the ITU code for Great Britain is gb,

while their ccTLD is uk. Each country manages subdomains under their ccTLD as they

see fit. Certain ccTLDs appear to have other meanings, like tv for the country of Tuvalu,

which sells domains in their space to people who want to use it to mean television.

Under ccTLDs, there are usually (but not always) second-level domains, such as co for

commercial, or for organization, etc. Actual organization names would then be third-

level domain names. Hence, a UK-based commercial entity called Warmbeer, Ltd. might

have the domain name warmbeer.co.uk. Their web server might be www.warmbeer.co.uk.

Chapter 10 DNS

http://www.atlanta.usa.exampleco.com
http://www.atlanta.usa.exampleco.com
http://data.iana.org/TLD/tlds-alpha-by-domain.txt
http://www.warmbeer.co.uk

340

A few ccTLDs, like ph for the Philippines, use the full three-letter code for organization

type, instead of the more common two-letter codes, as a second-level domain name, for

example, infoweapons.com.ph.

 Internationalized Domain Names
There are also Internationalized Domain Names (IDNs) that use 16-bit Unicode

characters to allow domain names in languages that have non-Latin alphabets. Your

browser will translate these Unicode domain names into strings in UTF-8, using the

punycode algorithm (shown in the last column in the following). This is defined in RFC

3492, “Punycode: A Bootstring Encoding of Unicode for Internationalized Domain

Names in Applications (IDNA),” March 2003. For example, the following (believe it or

not) are syntactically valid URLs (although they do not currently point to real sites):

http://пример.испытание/ Russian http://xn- -

e1afmkfd.xn- - 80akhbyknj4f/

http://例子.测试/ Chinese http://xn- -

fsqu00a.xn- - 0zwm56d/

http://실례.테스트/ Korean http://xn-

- 9n2bp8q.xn- - 9t4b11yi5a/

http://例え.テスト/ Japanese http://xn- -

r8jz45g.xn- - zckzah/

http://उदाहरण.परीक्षा/ Indian http://xn- -

p1b6ci4b4b3a.xn- - 11b5bs3a9aj6g/

 NS Resolver
All operating systems today include a DNS client, called a resolver. All network

applications use the resolver to look up nodenames and obtain their corresponding IP

addresses, whether those nodes are local (on the organization LAN) or external (out on

the Internet). The resolver contacts one of the DNS servers specified in their TCP/IP

configuration (either local or at your ISP). If that server is authoritative for the requested

domain names, it returns the addresses immediately. Otherwise, that server can either

Chapter 10 DNS

http://xn--e1afmkfd.xn--80akhbyknj4f/
http://xn--e1afmkfd.xn--80akhbyknj4f/
http://xn--fsqu00a.xn--0zwm56d/
http://xn--fsqu00a.xn--0zwm56d/
http://xn--9n2bp8q.xn--9t4b11yi5a/
http://xn--9n2bp8q.xn--9t4b11yi5a/
http://xn--r8jz45g.xn--zckzah/
http://xn--r8jz45g.xn--zckzah/
http://xn--p1b6ci4b4b3a.xn--11b5bs3a9aj6g/
http://xn--p1b6ci4b4b3a.xn--11b5bs3a9aj6g/

341

return a hint of where to look (“I don’t have that information. Try here”) or do a recursive

lookup (“I didn’t have that information, but I went and found it for you”). Of course, the

lookup could fail (“I couldn’t find that domain name anywhere”).

 DNS Server Configuration
The full process of setting up DNS servers (usually two or more) for an organization

and populating them with node information is too complicated to cover in this book. If

you are using the Microsoft DNS server (included free with Windows Server), see their

documentation for details. If you are using BIND (the freeware DNS server from the

Internet Systems Corporation), see O’Reilly’s DNS and BIND, fifth edition, for details. If

you have a DNS appliance, consult their documentation or online help for details.

In general, though, you define both “forward zones” that map nodenames to IP

addresses and “reverse zones” that map IP addresses onto nodenames. You also have

to inform all client computers of the IP addresses of at least two DNS servers that they

can use for resolving nodenames to IP addresses (or vice versa). Client computers

can be informed of these DNS server addresses either via manual configuration or

automatically via DHCPv4 or DHCPv6. If your client computer doesn’t know where to

find DNS servers, you may have full Internet connectivity but no name resolution. You

can ping (or even surf to) nodes anywhere in the world by specifying their numeric IP

addresses (e.g., http://64.170.98.32 – try it!). However, most people would consider such

a computer to not be very useful. This gives you a very good idea of how important DNS

is to the Internet (even the Third Internet).

 DNS Protocol
DNS is an Application Layer protocol. It uses UDP port 53 (for most queries and

responses) or TCP port 53 (for zone transfers between DNS servers). It was originally

defined in RFC 882, “Domain Names – Concepts and Facilities,” November 1983, and

RFC 883, “Domain Names – Implementation and Specification,” November 1983. Those

were replaced by RFC 1034, “Domain Names – Concepts and Facilities,” November 1987,

and RFC 1035, “Domain Names – Implementation and Specification,” November 1987.

There have been numerous updates to these, including RFCs 1101, 1183, 1348, 1876,

1982, 1995, 1996, 2065, 2136, 2137, 2181, 2308, 2535, 2845, 3425, 3658, 4033, 4034, 4035,

4343, and 4592.

Chapter 10 DNS

342

 DNS Resource Records
The data in DNS servers is kept in resource records. In forward zones, it is possible to

have any of the following resource records (the following list is not comprehensive):

Name Contents

a “a” – Ipv4 address associated with a domain name

aaaa “Quad-a” – Ipv6 address associated with a domain name

MX “Mail eXchange” – domain name of a mail server for the domain

SrV “Service” – domain name of servers for other protocols, such as SIp and LDap

CNaMe “alias” – provide an alternative domain name for another domain name

hINFO “host Info” – any arbitrary info you want to provide about a host

Naptr “Naming authority pointer” – used mostly in eNUM

NS “Name Server” – name of a valid DNS server for this domain

SOa “Start of authority” – start of a zone in configuration files, includes default ttL

SpF “Sender policy Framework” – used in anti-spam technology

tSIG “transaction Signature” – symmetric cryptographic key used in zone transfers

tXt “text” – any arbitrary text information (not interpreted by DNS)

In reverse zones, typically only the following resource records are found:

NS “Name Server” – name of a valid DNS server for this domain

SOA “Start of Authority” – same as in forward zones

PTR “Pointer Record” – IP address for a specific node, in reverse order

The following examples show how typical resource records look:

ws1 IN A 172.20.0.11

ws1 IN AAAA 2001:418:5403:3000::c

 IN MX 10 ws1.hughesnet.org

11.0.20.172 IN PTR ws1.hughesnet.org

c.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.3.3.0.4.5.8.1.4.0.1.0.0.2 IN

PTR ws1.hughesnet.org

Chapter 10 DNS

343

In general, it is a pain to manually create reverse PTR records, and any change to

IP addresses (e.g., from changing ISPs) requires changes to all forward and reverse

resource records in DNS. Here again, an appliance with a GUI can help by automatically

generating reverse PTR resource records. This is especially useful for IPv6 reverse PTR

records.

In the Sixscape DNS appliance, you can define named networks for IPv6. When you

define a network, which will create the associated reverse zone, you can assign that

network a name, which has the value of the network’s prefix. You can then define node

addresses in terms of the network name. First, this fills in the first 64 bits of each address,

which reduces errors and saves time. However, if you ever change ISPs, you can simply

redefine the prefix for the network, and all forward and reverse resource records created

from the nodes specified using that network name will be updated with the new prefix.

This is called instant prefix renumbering. There was an a6 resource record created at one

point for IPv6 forward resource records that was supposed to accomplish this, but there

were so many problems with it. It has now been deprecated (you are not supposed to use

it anymore). It is much better to do this in an appliance that has a GUI and database and

generates only the standard AAAA resource records.

 DNS Servers and Zones
A given DNS server can have any number of zones defined on it. A given zone can be

a forward zone (for mapping domain names to IP addresses) or a reverse zone (for

mapping IP addresses to domain names). There is usually one forward zone for each

domain for which the DNS server contains information (e.g., hughesnet.org) and one

reverse zone for each network that the DNS server contains information for (e.g.,

172.20.0.0/16). So the forward zone for hughesnet.org might contain mappings for ws1.

hughesnet.org to 172.20.0.11, for us1.hughesnet.org to 172.20.0.13, and so on. The reverse

zone for 172.20.0.0/16 might contain mappings from 172.20.0.11 to ws1.hughesnet.org,

from 172.20.0.13 to us1.hughesnet.org, 172.20.0.91 to us1.v6home.org, and so on.

Chapter 10 DNS

344

Any zone (forward or reverse) can be a primary zone or a secondary zone. A primary

zone is one of which the DNS administrator manages the contents (either via a GUI

interface or via editing BIND configuration files). A secondary zone is one whose

contents are automatically transferred from a corresponding primary zone of the same

name on a different DNS server (no management is required for a secondary zone, once

that zone is created). When you create a secondary zone, you specify the IP address

of the DNS server that contains the corresponding primary zone. Usually there is one

primary zone (on one DNS server) and one or more secondary zones (each on other

DNS servers) for a given set of records. A given DNS server can have any mix of primary

zones and secondary zones. Sometimes the terms primary and secondary are used

for entire DNS servers, especially if all zones on a server are all primary zones or all

secondary zones, but technically the terms refer to zones, not servers. The transfer of all

records from a primary zone on one DNS server to a secondary zone on another DNS

server is called a zone transfer. Typically, a primary zone is configured to allow zone

transfers only to secondary zones on authorized DNS servers (by IP address). There is

also a cryptographic authentication scheme called TSIG that can restrict zone transfers

to only authorized secondary zones. Otherwise, a hacker could perform a zone transfer

from one or more of your primary zones and obtain information useful in attacking your

network (effectively, a “map” of at least part of your network). Typically, zone transfers

from primary zones to secondary zones are done automatically on a periodic basis. If

a hacker changes data in a secondary zone, the correct data would be automatically

restored as of the next zone transfer. If a hacker changes data in a primary zone, the

hacker’s changes will be automatically and securely transferred to all secondary zones

via the regular zone transfers. It is very important to secure your primary zones.

It is possible for all the zones on a given DNS server to be accessible by one or more

clients for performing DNS resolutions (lookups), in which case it is a resolving server. A

primary server that is not accessible for resolutions by any client (or other DNS servers)

is called a stealth server. It is only ever used to do zone transfers to secondary servers

(hence need not be very powerful). Access via UDP port 53 can be completely disabled

(zone transfers take place over TCP port 53), and even those can be restricted by IP

address. Use of a stealth server lowers the possibility of hackers being able to attack your

primary DNS server. There would be no real use for a “stealth secondary server.”

Chapter 10 DNS

345

 Different Types of DNS Servers
There are different types of DNS servers based on how they are populated with data.

 Authoritative DNS Servers
A DNS server that contains a primary zone or a secondary zone is said to be

authoritative for the domain (or network) defined in that zone. All resolving servers

cache (temporarily store) the results of any query they perform on behalf of clients.

If a client makes a query of a resolving server that currently has the required

information (either because it is authoritative or because it has cached it from a previous

query), it responds with that information to the client immediately. If a resolving server

is asked for information it does not currently have, it can either return a reference (“I

don’t know; go ask this server”), or it can do a recursive query on the client’s behalf (“I

didn’t know, but I went and found out for you by making client queries myself on your

behalf, and here is what I found”). A recursive query can go through several servers

before the requested information is finally obtained and returned to the client that asked

for it in the first place. Any server involved in the process typically caches the retrieved

information. Every record published by a DNS server has a Time To Live (TTL) defined

for it. When a record is cached, it is kept on the caching server only for the defined Time

To Live for that record, after which it is considered stale and is discarded. Once a DNS

server discards stale information, if it is asked for again, it must do another recursive

query, at which point it again caches the record. This caching and expiration scheme

keeps the data current, but means that a change to authoritative information may take

a while to propagate to all other servers (often 24–48 hours, depending on Time To Live

values chosen).

When a client obtains information from an authoritative server, it is reported as an

authoritative answer. When it obtains information that has been cached, it is reported

as a non-authoritative answer. This doesn’t mean it is any less trustworthy, just that it

obtained the information at “second hand” (out of some DNS server’s cache) instead of

directly from the authority on the subject (an authoritative server).

Chapter 10 DNS

346

 Caching-Only Servers
A resolving server that has no defined primary or secondary zones is called a caching-

only server and typically, once set up and configured, requires little or no management.

 Client Access to DNS
In a typical network, every client should have the addresses of at least two valid resolving

DNS servers configured. If a connection to one of them fails, the client will automatically

try the other configured address. This increases the robustness of the network. In a small

network (e.g., home connection), the specified servers may be located at and managed

by the ISP. In some cases, the DSL or cable modem might provide a DNS proxy function,

which allows DNS queries to be submitted to the default gateway address. The modem

relays such requests to the DNS servers configured in the modem and returns the replies

to the internal client that made the request.

Any network can have one or more local DNS servers (assuming they can make

outgoing queries via UDP port 53). To run an authoritative server on a network, that

server must be accessible by relevant clients and other servers. If any of those clients

or servers is external, then the authoritative server must have a globally accessible

“external” IP address (not a private IP address). For example, I run an authoritative

DNS server for my domain hughesnet.org in my home, on a DNS server that has a valid

external IP address. I also run other servers (email and web) that have globally accessible

external IP addresses (in my case, both IPv4 and IPv6 addresses). I can access these

services from anywhere on the Internet, just like using servers at ISPs. This sort of thing

is far simpler and less expensive with IPv6 than with IPv4.

 Recursive DNS Queries
A single DNS query (e.g., “lookup the IP addresses for node ws1.hughesnet.org”) can

actually require several resolutions. If the server already has information for ws1.

hughesnet.org, either because it is authoritative for that information or because it has

still valid cached information, it returns the requested information immediately (“ws1.

hughesnet.org has an IPv4 address, which is 172.20.0.11, and an IPv6 address, which is

2001:df8:5403:3000::c”). It is up to the client which of these is used. If it is a dual-stack

client (supports both IPv4 and IPv6), it should use the IPv6 address by preference.

Chapter 10 DNS

347

If information for ws1.hughesnet.org is not present on the resolving DNS server, that

server must find the authoritative server for the domain hughesnet.org. The server that

is authoritative for the domain org can tell it this information. To locate that server, the

resolving server can ask any root DNS server. To locate a root DNS server, the resolving

server can look in its root hints file. Any of these things could already be in cache (and

typically are, if any other nodename ending in .org or hughesnet.org has been looked

up by any client recently). If none of them are in cache, then first, the resolving DNS

server will ask a root DNS server “who is authoritative for domain org.” It will cache the

response it gets and ask the returned server for org “who is authoritative for domain

hughesnet.org.” It will cache that response also and ask the returned server for hughesnet.

org “what is the IP address of ws1.hughesnet.org.” It will cache that response as well and

return the answer to the client, who has been patiently waiting. Most DNS servers have

a way to empty (or “dump”) the cache if you would like to watch all this happen with a

network sniffer (this would require root-level access on the computer running your DNS

server).

 The Root DNS Servers
All DNS queries eventually chain up to one of the 13 root DNS servers (or the cached

data from them). In reality, “DNS anycast” is employed so that there are actually quite a

few copies of most of the 13 root servers distributed around the world (see the following

table). The current information on the root servers (from which I made the following

table) is always available at

 www.root-servers.org

Every DNS server includes a file with the current anycast addresses of the 13 root

servers (a.root-servers.net to m.root-servers.net), as summarized in the following table.

A copy of the official current file (in BIND format) can always be found at

www.internic.net/zones/named.root

All DNS server operators from time to time obtain the current copy of this file and

update their server(s) root hints file with it. The information in this file allows a DNS

server to locate a root server when it needs one.

Chapter 10 DNS

348

The only thing the DNS root servers publish is the information in a short file that is

maintained by IANA that helps other DNS servers locate the DNS hierarchy layer just

below that of the DNS root servers (i.e., the servers that are authoritative for the top-level

domains such as com, net, org, uk, jp, etc.). All root servers publish the same information,

so only one ever needs to be asked (typically chosen at random from the 13 available).

A copy of the current version of this information (in BIND format) can always be found at

 www.internic.net/domain/named.root

Only operators of DNS root servers ever actually need to obtain this file and update

their DNS root servers with it. In reality, due to DNS caching, the actual root servers are

only rarely involved in a typical DNS query. A typical non-root DNS server only needs to

access a root server about once every 48 hours. It would normally have the information

published by the root servers cached in memory from previous inquiries. Only once

the Time To Live expires for a given resource record obtained from an actual root server

would the DNS server have to go back and obtain more up-to-date information from a

DNS root server (which it would again cache to use in future lookups). Most of the time,

this new information will just be the same information that just expired.

Current root servers (all in the domain “root-servers.net”)

Name Organization Count IPv4 Address IPv6 Address

A VeriSign, Inc. 6/3 198.41.0.4 2001:503:ba3e::2:30

B Information Sciences

Inst.

1/1 192.288.79.201 2001:478:65::53

C Cogent Communications 6/0 192.33.4.12 -

D University of Maryland 1/0 128.8.10.90 -

E NASA Ames Research

Center

1/0 192.203.230.10 -

F Internet Systems

Consort.

49/22 192.5.5.241 2001:500:2f::f

G US DoD Network Info Ctr 6/0 192.112.36.4 -

H US Army Research Lab 1/1 128.63.2.53 2001:500:1::803f:235

I Autonomica 34/0 192.36.148.17 -

J VeriSign, Inc. 70/6 192.58.128.30 2001:503:c27::2:30

Chapter 10 DNS

349

K RIPE NCC 18/10 193.0.14.129 2001:7fd::1

L ICANN 3/3 199.7.83.42 2001:500:3::42

M WIDE Project 6/5 202.12.27.33 2001:dc3::35

In the preceding table, the first number in the Count field (before the slash) is the

total number of anycast servers for that name, regardless of IP version. The second

number (after the slash) is the number of anycast servers for that name that can accept

queries over IPv6. Currently, all root servers will accept queries over IPv4 (this may not

always be the case). All root servers can return A and/or AAAA records for the servers

authoritative for top-level domains. One of the watershed events for IPv6 happened in

February 2008, when VeriSign enabled IPv6 access on enough of the root servers that a

client doing queries over IPv6 would always be able to complete a query without having

to fall back to IPv4. Since then, clients that access DNS over IPv6 (IPv6-only nodes or

dual-stack nodes) can resolve names to addresses as effectively as IPv4-only nodes

have been able to since the introduction of DNS. Eventually all root servers will support

queries over IPv6.

Total root server names = 13

Total root server names that accept connections over IPv6 = 8 (61.5% of names)

Total deployed root servers = 202

Total deployed root servers that accept connections over IPv6 = 51 (25.2% of total)

 MX and SRV Resource Records
In addition to providing nodename to IP address lookup (forward resolution) and IP

address to nodename lookup (reverse resolution), DNS servers can also advertise the

preferred servers for various functions, such as email (SMTP), VoIP (SIP), etc.

The MX (Mail eXchange) record can advertise one or more email server names,

with priorities. Other mail servers when they want to deliver mail to your domain will

do a DNS query asking for the MX record(s) for your domain. The sending server will try

to make connections over port 25 (SMTP) to the advertised nodenames, in decreasing

priority, until it either has a connection accepted (in which case it will deliver all the

mail it has for your domain) or it runs out of advertised nodenames (in which case it will

try again on some schedule, until it succeeds or decides your domain is not currently

Chapter 10 DNS

350

online). Thus, a client can send messages to any name at your domain (fred@hughesnet.

org), and it will be delivered to one of your preferred mail servers, which will then deliver

it to that person’s mailbox or return it as undeliverable.

The SRV record (defined in RFC 2782,1 “A DNS RR for specifying the location of

services (DNS SRV),” February 2000) can be used to specify preferred servers for your

domain for services other than email, such as VoIP (SIP), Jabber Instant Messaging

(XMPP), and Directory Services (LDAP). In the same style as email addresses, it is

possible to specify a new style “phone number” as a SIP URI, for example, sip:fred@

hughesnet.org. A good SIP client could take that URI, do a DNS SRV query to determine

the preferred SIP server for the domain hughesnet.org, and then attempt to connect to

user fred on that server. The SRV mechanism of DNS will make VoIP as scalable and

decentralized as the current Internet email system is. The same mechanism would allow

clients anywhere in the world to contact your Jabber IM client (im:fred@hughesnet.org)

or retrieve your directory entry from your organization’s external LDAP server.

 ENUM
During the transition from legacy telephony service (using ITU E.164 numeric phone

numbers) to more general SIP URIs, there is a need for a transition mechanism. One

has been developed called ENUM (which stands for E.164 Number Mapping, where

E.164 is the ITU standard for conventional numeric telephone numbers), including the

international country codes (e.g., +1 for the United States, +63 for the Philippines, +852

for Hong Kong). ENUM is implemented as a sub-function of DNS.

With ENUM, you do the equivalent of reverse DNS lookups, but from ITU telephone

numbers to one or more URIs, typically including a SIP URI. This allows people with

legacy telephone customer equipment that only has a ten-key pad to map E.164

telephone numbers onto the complex alphanumeric SIP URIs (e.g., sip:fred@hughesnet.

org). In addition to SIP URIs, you can also map a single E.164 number onto other URIs,

including instant messaging (im:), email (mailto:), web (http:), etc. This would allow a

smart client that supports unified messaging via various protocols to contact you via any

of your addresses using a single numeric “phone number.” These URIs are associated

with an E.164 number using the NAPTR DNS resource record. In theory, the long list

of various kinds of “addresses” on your business card whereby people can contact you

1 https://tools.ietf.org/html/rfc2782

Chapter 10 DNS

https://tools.ietf.org/html/rfc2782
https://tools.ietf.org/html/rfc2782

351

(telephone, fax, email, IM, web, etc.) could be replaced with a single ENUMber. There

are standalone ENUM clients that can allow someone to simply view the mappings for

any ENUMber, for use with devices such as legacy telephone handsets.

Essentially, you dial a person’s ENUMber. Then your client (or your VoIP server)

does a DNS query to map that onto one or more URIs, which it then uses to contact that

person. ENUM can be run at the national level, typically by a large telco or a government

agency, using ENUMbers that start with the actual country code. In this case, the general

public DNS is used to do the mapping. It can also be done on a private basis, using any

“country code” you want (even made-up ones), but requires clients to specify a custom

DNS server to do the custom mapping (all ENUM-compliant clients allow specification

of which DNS server to use for ENUM lookups).

If traditional DNS management is used to manage the URI mappings for a large

number of people, this could be an enormous workload and lead to long delays in

making additions or changes to URI mappings. It is better to allow the end users to view

and modify their own mappings. This requires user authentication, which most often

would be linked to an existing authentication server, such as Microsoft Active Directory

(within an organization) or RADIUS (for a telco or ISP).

Because most phones from 3.5G onward will be based on IPv6, it is important that

an ENUM-capable DNS server supports queries over IPv6. There will be some legacy

phones that still use IPv4 for some time, so it must also support queries over IPv4. In

other words, the DNS server used for ENUM must be dual stack.

ENUM is defined in RFC 3761,2 “The E.164 to Uniform Resource Identifiers (URI)

Dynamic Delegation Discovery System (DDDS) Application (ENUM),” April 2004.

There is more information on ENUM on the following website:

 www.ripe.net/enum

 DNSSEC (Secure DNS)
As mentioned before, it is possible for a hacker to tamper with the information in the

DNS. You may think you are surfing to your bank’s website, but it could be a clever

mockup in some hacker’s basement. It will show the correct URI in your browser, but

anything you input (like your login) can be easily captured by the hacker and then used

2 www.ietf.org/rfc/rfc3761.txt

Chapter 10 DNS

https://www.ietf.org/rfc/rfc3761.txt
http://www.ietf.org/rfc/rfc3761.txt

352

to gain access to your account on the real site. A hacker could also trick people into

reading fake news stories that appear to be from legitimate websites.

There are some patches to BIND that make it more difficult for a hacker to alter DNS

data, but the only surefire way to detect it is to add digital signatures into the DNS. The

following RFCs define such an extension to DNS, which is called DNSSEC:

RFC 3833, “Threat Analysis of the Domain Name System (DNS),” August 2004

RFC 4033, “DNS Security Introduction and Requirements,” March 2005

RFC 4034, “Resource Records for the DNS Security Extensions,” March 2005

RFC 4035, “Protocol Modifications for the DNS Security Extensions,” March 2005

RFC 4431, “The DNSSEC Lookaside Validation (DLV) DNS Resource Record,”

February 2006

RFC 4641, “DNSSEC Operational Practices,” September 2006

RFC 5074, “DNSSEC Lookaside Validation (DLV),” November 2007

Currently, various parts of the DNS namespace (the org domain, the gov domain,

various ccTLDs) are being secured with DNSSEC. Once a top-level domain is signed,

this simplifies signing of domains under it. Eventually the root of the entire DNS tree (“.”)

will be signed, and this will unify DNSSEC for all domains. Until that time, there will be

a need for DNS servers to obtain the root key material for any part of the DNS space for

which you want to verify signatures.

DNSSEC depends heavily on digital signatures and public key digital certificates.

You will need to understand these concepts to follow this discussion. Basically though, a

digital signature is created by a cryptographic algorithm that produces a numeric result

that is derived from a specific plain text (in this case, a single DNS resource record) and

an asymmetric cryptography private key. These signatures are generated, encoded into

ASCII characters, and inserted into the BIND configuration files after each resource

record. When DNS data are retrieved, the digital signatures flow along with the resource

records. The user’s resolving DNS server can verify the signature of any retrieved records

by using the public key associated with the private key used to sign the records. Only if

the signature is verified does the resolving server return the retrieved record(s) to the

client. If records are compromised, they appear to not be available to the user. Eventually

all client software will contain code to verify the DNSSEC signatures, in which case the

resolving DNS server will just return the records and signatures to the client, which

can notify the user that the records were found but had been compromised (if the

signature fails).

Chapter 10 DNS

https://tools.ietf.org/html/rfc3833
https://tools.ietf.org/html/rfc4033
https://tools.ietf.org/html/rfc4034

353

Administrators using BIND directly (without a GUI front end) will find that DNSSEC

is extraordinarily difficult to deploy and requires massive time and effort and extensive

knowledge of PKI to produce signed resource records, even using the public domain

PERL scripts. A good DNS appliance (like Sixscape DNS) can totally automate both the

signing and validation processes, which vastly speeds up signing an entire domain,

eliminates many possible errors, and requires little or no security or cryptographic

expertise on the part of the DNS administrator.

Ideally the private key used to sign records should be kept in an HSM (Hardware

Storage Module), which the private key never leaves. The object to be signed is sent

into the HSM, the private key is used to do the signing inside the HSM, and the result

is retrieved and used. For highest security, the HSM should be certified by FIPS 140-2

or equivalent. FIPS is the US Federal Information Processing Standards. FIPS 140-2 is

the “Security Requirements for Cryptographic Modules,” May 2001. Most commercially

available HSMs are quite expensive, and their performance is very low compared with

doing the same algorithm in software on modern processors (e.g., 1200 signatures per

second for a very good HSM, as opposed to 12,000 signatures per second in software on

entry-level hardware). Typically, an HSM is needed only on a signing DNSSEC server.

Digital signature verification (used in DNSSEC validation) uses only the public key

corresponding to the private key used to create the signatures, so it can be done without

an HSM, hence at much higher performance. The entry-level model of Sixscape DNS can

do about 30,000 queries per second without DNS verification or about 27,000 per second

with DNSSEC verification. Any DNS server can do DNSSEC validation, with no need

for an HSM.

DNSSEC is not strictly an IPv6 technology and is equally applicable to IPv4. It is

however being deployed at the same time as IPv6, and of course, it is important that any

system deployed to support DNSSEC is able to sign and validate both IPv4- and IPv6-

related resource records and can support queries over both IPv4 and IPv6. DNSSEC is a

very important part of the Third Internet.

Essentially, DNSSEC introduces trust into the DNS.

Chapter 10 DNS

354

 Summary
Almost everyone uses DNS, but not many people understand how it works. This chapter

explained how DNS in general works. It has been in use with IPv4 for quite a while.

The good news for IPv6 users is that DNS was extended (with AAAA records) to

support IPv6 in parallel to IPv4 (which uses A records). The reverse lookups support IPv6

as well.

You can also configure a DNS server to accept queries over only IPv4, only IPv6, or

both (dual stack). Of course, the DNS server would need to be in a subnet that supports

those versions of IP, and the DNS server itself would need to support IPv6 and have an

IPv6 address configured to allow IPv6 nodes to connect to it. This is one of the first things

you would do when you migrate from IPv4-only to dual stack (supports both IPv4 and

IPv6 on your DNS servers).

On client nodes, you can configure both IPv4 and IPv6 addresses for the DNS servers

in your subnet.

You can publish only the IPv4 address of a server, only the IPv6 address, or both IPv4

and IPv6. In the latter case, if the client supports IPv6, it will try to connect over that

first and then fall back to IPv4 if the IPv6 connection fails. There are not currently many

servers that only publish IPv6 addresses, as there would be no way for users with only

IPv4 to find them.

For more advanced usage of DNS, DNSSEC (secure DNS) fully supports IPv6 as well.

Just as there are public DNS servers for IPv4 (e.g., 4.2.2.2), there are public DNS

servers for IPv6 (e.g., 2001:470:20::2).

Chapter 10 DNS

355

CHAPTER 11

The Future of Messaging
with No NAT
In the Second Internet (the one being used by most people today, based on IPv4),

most nodes do not have public (globally routable) IP addresses. There are simply not

enough of these to go around. Those addresses have mostly all been allocated. Today

most Internet users are second-class netizens, with only private addresses. These are

addresses that work only in their subnet and cannot accept incoming connections. This

has a major impact on messaging.

First off, let’s define public and private IP addresses.

 Private IPv4 Addresses
A private IPv4 address is one that is valid only in your own local subnet. It should fall

within one of the following address ranges (as per RFC 1918 – “Address Allocation for

Private Internets”):

 10/8 10.0.0.1 – 10.255.255.254

 172.16/12 172.16.0.1 – 172.31.255.254

 192.168/16 192.168.0.1 – 192.168.255.254

Any private Internet can use addresses from any of these three address ranges.

Any assigned address must be unique within its private Internet, but they need not be

globally unique. There might be thousands of nodes around the world using the address

10.1.2.3, in different private Internets. On the other hand, public addresses must be

globally unique. Only one node in the entire public IPv4 Internet can be using the public

address 123.45.67.89.

© Lawrence E. Hughes 2022
L. E. Hughes, Third Generation Internet Revealed, https://doi.org/10.1007/978-1-4842-8603-6_11

https://doi.org/10.1007/978-1-4842-8603-6_11

356

If your node has an IPv4 address in one of the RFC 1918 ranges (e.g., 172.20.2.1), you

are a second-class netizen. You can only make outgoing connections from your private

Internet. You cannot run a server on your node that can be accessed from anywhere in

the entire IPv4 Internet. You can’t allow people to connect directly to your node (they

have to do so via intermediary servers). If you had a public IPv4 address, you would be

a first-class netizen and could do those things. Too bad that public IPv4 addresses are

pretty much all allocated to other people. Ask your ISP nicely if you can have one please.

Be prepared for all kinds of excuses. Or they might say, “For only four times the price,

you can have a commercial account and get ONE public address.” They really don’t have

many more to allocate. Their source for more IPv4 public addresses (their RIR) has dried

up. Their RIR’s source for new public IPv4 addresses (IANA) ran out back in early 2011.

A private IPv4 address is similar to an extension in a company phone system (PBX)

like “x101,” but since private addresses look just like public addresses, they confuse some

people. They are 32 bits long and are shown in dotted decimal notation. Telephone

extensions (e.g., x101, x102) look different from “real” telephone numbers, so nobody

confuses them with real telephone numbers. Before RFC 1918, the preceding address

ranges WERE public addresses. Those address blocks were repurposed and combined

with Network Address Translation (NAT) to keep IPv4 alive for a few more years, while

the real solution (IPv6) was being developed and deployed.

Any company can use the same set of internal extensions (e.g., x100–x199) for their

extension phones. The company will have few “real” (global) telephone numbers that

anyone can call, but maybe hundreds or thousands of internal extensions. If you try

calling a public phone number from your extension phone, you have to dial “9” first,

which connects you to one of the real company phone numbers (you hear an “outside”

dial tone). If all your company’s real numbers are already in use, you get a busy signal.

Otherwise, you then dial the external number. If someone can see the number you are

calling from (with “caller ID”), it will be one of the real company phone numbers, not

your extension number. This is similar to outgoing network connections from behind

NAT. With NAT, all internal users will appear to be connecting from the single public

IPv4 address on the NAT gateway, not from your private address. This messes up website

logging and law enforcement tracing of bad guys.

If someone with a real telephone number tried dialing your extension on their real

phone, how would the phone company figure out which of the possibly thousands of

x101s in various companies to connect you to? You have to first dial the company’s real

phone number and then somehow convince a receptionist (live or automated) there to

Chapter 11 the Future oF Messaging with no nat

357

connect you to the extension 101 in that company. Unfortunately, there is no equivalent

to a receptionist in a NAT gateway. You can’t make incoming connections from the

public Internet to a node behind NAT. So how does Skype appear to do just that?

Something called NAT traversal, which is a very bad design.

There is no way packets from a private Internet can be routed globally. If a packet

with the private address 10.1.2.3 was released onto the backbone, which of possibly

thousands of private Internets that have a node with that address would it be routed

to? It’s a moot point anyway since most border routers (between your subnet and the

backbone) would never let that packet pass onto the backbone. Private addresses are

local to your private Internet. Occasionally packets with internal addresses do “leak”

onto the Internet backbone (due to misconfigured border routers). They are like

lost souls that haunt the Internet for a short while, unable to find any useful routing

information, until they finally “cross over” (die) when they reach their hop limit, or some

other backbone router kills them (“what’s THIS doing here?”). This is one reason to

use only RFC 1918 addresses in private Internets instead of public addresses. If public

addresses from a private Internet leak onto the Internet backbone, they can cause

conflicts.

I say private Internet, instead of private subnet, since you can actually have multiple

subnets behind a NAT gateway, separated from each other by routers (without NAT).

Those subnets would constitute a private routing domain. Packets from any node in

any of those domains could be sent to the global Internet via the one NAT gateway,

and the reply makes its way back to the sender. Within the routing domain, all traffic is

bidirectional (from any node to any node, regardless of subnet). The one-way limitation

comes only at the NAT gateway. All these internal subnets use private IPv4 addresses.

For example, you could have subnets 172.20.0.0/16, 172.21.0.0/16, and 172.22.0.0/16

connected together with routers, all behind a single NAT gateway.

 Public IPv4 Addresses
There are a few blocks of the IPv4 address space reserved for special purposes:

Loopback 127/8 127.0.0.1 – 127.255.255.255

RFC 1918 10/8 10.0.0.1 – 10.255.255.254

 172.16/12 172.16.0.1 – 172.31.255.254

 192.168/16 192.168.0.1 – 192.168.255.254

Chapter 11 the Future oF Messaging with no nat

358

RFC 6598 (CGN) 100.64/10 100.64.0.1 – 100.127.255.254

Multicast 224/4 224.0.0.0 – 239.255.255.255

Experimental 240/4 240.0.0.0 – 255.255.255.255

All other IPv4 addresses are public and can be allocated to users. Actually, most of

these have been allocated.

A packet with a public address can be globally routed. That means it can be delivered

to any node in the world that is connected to the public IPv4 Internet via a public

IPv4 address (not through NAT). A node with a public address can make outgoing

connections to any other node on the public IPv4 Internet that has a public address

and accept incoming connections from any other node on the IPv4 Internet, even ones

behind NAT. That is a first-class netizen. Before 1995 or so, everyone was a first-class

netizen. We had a monolithic global Internet – any node could connect to any other

node (subject to port blocking by routers or firewalls).

The public IPv4 Internet used to be the entire Internet (before NAT). Today it

is only a small part of the total IPv4 Internet. It consists of those nodes connected

directly to the IPv4 backbones, as opposed to via NAT gateways. Every such node has

a public IPv4 address. The remaining public IPv4 Internet exists mostly in telcos, ISPs,

hosting facilities, and cloud providers (AWS, Azure) today and in smaller pieces in

corporate networks. As any example, at home I have ONE public IPv4 address, or about

0.000000023% of the total theoretical address space. My company has SIX public IPv4

addresses (for which we have to pay a lot). In comparison, several companies that got

“class A” blocks in the early days each have about 16.7M addresses, or about 0.39% of the

theoretical address space (AT&T and HP each have two class A blocks).

 Network Address Translation
If an IPv4 private Internet is connected to the public IPv4 Internet, it must be via a “cone-

mode” NAT gateway, which hides the internal private addresses behind a single globally

unique public IPv4 address. Basically, a NAT gateway maps private IPv4 addresses to

a single public IPv4 address for outgoing packets, in a reversible manner, so that the

gateway can later route the reply back to the internal node that sent the outgoing packet.

This is why incoming connections don’t work for nodes behind NAT – the NAT gateway

can’t undo a mapping it never did.

Chapter 11 the Future oF Messaging with no nat

359

There is another kind of NAT called “1:1 NAT,” in which a single private IPv4 address

is mapped (reversibly) to a single public IPv4 address. The reply packets go directly

to the corresponding private node. Each such mapping requires one of your previous

public IPv4 addresses. Any external node can make incoming connections to such

internal nodes, using any port (subnet to port blocking in routers or firewalls). In my

company, we have a few servers behind 1:1 NAT. They have internal addresses (e.g.,

172.17.0.11), and connections to the associated public address (e.g., 66.96.216.18) get

relayed to the internal address (e.g., 172.17.0.11). The reply comes from the private

address but gets mapped to the public address. Outgoing connections from this node

appear to be coming from the 1:1 public address for this node (66.96.216.18), not the

general NAT public address.

Yet another kind of NAT called “port mapping” allows me to redirect incoming

connections to a public address used for NAT, to a specific port, to one internal node. For

example, I could map port 80 onto internal node 172.17.2.1. A given port (e.g., 80) can

only be mapped onto a single internal node. But I could map incoming connections on

port 25 to the same or a different internal node. So even with only a single public IPv4

address, I could run a server on internal nodes via port mapping. If the WAN interface of

your ISP router has a private address on it, you are out of luck.

 NAT Gateways Can Run Out of Port Numbers
NAT gateways do their mapping with “port shifting.” For example, let’s assume my node

is at 172.20.2.1. If the source port on an outgoing packet is 20123, the IP address gets

changed to the public IPv4 address, and the source port gets shifted to another port not

currently in use (e.g., 30345). An entry in a NAT table keeps track of that mapping. When

the reply comes back, the destination IP address will be the NAT public address, and the

destination port will be 30345. The NAT gateway looks that port up and determines that

the original packet came from 172.20.2.1 and the source port was 20123. It changes the

IP address to 172.20.2.1 and the destination port to 20123 and delivers the reply to me.

A given node (in this case, the one running the NAT gateway) has about 30,000

ports available. Sounds like a lot until you realize there might be 1000 people using the

NAT gateway (so there are about 30 ports per person). Some recent apps, like Google

Maps, can use as much as 300 ports for one user (to improve performance). If a lot of

your users are using such apps, you can use up all available port numbers on the NAT

gateway. When a NAT gateway can’t find an available port number, it just quietly drops

Chapter 11 the Future oF Messaging with no nat

360

packets. There is no indication to the user or even the NAT gateway admin that this has

happened. But some of the traffic, for example, some part of the map, just disappears.

This can be very difficult to debug.

 The Need for Centralized Servers
in the IPv4+NAT Internet
Since with NAT there are no incoming connections, nodes behind NAT gateways can

only make outgoing connections, and only to nodes with public IP addresses. This

means that to allow people in one private Internet to communicate with people in

another private Internet, we must have intermediary servers that have public IPv4

addresses.

Alice’s node cannot connect directly to Bob’s if there is a NAT gateway between

them. More typically BOTH of them are behind NAT; neither one of them can connect to

the other. But Alice can make an outgoing connection to an intermediary server with a

public address, and so can Bob. So they both connect to an intermediary server (which

has a public address) and send messages back and forth through it:

Alice’s Node -> Intermediary Server<- Bob’s Node

Someone has to set up and run that intermediary server, and they must both have

“accounts” on it. Accounts on intermediary servers are usually not free. Whoever runs

that server may have access to their traffic (if they don’t encrypt it end to end) and

may have policies that limit what they can send (amount of traffic, types of traffic,

etc). They might even charge them based on how much traffic they run through that

intermediary node.

It’s likely that Alice and Bob do not both have accounts on the same intermediary

server, so there may be two intermediary servers and three links involved – Alice’s node

to her server, her server to and from Bob’s server, and Bob’s node to his server:

Alice’s Node -> Alice’s Server <-> Bob’s Server <- Bob’s Node

This is complicated to set up, and it forces centralization on the otherwise

decentralized Internet. So we wind up with a small number of centralized intermediary

servers (that may service thousands or millions of users). This affects reliability (if one of

these servers goes down, it affects a lot of people, and even if they stay up, they can easily

get overloaded) and privacy (someone could put snooping software on the intermediary

servers and see all traffic going back and forth). Even if you use TLS to secure the

links, on the intermediary servers the data is in plain text (unencrypted). You also lose

Chapter 11 the Future oF Messaging with no nat

361

authentication from the original sender to the final recipient. It is possible to do end-

to-end privacy and authentication via multiple links, using S/MIME, but this requires

issuing client digital certificates to every user and having software that supports S/MIME.

This situation seems “normal” to most people (even network engineers) since we’ve

been using this approach since the mid-1990s and most people assume that’s the way it’s

always been and always WILL be.

 Carrier-Grade NAT (NAT444)
Very few Internet users today have global IP addresses on their nodes. At best they may

have one on their router with all internal nodes hidden behind it with NAT44. Many

home users now don’t even have one public address in their subnet. They are behind two

layers of NAT – the first NAT, at their carrier, maps between the public IPv4 Internet and

a special private Internet using address range 100.64/10 (100.64.0.1–100.127.255.254).

You might get a private address 100.100.35.72 on your WAN interface. The second NAT,

at your site, maps from that private address to an RFC 1918 block (e.g., 172.16/16).

Addresses in 100.64/10 are not public addresses; they are a new type of private address

that only carriers (ISPs) can use. See RFC 6598,1 “IANA-Reserved IPv4 Prefix for Shared

Address Space.” This two-layer scheme is called CGN (Carrier-Grade NAT2), or NAT444.

So outgoing packets go through one NAT mapping to the ISP and another from the ISP

to the public IPv4 Internet. Replies have to go back through two reverse mappings to get

to your node. If you are behind CGN, you are not even a second-class netizen; you are a

third-class netizen.

How do you tell if you are behind CGN? Try to do a traceroute to 4.2.2.2:

C:\Windows\system32>tracert 4.2.2.2

Tracing route to b.resolvers.Level3.net [4.2.2.2]

over a maximum of 30 hops:

 1 <1 ms <1 ms <1 ms fw.sg.sixscape.net [172.17.0.1]

 2 1 ms 2 ms 1 ms 3-193-96-66.myrepublic.com.sg [66.96.193.3]

 3 2 ms 1 ms 2 ms 103-6-148-41.myrepublic.com.sg [103.6.148.41]

 4 2 ms 2 ms 2 ms 116.51.31.45

1 https://tools.ietf.org/html/rfc6598
2 https://en.wikipedia.org/wiki/Carrier-grade_NAT

Chapter 11 the Future oF Messaging with no nat

https://tools.ietf.org/html/rfc6598
https://tools.ietf.org/html/rfc6598
https://en.wikipedia.org/wiki/Carrier-grade_NAT

362

 5 2 ms 2 ms 2 ms ae-8.r20.sngpsi07.sg.bb.gin.ntt.net

[129.250.4.174]

 6 2 ms 2 ms 2 ms ae-1.r01.sngpsi07.sg.bb.gin.ntt.net

[129.250.3.100]

 7 2 ms 4 ms 14 ms ae-1.a01.sngpsi07.sg.bb.gin.ntt.net

[129.250.2.240]

 8 * 9 ms 10 ms ae-0.level3.sngpsi07.sg.bb.gin.ntt.net

[129.250.8.46]

 9 10 ms 9 ms 9 ms b.resolvers.Level3.net [4.2.2.2]

Trace complete.

If there is another private IP address after the first hop (from 100.64/10 or the RFC

1918 address ranges), you are behind CGN. In my case the second hop was to a public

IPv4 address (66.96.193.3), which is at my ISP. No CGN for me!

 Centralization on the IPv4 Internet
The Internet was designed to be as decentralized as possible. Complexity at the edge,

simplicity at the core. But with NAT, I can’t connect directly to you. We can both make

only outgoing connections, so if we want to communicate, we both have to make

outgoing connections to some intermediary server(s) with a public IPv4 address (es).

Those servers will relay messages back and forth between us. In some cases, those

centralized servers may handle thousands or even millions of users. It is expensive to run

such servers – you need lots of bandwidth and computing power. Today such servers are

run by ISPs, telcos, and “hosting” companies (e.g., Rackspace).

Centralization creates “single points of failure” that should not be there. If one

of these centralized servers goes down, a LOT of people might lose service. In a

decentralized model, if my node goes down, only I (and anyone trying to communicate

with me) am out of luck. The rest of the world can go on happily communicating with

each other. Decentralization is good for reliability and availability.

Centralization also makes it easier for certain kinds of people to snoop on

everyone. Snoops only need probes in the small number of centralized nodes. With

decentralization, they need to have probes on every node in the Internet (or every

network segment). This is not practical. They can still monitor traffic on the giant

backbones, but this requires exotic equipment with massive bandwidth and computing

Chapter 11 the Future oF Messaging with no nat

https://www.rackspace.com/

363

power. And even so, if the traffic in question never goes on the backbones, even they

can’t see it. With decentralization, traffic between Alice and Bob only needs to go over

the shortest network path between them. If they both happen to be in the same LAN

(e.g., working for the same company), that traffic might never leave the local LAN. If

they are on the same LAN, why would they want to clutter up their company’s link to

the ISP with traffic going out from Alice and right back into Bob? What if that ISP link

goes down? With centralized servers, our communication would stop, even if we were

in the same room. Do you think that Skype is real peer-to-peer? What happens when

you are chatting with a neighbor in the same LAN and the ISP link goes down? Your chat

stops. Skype has the illusion of peer-to-Peer messaging (due to NAT traversal) but not

the reality. With decentralized messaging over IPv6, there would be no need for traffic

between us to go anywhere but over the shortest network path between us. If the ISP link

goes down, we can keep communicating!

Centralization can also impact performance. Our ISP connection might be 20 Mbps,

but our LAN runs at 1 Gbps. With centralized messaging, traffic between Alice and

Bob has to go from Alice out our ISP connection, to some centralized server, back into

through our ISP connection, and finally into Bob (or vice versa), even if they are sitting

next to each other. Throughput between Alice and Bob is limited to the company’s ISP

speed, or 20 Mbps. If they communicate directly to each other, throughput can be 1

Gbps. If Alice is communicating with someone in another network, traffic has to go over

our ISP connection and hence will be limited to 20 Mbps. Of course, bandwidth on the

ISP link should be reserved for traffic to and from people in other networks, not for traffic

between people sitting next to each other.

With IPv4 today, only telcos and ISPs have public addresses. Only they can run

servers for mail, web, chat, etc. They don’t want you to run servers at home, and with

only a private address, you can’t have a server that accepts incoming connections. You

also can’t make direct connections to other people in other networks. You can only

make connections to centralized servers that have public IPv4 addresses. With web

hosting today, your website might share the same public IPv4 address with hundreds

or thousands of other websites. They have ways to map a particular nodename onto a

shared IPv4 public address. But if you have a hosted server, try connecting to it with its

IPv4 public address. You can’t. It won’t work. With IPv6, the hosting facility could have

thousands of hosted nodes, each with a real, distinct global IPv6 address. No address

sharing.

Chapter 11 the Future oF Messaging with no nat

364

In particular, phones and other mobile devices with Internet connectivity have never

had public addresses with IPv4. You can only run client software on them. A server

requires a public IPv4 address. No phone has ever had a public IPv4 address. By the

time we started providing Internet connectivity to phones, public IPv4 addresses were

mostly gone. It would be handy to have an FTP or SFTP server on a phone, so people

could send you files directly, from anywhere. Sorry, no can do (with IPv4). I can’t have

my phone connect directly to yours. We both have to make outgoing connections to a

common server.

But with IPv6 on a phone, I can run servers. I can run user agents (these are apps that

can make outgoing connections or accept incoming connections). If you have a user

agent on your phone, I can connect directly to your phone from mine. No need for a

telco in between.

NAT breaks a lot of protocols, like VoIP, IPsec, and IKE. If you use these protocols

from behind NAT, you must use NAT traversal.

 But Doesn’t NAT “Protect” My Network?
Many people believe they are “safe” if no one can make incoming connections to

their nodes through NAT. NAT does not add any security to a network. That is a myth.

Incoming and outgoing connections are blocked by router or firewall mechanisms that

block traffic on specific ports. NAT really just complicates this process. All you need to

breach the NAT “protection” is an “inside man” (NAT traversal). Get someone to run an

app that makes an outgoing connection to a STUN server, and you can do anything you

want to their network using that app, from anywhere on the Internet.

Hackers can also hide behind NAT. If they attack someone from behind NAT, there

might be hundreds or even thousands of other people who appear to be coming from

the same address. When law enforcement tries to track down the culprit, they can only

see the public address that the hacker was hiding behind. Which one of the thousands of

users behind that public address was the culprit? Unless you can log all mappings done

by the NAT gateway (very difficult to do), it is pretty much impossible to find the hacker

Chapter 11 the Future oF Messaging with no nat

365

in the haystack. With CGN it is even harder – there could be tens of thousands of people

behind that one IP address (and two mappings to unravel). NAT is the hacker’s friend.

Europol (a European version of Interpol) has asked that ISPs stop using CGN.3

Today, NAT is so widely used in the Second Internet it should be called the InterNAT

(a “top of the hat” to Latif Ladid, president of the IPv6 Forum, who I believe originated

that term).

 NAT Traversal: How Skype Fakes
Incoming Connections
So, if IPv4 nodes behind NAT cannot accept incoming connections, how does Skype

work? It sure looks like I connect from my node to yours, even if you are behind NAT. I

don’t log into an intermediary server with my copy of Skype.

Skype (and many other similar apps) uses something called NAT traversal4 to fake

incoming connections.

My copy of Skype makes a long-lasting outgoing connection to a special node called

a STUN5 server. This server is on the global IPv4 Internet and has a public address. It

basically allows you to use its public address to accept an incoming connection and then

relays it through your outgoing connection to the STUN server.

So who owns and runs STUN servers? I didn’t sign up for one when I installed Skype.

ANYONE can deploy a STUN server – hackers, the Mob, the NSA, pimply faced 14-year-

old kids in their parents' basement, etc. Skype does a DNS SRV lookup and then chooses

one at random. Your incoming information from other Skype users goes through that

server. The traffic between your node and the STUN server may be encrypted with TLS,

but it will be in plain text on the STUN server. Whoever runs and controls the STUN

server can monitor your traffic all they want. They could even modify it, and you would

never know. They might even be able to take over the Skype client at the other end of this

outgoing connection and, from that, take over your entire node. Sounds scary?

3 www.europol.europa.eu/newsroom/news/are-you-sharing-same-ip-address-
criminal-law-enforcement-call-for-end-of-carrier-grade-nat-cgn-to-increase-
accountability-online
4 https://en.wikipedia.org/wiki/NAT_traversal
5 https://en.wikipedia.org/wiki/STUN

Chapter 11 the Future oF Messaging with no nat

https://www.europol.europa.eu/newsroom/news/are-you-sharing-same-ip-address-criminal-law-enforcement-call-for-end-of-carrier-grade-nat-cgn-to-increase-accountability-online
https://en.wikipedia.org/wiki/NAT_traversal
https://en.wikipedia.org/wiki/STUN
https://www.europol.europa.eu/newsroom/news/are-you-sharing-same-ip-address-criminal-law-enforcement-call-for-end-of-carrier-grade-nat-cgn-to-increase-accountability-online
https://www.europol.europa.eu/newsroom/news/are-you-sharing-same-ip-address-criminal-law-enforcement-call-for-end-of-carrier-grade-nat-cgn-to-increase-accountability-online
https://www.europol.europa.eu/newsroom/news/are-you-sharing-same-ip-address-criminal-law-enforcement-call-for-end-of-carrier-grade-nat-cgn-to-increase-accountability-online
https://en.wikipedia.org/wiki/NAT_traversal
https://en.wikipedia.org/wiki/STUN

366

IT IS. Many companies who are security conscious BAN Skype. It’s not an application; it’s

a HACKING TOOL, because of NAT Traversal.

This is kind of like robbing a bank by having an inside man, who unlocks the bank

door to let you in, after hours.

 What if Everyone Had Public Addresses?
If Alice and Bob somehow magically managed to get some of the precious remaining

public IPv4 addresses, they could connect directly to each other!

Actually, if both of them were in a single private Internet (with no NAT gateway

between them), they could communicate directly with each other. But neither of them

could communicate directly with anyone else in any other private Internet (and there are

millions of private Internets all over the world – one behind every global IPv4 address).

While interesting, this is probably not very useful. For instance, in a home network you

would only be able to connect directly to other people in your home.

There is no way to reestablish the pre-1995 monolithic global Internet based on IPv4.

Once you go to NAT and private Internets, there is no going back. Each year we create

another billion or so new devices that need IP addresses. There are basically no IPv4

public ones left. With telephones, if they run out of phone numbers, they add another

digit to the phone number (e.g., seven-digit to eight-digit numbers). That is basically

what IPv6 is – only we went from 9-digit numbers to 38-digit numbers in one giant

leap. There was no simple way to make the 32-bit addresses just a little bigger, without

changing almost everything at the IP Layer.

And as long as they had the streets dug up making the addresses bigger, they fixed a LOT

of stuff that could have been done better way back in 1981 when IPv4 was specified. IPv6

incorporates a great deal of valuable experience in creating and running a global Internet.

You can think of IPv6 as IPv4++. There are enough global IPv6 addresses for every device

on earth (or that we will make in the next 500 years) to have one. So anyone in the world

can communicate directly with anyone else in the world, so long as both of them have IPv6

service and no router or firewall is blocking the relevant ports between them. The entire

global IPv6 Internet is now one giant monolithic network with billions of nodes on it. This

is revolutionary. Today most people don’t “get” the importance of this. In a few years, we

are not going to believe that we ever got along without IPv6 and decentralized connections.

Your phone will have servers on it. It will be able to connect directly to any other phone on

earth or accept incoming connections, without any intermediate server or NAT traversal.

Chapter 11 the Future oF Messaging with no nat

367

 IPv6: The NAT-Less Internet
With IPv6, there is no need for NAT (at least for NAT66, mapping IPv6 addresses to

other IPv6 addresses). The only reason for deploying NAT44 was to extend the lifetime

of the IPv4 address space for just a few more years despite running out of public IPv4

addresses, while the successor protocol (IPv6) was designed and deployed. It has

done a remarkable job of that – we now have more than 20 billion devices connected

to an Internet that has less than 3 billion public IP addresses. But in the process, it

has splintered the global IPv4 Internet into millions of private Internets, broken many

protocols, and made dangerous NAT traversal necessary. It has also greatly complicated

the design and implementation of messaging apps.

While there is no need for NAT66, there is a potential need for something called

NAT64,6 which maps IPv6 addresses to IPv4 addresses, to allow IPv6 nodes to access

legacy (IPv4-only) nodes. Unfortunately, NAT64 has all the problems of NAT44 and

then some. For one thing it requires a nonstandard version of DNS called DNS64,7 for

all nodes that use NAT64. Other nodes cannot use DNS64. NAT64 breaks a number of

protocols also. A lot of people are trying to make NAT64/DNS64 work since then you can

get rid of IPv4 in the LAN and provide border translation to legacy (IPv4-only) nodes.

Note that the scheme used in NAT64 involves the DNS64 server embedding the IPv4

address in a fabricated IPv6 address, which the NAT64 server uses to connect to the real

IPv4 node. This cannot be done in the other direction (“NAT46”) since you can’t fit a

128-bit address into a 32-bit address.

For the web there are better ways to translate IPv6 to IPv4 and vice versa that don’t

need DNS64 and don’t have the preceding problems. These involve deploying a reverse

web proxy in a dual-stack network. The existing A record in DNS is left intact, so IPv4

traffic goes directly to the legacy server (does not go through the proxy). For IPv6 a

new AAAA record is created pointing to the reverse proxy. The reverse proxy makes an

ongoing connection to the legacy server (over IPv4) and returns the reply over IPv6.

Only IPv6 traffic goes through the reverse proxy. Unlike NAT64, this scheme works

in both directions – you can make an IPv6-only server dual stack the same way – you

leave the old AAAA record in DNS but add an A record pointing to the reverse proxy.

Unfortunately, this approach does not help with non-web protocols.

6 https://en.wikipedia.org/wiki/NAT64
7 https://tools.ietf.org/html/rfc6147

Chapter 11 the Future oF Messaging with no nat

https://en.wikipedia.org/wiki/NAT64
https://en.wikipedia.org/wiki/NAT64
https://tools.ietf.org/html/rfc6147

368

In IPv6 there is no shortage of public addresses – hence no need to extend the life of

the IPv6 address space. We can get rid of NAT once and for all for people who have IPv6

global addresses.

 VoIP and IPv6
VoIP is a bit different from a protocol like SMTP. VoIP involves two protocols: SIP

and RTP. SIP handles call setup (finding the other party), and RTP handles real-time

encoding of digitized audio and/or video.

SIP8 (Session Initiation Protocol, RFC 32619) sets up the call. It normally works over

TCP but can be used over UDP (well-known port 5060). When used over TCP, it can

be secured with TLS (SIPS, well-known port 5061). In fact, SIP looks and acts a lot like

SMTP. SIP does not handle any digitized audio.

RTP10 (Real-Time Transport Protocol, RFC 355011) carries the encoded, digitized

audio or video. RTP works over UDP, so cannot be secured with TLS, but you can use

SRTP12 to provide encryption and/or authentication of the digitized audio or video.

Encryption in SRTP uses an AES key exchanged with ZRTP13 or MIKEY.14 There is

no well-known port for RTP (or SRTP) – the ports used are chosen dynamically and

communicated via the signaling protocol (e.g., SIP). The IETF recommends ports

6970–6999.

This two-protocol scheme, and the dynamic allocation of ports in RTP, does not

work well with NAT. SIP can go through NAT okay, but RTP (or SRTP) can’t be mapped

like other protocols. Therefore, to cross a NAT gateway, NAT traversal must be used. Of

course, with IPv6, there is no issue with NAT. There is no need for the clients and the

servers to be in the same subnet (or private Internet). Setting up the NAT traversal is by

far the most difficult part of deploying VoIP. It also introduces significant security risks as

described elsewhere.

8 https://en.wikipedia.org/wiki/Session_Initiation_Protocol
9 https://tools.ietf.org/html/rfc3261
10 https://en.wikipedia.org/wiki/Real-time_Transport_Protocol
11 https://tools.ietf.org/html/rfc3550
12 https://en.wikipedia.org/wiki/Secure_Real-time_Transport_Protocol
13 https://en.wikipedia.org/wiki/ZRTP
14 https://en.wikipedia.org/wiki/MIKEY

Chapter 11 the Future oF Messaging with no nat

https://en.wikipedia.org/wiki/Session_Initiation_Protocol
https://tools.ietf.org/html/rfc3261
https://en.wikipedia.org/wiki/Real-time_Transport_Protocol
https://tools.ietf.org/html/rfc3550
https://en.wikipedia.org/wiki/Secure_Real-time_Transport_Protocol
https://en.wikipedia.org/wiki/ZRTP
https://en.wikipedia.org/wiki/MIKEY
https://en.wikipedia.org/wiki/Session_Initiation_Protocol
https://tools.ietf.org/html/rfc3261
https://en.wikipedia.org/wiki/Real-time_Transport_Protocol
https://tools.ietf.org/html/rfc3550
https://en.wikipedia.org/wiki/Secure_Real-time_Transport_Protocol
https://en.wikipedia.org/wiki/ZRTP
https://en.wikipedia.org/wiki/MIKEY

369

There is also peer-to-peer SIP.15 This does away with any need for “VoIP servers.”

P2P VoIP clients are not clients in the true sense of the word (only make outgoing

connections) – they are user agents (can make outgoing connections and accept

incoming connections). Of course, to accept incoming connections with IPv4 from

external users, NAT traversal is needed on each user agent. With IPv6, every user agent

has a public IPv6 address, which allows incoming connections from anywhere on the

IPv6 global Internet.

If you use VoIP over IPv6 in a client/server model, there are a few clients and a

few servers that support IPv6 (but many of the most popular ones don’t support IPv6

currently). This is amazing considering how many of the worse problems with VoIP are

solved by using IPv6.

One of the most popular VoIP clients (Bria16 from CounterPath) supports IPv6 today.

This is available for Windows, Android, and iOS.

With VoIP servers, recent Cisco VoIP products17 support IPv6. Two popular

commercial server products (3CX18 and Ozeki19) do not currently support it. The open

source Asterisk,20 Kamailio,21 and OpenSIPS22 VoIP servers all support IPv6. It is not

unusual for open source products to be ahead of commercial products in IPv6 support.

If you want your VoIP clients to be able to make calls to PSTN23 (Public Switched

Telephone Network) nodes (and accept calls from them), you need to add a SIP Trunk24

on your VoIP server. There are SIP service providers that can help you connect your VoIP

server to legacy telephones, for a price. Few if any of these currently support IPv6. The

good news is that if your VoIP server supports IPv6 and is on a dual-stack server, you can

support clients over IPv6, but relay the calls to and from the PSTN network over IPv4 via

an IPv4 trunk. Of course, this means you can’t run your VoIP server on IPv6-only.

15 https://en.wikipedia.org/wiki/Peer-to-peer_SIP
16 https://blog.counterpath.com/ipv6/
17 www.cisco.com/c/en/us/td/docs/ios-xml/ios/ipv6/configuration/15-2mt/ipv6-15-2mt-
book/ip6-voip.html
18 www.3cx.com/
19 www.ozekiphone.com/
20 www.asterisk.org/
21 www.voip-info.org/wiki/view/Kamailio
22 www.opensips.org/
23 https://en.wikipedia.org/wiki/Public_switched_telephone_network
24 https://en.wikipedia.org/wiki/SIP_trunking

Chapter 11 the Future oF Messaging with no nat

https://en.wikipedia.org/wiki/Peer-to-peer_SIP
https://blog.counterpath.com/ipv6/
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/ipv6/configuration/15-2mt/ipv6-15-2mt-book/ip6-voip.html
https://www.3cx.com/
http://www.ozekiphone.com/
https://www.asterisk.org/
https://www.voip-info.org/wiki/view/Kamailio
http://www.opensips.org/
https://en.wikipedia.org/wiki/Public_switched_telephone_network
https://en.wikipedia.org/wiki/SIP_trunking
https://en.wikipedia.org/wiki/Peer-to-peer_SIP
https://blog.counterpath.com/ipv6/
http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/ipv6/configuration/15-2mt/ipv6-15-2mt-book/ip6-voip.html
http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/ipv6/configuration/15-2mt/ipv6-15-2mt-book/ip6-voip.html
http://www.3cx.com/
http://www.ozekiphone.com/
http://www.asterisk.org/
http://www.voip-info.org/wiki/view/Kamailio
http://www.opensips.org/
https://en.wikipedia.org/wiki/Public_switched_telephone_network
https://en.wikipedia.org/wiki/SIP_trunking

370

 Skype
Skype is a chat, voice, and video messaging app that uses a proprietary protocol. Its

protocol is heavily based on IPv4 NAT traversal. It was created by the same people who

did Kazaa, which was a file sharing app that used NAT traversal to work. On Windows

if you disable IPv4, Skype stops working and says there is no Internet connection (even

though there may be a perfectly good IPv6 connection).

With iOS 9, Apple required all apps in the App Store to support IPv625 and, with iOS

10, required them to work on an IPv6-only device. Skype is available in the App Store,

so they have found some way to make it work over IPv6. That way is NAT64/DNS64,

which is available in iOS. This allows the phone to map an IPv6 address to IPv4 to make

outgoing connections to other Skype nodes, via STUN servers. It is not real IPv6 support

but appears to be close enough that Apple allows it in the App Store. Even though I have

native IPv6 on my phone (from M1), I cannot verify that Skype for Mobile really works

over IPv6 myself since I can’t disable IPv4 on my phone or snoop on either end of the

connection with a network sniffer (like Wireshark).

The NAT64/DNS64 dodge works for iOS 9 because there are still IPv4 addresses on

a dual-stack phone. The requirement for iOS 10 is a different matter. There are no IPv4

addresses to map to IPv6 on an IPv6-only phone. Skype is still in the App Store in iOS 10

(and 11), so perhaps Apple gave them a pass.

25 https://forums.appleinsider.com/discussion/193049/apple-says-all-apps-must-
support-ipv6-only-networking-by-june

Chapter 11 the Future oF Messaging with no nat

https://forums.appleinsider.com/discussion/193049/apple-says-all-apps-must-support-ipv6-only-networking-by-june
https://forums.appleinsider.com/discussion/193049/apple-says-all-apps-must-support-ipv6-only-networking-by-june
https://forums.appleinsider.com/discussion/193049/apple-says-all-apps-must-support-ipv6-only-networking-by-june

371

On Android26 there is a mechanism similar to NAT64/DNS64 called 464XLAT,27

specified in RFC 6877.28 This can tunnel IPv4 traffic through IPv6 traffic on an IPv6-

only phone. At the phone, 464XLAT maps IPv4 to IPv6, which goes over the IPv6-only

data path to the telco, where they map it back to IPv4 and route it onto the legacy IPv4

Internet. So legacy apps that only support IPv4 should work on Android even with only

IPv6 service. For 464XLAT there is no need for IPv4 addresses on the phone. It does not

appear that Apple supports 464XLAT.

 WhatsApp
WhatsApp is another widely used chat, voice, and video messaging app that uses

a proprietary protocol. WhatsApp will work over IPv6 and in fact will work on an

IPv6- only device. However, it is in the App Store, so it appears that Apple accepts it

working via NAT64/DNS64. As with Skype, WhatsApp works over IPv6 on Android via

464XLAT. There is no native WhatsApp application for Windows (only something based

on web that really uses your WhatsApp account on your phone), so there is no issue with

the Windows version and IPv6.

 Email over IPv6
Most email clients (e.g., Outlook, Thunderbird) work fine over IPv6 (even from an IPv6-

only node). There are also plenty of email servers that support IPv6 (MS Exchange,29

open source Sendmail,30 Postfix,31 Dovecot,32 etc.).

Hosted email providers are another matter. Rackspace33 does not currently support

SMTP or IMAP over IPv6. I can test this by checking the MX records for our domain

(which is hosted at Rackspace):

26 www.internetsociety.org/blog/2013/11/skype-on-android-works-over-ipv6-on-
mobile-networks-using-464xlat/
27 https://sites.google.com/site/tmoipv6/464xlat
28 https://tools.ietf.org/html/rfc6877
29 https://en.wikipedia.org/wiki/Microsoft_Exchange_Server
30 https://en.wikipedia.org/wiki/Sendmail
31 https://en.wikipedia.org/wiki/Postfix_(software)
32 https://en.wikipedia.org/wiki/Dovecot_(software)
33 www.rackspace.com/en-sg

Chapter 11 the Future oF Messaging with no nat

https://www.internetsociety.org/blog/2013/11/skype-on-android-works-over-ipv6-on-mobile-networks-using-464xlat/
https://sites.google.com/site/tmoipv6/464xlat
https://tools.ietf.org/html/rfc6877
https://en.wikipedia.org/wiki/Microsoft_Exchange_Server
https://en.wikipedia.org/wiki/Sendmail
https://en.wikipedia.org/wiki/Postfix_(software)
https://en.wikipedia.org/wiki/Dovecot_(software)
https://www.rackspace.com/en-sg
http://www.internetsociety.org/blog/2013/11/skype-on-android-works-over-ipv6-on-mobile-networks-using-464xlat/
http://www.internetsociety.org/blog/2013/11/skype-on-android-works-over-ipv6-on-mobile-networks-using-464xlat/
https://sites.google.com/site/tmoipv6/464xlat
https://tools.ietf.org/html/rfc6877
https://en.wikipedia.org/wiki/Microsoft_Exchange_Server
https://en.wikipedia.org/wiki/Sendmail
https://en.wikipedia.org/wiki/Postfix_(software)
https://en.wikipedia.org/wiki/Dovecot_(software)
http://www.rackspace.com/en-sg

372

C:\Users\lhughes>nslookup

Default Server: ws2008a.hughesnet-sg.org

Address: 2001:470:ed3d:1000::11

> set q=mx

> sixscape.com

Server: ws2008a.hughesnet-sg.org

Address: 2001:470:ed3d:1000::11

Non-authoritative answer:

sixscape.com MX preference = 20, mail exchanger = mx2.emailsrvr.com

sixscape.com MX preference = 10, mail exchanger = mx1.emailsrvr.com

mx1.emailsrvr.com internet address = 184.106.54.1

>

Note that mx2.emailsrvr.com (the secondary MX record for sixscape.com) also

resolves to only an IPv4 address (173.203.187.2). So mail sent to sixscape.com over IPv6

has no way of reaching us. Soon that will not be acceptable to many people. It does

support Webmail over IPv6, so all is not lost.

On the other hand, Gmail via SMTP and IMAP works fine over IPv6.

In general email works great over IPv6. So long as your email server is dual stack, you

can exchange email with anyone, whether their server is IPv4-only, IPv6-only, or dual

stack. It is possible for a dual-stack email server to publish MX records that make dual-

stack email work very well. You can advertise two MX records with the IPv6 address of

your email server as the highest priority (lowest-priority number) and the IPv4 address

as the lowest priority (highest-priority number). Then other mail servers will try to

deliver to you first over IPv6 but fall back to IPv4 if they can’t. Currently if you create an

IPv6-only email server, you will probably not get a lot of messages from others (only from

those with servers that support IPv6).

 The Future of Messaging on the Third Internet
The good news is that an IPv6-only messaging app is a lot easier to create than Skype or

WhatsApp was (no need to find ways to get around NAT). It will work much better and

will not require NAT traversal (so it will be much more secure). Of course, you will only

be able to communicate with other IPv6 users (some might say those are the only people

Chapter 11 the Future oF Messaging with no nat

373

worth chatting with, but that is currently a minority viewpoint). You could always use

the legacy apps (Skype or WhatsApp) to communicate with laggards stuck in the Second

Internet. It’s possible a real IPv6-compliant messaging app could support IPv4 users

to at least some level, via a dual-stack intermediary gateway. Hopefully, we can finally

use industry standard protocols that will interoperate with other services (like legacy

telephones via SIP gateways). This means using SIP for call setup, RTP for encoded

analog, and SIMPLE for chat. It also opens the door for decentralized end-to-end direct

messaging (no intermediary servers).

Imagine an IPv6-only messaging user agent app on your home node or even your

phone. Any other IPv6 user with a compatible user agent would be able to connect

directly to your node and communicate with you (including file transfer). Even basic

TLS would be end-to-end secure in that case (since there is only one link involved). With

Strong Client Authentication with a client certificate during the TLS handshake, this is

very strong security and mutual authentication. Traffic would only go over the shortest

network path between the two communicating parties. It could be based on peer-to-Peer

SIP34 (and SIMPLE35), or I could just deploy a personal SIP server right on my phone for

handling incoming connections (even more than one connection for group messaging).

It could include ITU-compliant voice and even video. The same user agent app could be

designed to also connect to legacy VoIP servers or gateways for when you want to talk

with (or accept calls from) someone on a legacy phone or app. Of course, most legacy

phones don’t support video, chat, or file transfer.

And phone numbers36? Those are going away. With SIP, the preferred “address”

of someone is a SIP URI,37 for example, sip:lhughes@leh.sixscape.com. I can create a

subdomain under sixscape.com (for free) just for me and publish an SRV record under

it pointing to my user agent (with IP address and port number). I could even publish

multiple SRV records, one for each node where I run chat user agents. If there are several

with the same priority, other user agents could try connecting to all of them until the

first one answers. When two nodes connect, they could exchange digital certificates (so

you know for certain who is calling and who answers) and even exchange a symmetric

34 https://en.wikipedia.org/wiki/Peer-to-peer_SIP
35 https://en.wikipedia.org/wiki/SIMPLE_(instant_messaging_protocol)
36 https://en.wikipedia.org/wiki/E.164
37 https://en.wikipedia.org/wiki/SIP_URI_scheme

Chapter 11 the Future oF Messaging with no nat

https://en.wikipedia.org/wiki/Peer-to-peer_SIP
https://en.wikipedia.org/wiki/Peer-to-peer_SIP
https://en.wikipedia.org/wiki/SIMPLE_(instant_messaging_protocol)
https://en.wikipedia.org/wiki/E.164
https://en.wikipedia.org/wiki/SIP_URI_scheme
https://en.wikipedia.org/wiki/Peer-to-peer_SIP
https://en.wikipedia.org/wiki/SIMPLE_(instant_messaging_protocol)
https://en.wikipedia.org/wiki/E.164
https://en.wikipedia.org/wiki/SIP_URI_scheme

374

session key so the entire call can be encrypted. And where is the ideal place for your

certificate and private key? On a computer, in a hardware security token, or on a phone,

in the SIM!

How will someone reach you from a phone that only has a 12-key dial pad? There

is a DNS-based scheme called ENUM38 that can map numeric phone numbers to SIP

URIs. So you can obtain a unique telephone number that can be mapped to your SIP URI

by an ENUM server. There are VoIP gateways that know how to use ENUM. Again, my

company has a carrier-grade DNSSEC appliance that supports ENUM.

I can have a personal SMTP server running on my home node or phone. There would

be a local message store for incoming messages and a personal IMAP server that accesses

the local message store, so a standard email client can work with it. Unlike traditional

SMTP and IMAP servers, these need only support a single user. Spam would be a

problem, so you might want to implement whitelisting (only accept incoming messages

from a list of addresses – anyone else gets a message to request being whitelisted). Again,

it would be best to create a personal subdomain for each user, for example, leh.sixscape.

net. The email address could be mailto:lhughes@leh.sixscape.net. You could publish an

MX record in your personal subdomain pointing to your home node or phone. You could

optionally provide a secondary MX record to accept incoming messages when your node

is offline. When you go back online, you could send an ETURN command to the backup

mail server, which would deliver the held messages to you. There could be a new market

for telcos or ISPs to provide backup SMTP servers. All SMTP servers will keep trying to

deliver for several days, so you could just wait until the original server retries. This would

be completely decentralized, and you would not need to worry about your messages

being stored on intermediary servers (unless you provide a backup MX record).

I can even deploy a personal FTP or SFTP server running on my node or even my

phone. Why not? I’ve got a public address and can publish it in DNS. Anyone could use

standard FTP or SFTP clients (e.g., WinSCP) to send files to my file transfer server or

retrieve files from my file transfer.

I can publish my name and SIP URI (as well as email address, organization, S/MIME

certificate, etc.) in LDAP (with fine-grained control over who can access it), and every

user agent can know how to search a list of LDAP servers for other people’s contact info.

38 https://en.wikipedia.org/wiki/Telephone_number_mapping

Chapter 11 the Future oF Messaging with no nat

https://en.wikipedia.org/wiki/Telephone_number_mapping
https://en.wikipedia.org/wiki/Telephone_number_mapping

375

All we need now is a way to securely update your current IPv6 address in DNS. My

company has created a way to do just that using our Identity Registration Protocol (IRP).

With that, within seconds of entering a coffee shop that has IPv6 on Wi-Fi, my phone

would configure a new IPv6 address in their subnet and then securely register that in

DNS. If I use a short TTL on that registration, within minutes, anyone will be able to

connect directly to my phone.

 5G: The Grand Convergence of the Internet
and Telephony
5G39 is coming to a telco near you! It is not just the generation after 4G or just higher-

bandwidth radio – it finally eliminates the legacy telco infrastructure (giant telco

switches) and protocols (Signaling System 7). The underlying infrastructure for 5G

telephony is now routers, switches, submarine optical cables, etc. You know, the

INTERNET. Voice and chat are now done with VoIP (Voice over Internet Protocol).

On 5G, there is no need for a “voice plan” (or minutes) or “SMS.” You will only get a

“dataplan.” Everything will be done by apps (on desktop/notebook computers or mobile

devices).

Historically mobile devices and desktop devices were fairly separate. That is coming

to any end. With IPv6 in broadband networks, the same app architectures will work on

both mobile and desktop, and interoperation will improve. You will no longer have apps

that work only on mobile (like WhatsApp). The Grand Convergence is happening. A VoIP

app on desktop can easily connect to a VoIP app on mobile. With Xamarin and WPF, it is

getting easier to create a cross-platform app that covers Windows, MacOS, Android, and

iOS. And with 5G, they can all have the same basic connectivity.

There is no strict mandate from 3GPP40 to use only IPv6 with 5G, but NAT is an idea

whose time has passed. VoIP does not work through NAT (without NAT traversal). It

works great over IPv6. It is becoming more and more difficult and expensive for telcos

to keep IPv4 alive just one more year. Many telcos (especially in the United States) are

going to IPv6 (and even IPv6-only). This is saving them significant cost and is far easier

to manage.

39 https://en.wikipedia.org/wiki/5G
40 www.3gpp.org/

Chapter 11 the Future oF Messaging with no nat

http://www.3gpp.org/
https://en.wikipedia.org/wiki/5G
http://www.3gpp.org/

376

One of the things holding the telcos back from deploying IPv6 was the problem with

legacy IPv4-only apps (like Skype) from working on IPv6-only dataplans. 464XLAT and

NAT64/DNS64 have solved that problem, on Android and iOS, respectively. There are

many benefits to providing IPv6 to mobile devices. The migration is well underway. See

the following:

www.apnic.net/community/ipv6-program/ipv6-for-mobile-networks/

www.telecomasia.net/content/china-mobile-outlines-ipv6-migration-plans

www.itnews.com.au/news/telstra-claims-success-with-ipv6-on-mobile-

network-486322

www.apnic.net/wp-content/uploads/2017/01/vzw_apnic_13462152832-2.pdf

www.internetsociety.org/blog/2015/05/verizon-wireless-nears-70-ipv6-att-

crosses-50-more/

www.internetsociety.org/blog/2016/08/facebook-akamai-pass-major-

milestone-over-50-ipv6-from-us-mobile-networks/

www.telecompetitor.com/mobile-ipv6-milestone-more-than-half-of-mobile-

requests-now-ipv6/

Because of NAT, current mobile device IPv4-based apps use a “hub and spoke41”

design, with centralized servers. With IPv6, that will still work, but is no longer

required. It is kind of like watching SD content on your new HD television set. As 5G is

deployed, you will see more and more decentralized apps that go beyond the hub and

spoke model.

The wireless service providers that adopt pure IPv6 will have significant competitive

advantages over providers who try to continue supporting IPv4. With 464XLAT and

NAT64/DNS64, there is no real downside to going with IPv6 only. As decentralized

“5G-style” apps become popular, those will work only on IPv6 carriers. This will

accelerate the migration to IPv6 for wireless providers.

 Summary
In this chapter we discussed a number of aspects of messaging that will likely be

undergoing major changes with the deployment of IPv6.

First, we covered exactly what private and public IP addresses are and why most

Internet users have only private IP addresses today.

41 https://en.wikipedia.org/wiki/Spoke%E2%80%93hub_distribution_paradigm

Chapter 11 the Future oF Messaging with no nat

http://www.apnic.net/community/ipv6-program/ipv6-for-mobile-networks/
http://www.telecomasia.net/content/china-mobile-outlines-ipv6-migration-plans
http://www.itnews.com.au/news/telstra-claims-success-with-ipv6-on-mobile-network-486322
http://www.itnews.com.au/news/telstra-claims-success-with-ipv6-on-mobile-network-486322
http://www.apnic.net/wp-content/uploads/2017/01/vzw_apnic_13462152832-2.pdf
http://www.internetsociety.org/blog/2015/05/verizon-wireless-nears-70-ipv6-att-crosses-50-more/
http://www.internetsociety.org/blog/2015/05/verizon-wireless-nears-70-ipv6-att-crosses-50-more/
http://www.internetsociety.org/blog/2016/08/facebook-akamai-pass-major-milestone-over-50-ipv6-from-us-mobile-networks/
http://www.internetsociety.org/blog/2016/08/facebook-akamai-pass-major-milestone-over-50-ipv6-from-us-mobile-networks/
http://www.telecompetitor.com/mobile-ipv6-milestone-more-than-half-of-mobile-requests-now-ipv6/
http://www.telecompetitor.com/mobile-ipv6-milestone-more-than-half-of-mobile-requests-now-ipv6/
https://en.wikipedia.org/wiki/Spoke–hub_distribution_paradigm
https://en.wikipedia.org/wiki/Spoke%E2%80%93hub_distribution_paradigm

377

We then covered NAT (Network Address Translation) and NAT traversal (two nodes

in different subnets connecting despite both subnets being behind different NAT

gateways). Some messaging apps do support IPv6 today, while some never will (Skype).

We discussed what life is like in the Third Internet (based on IPv6) where there is

no NAT to cause problems. Every node, including mobile devices, can now have public

IP addresses and hence can run servers or even connect directly end to end with no

intermediary servers. Imagine being able to send files securely over FTPS direct from my

phone to yours.

We introduced 5G, which is much more than just “faster 4G” – it is the Grand

Convergence of telephone communications and the Internet. Most 5G nodes will have

full IPv6 support. However, even many 4G nodes already have IPv6 support (as seen in

Chapter 9).

Face it – so long as you have only IPv4, you are going to be a second-class netizen. If

you want to use the cool new messaging apps, you’ll need to have IPv6.

Chapter 11 the Future oF Messaging with no nat

379

CHAPTER 12

IPv6-Related
Organizations
There are quite a few international- and national-level organizations involved in making

this transition from the Second Internet to the Third Internet work. This chapter lists the

most prominent ones but does not claim to be comprehensive.

 Internet Governance Bodies
The first group of organizations helps govern the Internet. There is no Internet

Corporation or any UN Internet Authority. The Internet is something quite different from

the kinds of entities most people are familiar with. Its ownership and management is as

decentralized and transnational as the physical implementation of the Internet itself. For

example, what country is the Internet located in? All of them!

Anyone who really wants to can join one of these organizations, and the various

groups address a variety of aspects of creating the standards that others use to build the

hardware and software that make up the physical Internet. Other groups help manage

resources, such as domain names or Internet addresses. Others help resolve disputes

and set policies that help the millions of owners of the various pieces of the Internet to

get along and be willing to continue voluntarily connecting their networks to each other.

Some national governments try to control or regulate the Internet, or the content on it,

but the highly decentralized nature of it, and the difficulty of even pinning down what

jurisdiction something on the Internet happened in, makes such control difficult at best.

Any country whose people are forbidden access to the Internet is missing out on things

that allow those who do have access to run circles around them competitively. It would

be like a blind person and a fully sighted one having a sword fight or a race between

someone on foot and someone in a Ferrari. It would all be over in seconds. China has

had a very difficult time trying to maintain strict authoritarian communist rule while

© Lawrence E. Hughes 2022
L. E. Hughes, Third Generation Internet Revealed, https://doi.org/10.1007/978-1-4842-8603-6_12

https://doi.org/10.1007/978-1-4842-8603-6_12

380

enjoying the economic benefits of access to the Internet. They have tried to deploy

what some call “the great firewall of China,” but there are many ways for people who

understand the technology to gain access to those parts of it that China doesn’t want

their people to see. If they are really good, they can do it without their government even

being able to detect it.

So who is in charge? The easy answers are no one or everyone. It is possible to identify

some organizations that clearly are in charge of some aspects of the Internet. Most of

them are heavily involved in trying to help the users of the Internet survive a looming

disaster (the depletion of the IPv4 address space) and migrate smoothly and safely to the

wonderful new promised land, the Third Internet.

 Internet Corporation for Assigned Names
and Numbers (ICANN)
ICANN was formed in 1998, as a not-for-profit public-benefit corporation. Participants

all over the world help keep the Internet secure, stable, and interoperable. ICANN does

not try to control content on the Internet, stop spam, or control access to the Internet. It

does do the following things:

• Oversee the generic top-level domain (gTLD) names and the

country code top-level domain (ccTLD) names. They also oversee

authorization of Internationalized Domain Names (IDNs) in various

languages and scripts.

• Oversee operation of the DNS root servers.

• Draw up contracts with each Domain Name Registry.

• Oversee IANA (Internet Assigned Numbers Authority).

• Publish all corporate documents, bylaws, financial information,

major agreements, policies, operating plan, and strategic plan, at

www.icann.org/en/documents/.

• Hold monthly meetings of the ICANN board to address issues and set

policy. The minutes of each meeting are made publicly available at

www.icann.org/en/minutes/.

Chapter 12 Ipv6-related OrganIzatIOns

http://www.icann.org/en/documents
http://www.icann.org/en/minutes

381

 Internet Assigned Numbers Authority (IANA)
One of the key organizations with regard to both the old IPv4 addresses and the new IPv6

addresses is the Internet Assigned Numbers Authority (IANA). You can find their website

at www.iana.org. They do the following things:

• Oversee the DNS Root Zone (creation and management of the

generic TLDs and ccTLDs), as well as the int domain registry (for

international organizations) and the arpa zone. The arpa TLD

has several very important parts of DNS under it, such as the

reverse zones for both IPv4 (in-addr.arpa) and IPv6 (ip6.arpa),

plus the ENUM E.164 zones (e164.arpa). Some parts of these

reverse hierarchies can be delegated to ISPs or even to end-user

organizations, but IANA is in charge of the overall structure.

• Maintain the Interim Trust Anchor Repository (ITAR) for those parts

of the Internet’s domain space that have already been signed with

DNSSEC. This is a temporary role until such time as the root of the

entire domain space is signed. This is where you can find the public

keys needed to verify DNSSEC signatures for signed DNS zones.

• Perform the top-level management of IPv4 addresses. IANA allocates

giant blocks of IPv4 addresses (called “/8s”) with about 16.7 million

addresses each to the five Regional Internet Registries for the world,

AfriNIC, APNIC, ARIN, LACNIC, and RIPE NCC. As of this writing,

only 20 “/8” blocks are left to allocate (about 7.8% of the original 256).

As we reach the “end days” for IPv4, the IANA will be the first to run

out. They already have a plan for this. When they get down to five

remaining “/8” blocks, they will allocate one of those to each of the

five RIRs and then close shop (as far as allocation of IPv4 addresses

goes). This will probably happen on or before September 2011,

by best current estimates. The RIRs will probably run out within 6

months after that. When they’re gone, they’re gone.

• Perform the top-level management of IPv6 addresses. They perform

the same basic allocation function with IPv6 addresses that they

have done for many years with IPv4 addresses. The main difference

is that there are a lot more IPv6 addresses. They allocate giant

Chapter 12 Ipv6-related OrganIzatIOns

http://www.iana.org

382

chunks of IPv6 addresses to the RIRs as needed. It is unlikely that

IANA will ever run out, so long as there is something recognizably

TCP/IP. There are enough IPv6 addresses just in the 2000::/3 block

marked for allocation for every human alive today to get over 5,000 of

the standard allocation blocks, which are “/48s.” Each “/48” is large

enough for the biggest organization on earth.

• Manage AS numbers. AS stands for autonomous systems. It refers to

complete networks at the top level of the routing hierarchy. Below

the AS level, Interior Gateway Routing Protocols are used (e.g., RIP2,

EIGRP, etc.). At the AS level, Exterior Gateway Routing Protocols are

used (e.g., BGP4 and BGP4+). Each autonomous system network

has a unique number. They have been using 16-bit numbers (which

allowed 65,536 possible ASs). Just like with IPv4, we are running

out of AS numbers, so they are in the process of changing to 32-

bit AS numbers. That is causing some issues, but nothing like the

issues related to changing from 32-bit IPv4 addresses to 128-bit IPv6

addresses. There is no worldwide “32-bit AS number” forum or any

need for one. The people affected are fairly savvy technically and are

simply making the changeover quietly.

• Allocate and assign IPv4 and IPv6 multicast addresses.

• Allocate and assign IPv6 anycast addresses.

• Allow people to reserve and register port numbers and other

assigned numbers related to Internet protocols.

IANA is heavily involved in promoting the adoption of IPv6 throughout the world.

They know how close they are to the bottom of the barrel with IPv4 addresses. They

encourage the Regional Internet Registries to promote the adoption of IPv6, and each of

them is doing this.

 Regional Internet Registries (RIRs)
There are five top-level registries directly below IANA, who set address allocation policy

for their region and allocate blocks of both IPv4 and IPv6 addresses to ISPs and other

interested parties. One way to obtain addresses is to join one of the registries and apply

Chapter 12 Ipv6-related OrganIzatIOns

383

for addresses. Some regional registries charge for these; others provide them free. You

can only obtain addresses from the registry in the region where you reside or where the

HQ of your organization is based.

Each Regional Internet Registry provides the following services for Internet users in

their part of the world:

• IPv4 and IPv6 address space allocation, transfer and record

maintenance.

• Autonomous system (AS) number allocation, transfer and record

maintenance.

• Provide online directories of registration transaction information

(WHOIS database).

• Provide online information about routing (Internet Routing Registry).

• Management of reverse DNS for addresses assigned by the RIR.

• Hold periodic meetings and elections.

• Perform education and training on relevant topics (such as IPv6).

• Maintain policy discussions on email lists, conduct public policy

meetings, and publish policy documents on their website.

The three largest RIRs (ARIN, RIPE NCC, and APNIC) are all aggressively advocating

for adoption of IPv6. Like IANA, they know how many addresses are left and how rapidly

they are being allocated. They know that the “end times” for IPv4 allocation are near. All

are strongly encouraging all ISPs and organizations that obtain addresses from them to

begin adoption of IPv6 now. If the major oil companies told people that there was not

going to be any gas for new cars made after a certain date (less than 2 years off), there

would be a mad scramble to create and sell cars that ran on something else. This is just

as big a deal and, according to OECD, will have very serious economic consequences for

every country and organization that has not prepared for the end of IPv4 allocations.

The five Regional Internet Registries and their coverage areas are as follows.

 American Registry for Internet Numbers (ARIN): www.arin.net

ARIN provides services to Internet users in North America (including the United States,

Canada, plus many Caribbean and North Atlantic islands).

Chapter 12 Ipv6-related OrganIzatIOns

http://www.arin.net

384

ARIN runs an IPv6 wiki at www.getIPv6info.info. This site includes book reviews,

self-education, IPv6 presentations and documents, survey results, planning information,

management tools, etc.

On May 7, 2007, the ARIN Board of Trustees passed the following resolution:

RESOLUTION OF THE BOARD OF TRUSTEES OF ARIN ON INTERNET PROTOCOL

NUMBERING RESOURCE AVAILABILITY

WHEREAS, community access to Internet Protocol (IP) numbering Resources has

proved essential to the successful growth of the Internet; and,

WHEREAS, ongoing community access to Internet Protocol version 4 (IPv4)

numbering resources cannot be assured indefinitely; and,

WHEREAS, Internet Protocol version 6 (IPv6) numbering resources are available and

suitable for many Internet applications,

BE IT RESOLVED, that this Board of Trustees hereby advises the Internet community

that migration to IPv6 numbering resources is necessary for any applications which

require ongoing availability from ARIN of contiguous IP numbering resources; and,

BE IT ORDERED, that this Board of Trustees hereby directs ARIN staff to take

any and all measures necessary to assure veracity of applications to ARIN for IPv4

numbering resources; and,

BE IT RESOLVED, that this Board of Trustees hereby requests the ARIN Advisory

Council to consider Internet Numbering Resource Policy changes advisable to

encourage migration to IPv6 numbering resources where possible.

Implementation of this resolution will include both internal and external

components. Internally, ARIN will review its resource request procedures and

continue to provide policy experience reports to the Advisory Council. Externally,

ARIN will send progress announcements to the ARIN community as well as the wider

technical audience, government agencies, and media outlets. ARIN will produce new

documentation, from basic introductory fact sheets to FAQs on how this resolution

will affect users in the region. ARIN will focus on IPv6 in many of its general outreach

activities, such as speaking engagements, trade shows, and technical community

meetings.

Chapter 12 Ipv6-related OrganIzatIOns

http://www.getipv6info.info

385

 Réseaux IP Européens Network Coordination Centre (RIPE NCC):
www.ripe.net

RIPE NCC provides services to Internet users in Europe, the Middle East, and Central

Asia. This includes

• Southwest Asia: Azerbaijan, Bahrain, Cyprus, Georgia, Iran, Iraq,

Israel, Jordan, Lebanon, Saudi Arabia, Syria, Turkey, UAE, and Yemen

• Central Asia: Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan, and

Uzbekistan

• Europe: Albania, Armenia, Austria, Belarus, Belgium, Bosnia-

Herzegovina, Bulgaria, Croatia, Czech Republic, Denmark, Estonia,

Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy,

Latvia, Lithuania, Macedonia, Moldova, Montenegro, Norway,

Netherlands, Poland, Romania, Russia, Serbia, Slovakia, Spain,

Sweden, Switzerland, Turkey, Ukraine, United Kingdom, and

Yugoslavia

• North America: Greenland

RIPE NCC runs the “IPv6 Act Now” site (www.ipv6actnow.org) with lots of

information on IPv6 for small businesses, enterprises, ISPs, and governments.

On October 26, 2007, RIPE NCC issued the following warning, which is included here

verbatim:

During the RIPE 55 meeting in Amsterdam, the RIPE community agreed to issue the

following statement on IPv4 depletion and the deployment of IPv6.

“Growth and innovation on the Internet depends on the continued availability of IP

address space. The remaining pool of unallocated IPv4 address space is likely to be fully

allocated within two to four years. IPv6 provides the necessary address space for future

growth. We therefore need to facilitate the wider deployment of IPv6 addresses.

While the existing IPv4 Internet will continue to function as it currently does, the

deployment of IPv6 is necessary for the development of future IP networks.

The RIPE community has well-established, open and widely supported mechanisms

for Internet resource management. The RIPE community is confident that its Policy

Development Process meets and will continue to meet the needs of all Internet

stakeholders through the period of IPv4 exhaustion and IPv6 deployment.

Chapter 12 Ipv6-related OrganIzatIOns

http://www.ripe.net
http://www.ipv6actnow.org/

386

We recommend that service providers make their services available over IPv6.

We urge those who will need significant new address resources to deploy IPv6. We

encourage governments to play their part in the deployment of IPv6 and in particular

to ensure that all citizens will be able to participate in the future information society.

We urge that the widespread deployment of IPv6 be made a high priority by all

stakeholders.”

RIPE NCC issued another warning concerning IPv4 address space depletion, on

April 10, 2008:

Currently, 180 of 256 blocks of “/8” have already been allocated. Of the remaining 76,

35 are already reserved for the Internet Engineering Taskforce (IETF) and the remaining

41 blocks are held in the Internet Assigned Numbers Authority (IANA) pool for future

allocation to the RIRs.

As IPv6 provides the necessary address space for future growth, RIPE NCC is

urging business and government leaders to ease the path for wider deployment of IPv6

addresses. Failure to adopt these new resources could mean a slowing in the pace of

Internet innovation.

“Now is the time to recognize that sustainable growth of the IPv4-based Internet is

coming to an end, and that it is time to move on, with IPv6 ready as the successor.

“In order to sustain the impressive speed of Internet innovation and ensure a healthy

Internet economy for the future, we recommend that content providers make their

services available over IPv6,” comments Axel Pawlik, Managing Director at RIPE NCC.

“We view governments as key players in Internet growth and urge them to play their

part in the deployment of IPv6 and in particular to lead by example in making content

available in IPV6. Ultimately, we urge that the widespread deployment of IPv6 be made a

high priority by all stakeholders.”

When CIOs make firm decisions to deploy IPv6, the process is fairly straightforward.

Staff will have to be trained, management tools will need to be enhanced, routers and

operating systems will need to be updated, and IPv6-enabled versions of applications

will need to be deployed. All these steps will take time.

The move to IPv6 will provide billions of further addresses through 128-bit

addressing, which allows 50 billion, billion addresses for every person on the planet.

Islands of IPv6 are already in use, but RIPE NCC argues that infrastructure support must

be addressed in time for IPv6 to fulfill its predicted role as the catalyst for the next stage

of Internet development.

Chapter 12 Ipv6-related OrganIzatIOns

387

Pawlik concludes: “We have well-established, open and widely supported

mechanisms for Internet resource management and we’re confident that our Policy

Development Process meets and will continue to meet the needs of all Internet

stakeholders through the period of IPv4 exhaustion and IPv6 deployment. The

immediate challenge lies in making content available in IPV6 using the processes and

mechanisms already available to ensure that service providers and content providers

build adequate experience and expertise in good time.”

Note that this warning was in 2008, and at that time 41 “/8” blocks remained. Today,

no more /8 blocks are available at the IANA level.

 Asia Pacific Network Information Center (APNIC):
www.apnic.net

APNIC provides service to Internet users in

• South Asia: Afghanistan, Bangladesh, Bhutan, India, Nepal, Pakistan,

and Sri Lanka

• Eastern Asia: China, North Korea, Hong Kong, Japan, Macau,

Mongolia, South Korea, and Taiwan

• Southeast Asia: Cambodia, Indonesia, Laos, Malaysia, Myanmar,

Philippines, Singapore, Thailand, and Vietnam

• Australia and New Zealand

• Oceania: Various islands in Polynesia, Melanesia, and Micronesia

APNIC is currently running a program called “Kickstart IPv6,” in which anyone that

owns or obtains an IPv4 address allocation from APNIC can get a free block of IPv6

addresses. If their IPv4 block is less than a “/22,” then the IPv6 block is a “/48.” For IPv4

blocks from “/22” and up, the free IPv6 block is a “/32” (this is 4 billion times 4 billion

times the size of the entire IPv4 address space). You could also look at this as 65,536

“/48” blocks. These addresses are not tied to any ISP and can be routed from anywhere.

There is no demonstration of need required for obtaining the IPv6 address block.

APNIC also runs an IPv6 resource site at http://icons.apnic.net/display/ipv6/

Home. The name “icons” stands for Internet Community of Online Networking Specialists.

Chapter 12 Ipv6-related OrganIzatIOns

http://www.apnic.net
http://icons.apnic.net/display/ipv6/Home
http://icons.apnic.net/display/ipv6/Home

388

 Latin American and Caribbean Network Information Center
(LACNIC): www.lacnic.net

LACNIC was started in 2002. It provides services to Internet users in

• North America: Mexico

• Central America: Costa Rica, El Salvador, Guatemala, Honduras,

Nicaragua, and Panama

• South America: Argentina, Belize, Bolivia, Brazil, Chile, Columbia,

Ecuador, French Guiana, Paraguay, Peru, Uruguay, and Venezuela

• Caribbean Islands: Aruba, Barbados, Cayman Islands, Cuba,

Dominica, Dominican Republic, Grenada, Haiti, Jamaica, and

various smaller islands

LACNIC runs an IPv6 resource site at portalipv6.lacnic.net/en/portal- IPv6- 2.

 Africa Region (AfriNIC): www.afrinic.net

AfriNIC provides services for Internet users in the entire African continent. It began in

April 2005.

They run an IPv6 resource center at www.afrinic.net/IPv6 and an IPv6 virtual lab

at www.afrinic.net/projects/cvl.htm. This is a test network with public access, with

primarily Cisco equipment.

 The Number Resource Organization (NRO): www.nro.net
NRO was formed in October 2003 by the four Regional Internet Registries that existed

at the time, to formalize their cooperative efforts. Its goal is to protect the unallocated

number resource pool, to promote and protect the bottom-up policy development

process, and to act as a focal point for Internet community input into the RIR system.

They run an IPv6 site at www.nro.net/ipv6.

Recently NRO issued the following statement, when the remaining IPv4 address pool

dropped below 10%:

“This is a key milestone in the growth and development of the global Internet,” noted

Axel Pawlik, Chairman of the NRO. “With less than 10 percent of the entire IPv4 address

range still available for allocation to RIRs, it is vital that the Internet community take

Chapter 12 Ipv6-related OrganIzatIOns

http://www.lacnic.net
http://portalipv6.lacnic.net/en/portal-IPv6-2
http://www.afrinic.net
http://www.afrinic.net/IPv6
http://www.afrinic.net/projects/cvl.htm
http://www.nro.net
http://www.nro.net/ipv6

389

considered and determined action to ensure the global adoption of IPv6. The limited

IPv4 addresses will not allow us enough resources to achieve the ambitions we all hold

for global Internet access. The deployment of IPv6 is a key infrastructure development

that will enable the network to support the billions of people and devices that will

connect in the coming years,” added Pawlik.

 Internet Architecture Board (IAB): www.iab.org
The IAB is chartered both as a committee of the Internet Engineering Task Force (IETF)

and as an advisory body of the Internet Society (ISOC). Its responsibilities include

architectural oversight of IETF activities, Internet Standards Process oversight and

appeal, and the appointment of the RFC Editor. The IAB is also responsible for the

management of the IETF protocol parameter registries.

 Internet Engineering Task Force (IETF): www.ietf.org
The mission of the IETF is to make the Internet work better by producing high quality,

relevant technical documents that influence the way people design, use, and manage the

Internet.

The IETF

• Runs numerous working groups on technical topics relevant to the

Internet that are the main source of RFCs

• Oversees the standards process

• Maintains the Internet Drafts and the RFC Pages

• Holds periodic meetings (fall, spring, and summer, each year)

• Runs various mailing lists, which anyone can subscribe to

 Internet Research Task Force (IRTF): www.irtf.org
To promote research of importance to the evolution of the future Internet by
creating focused, long-term and small Research Groups working on topics
related to Internet protocols, applications, architecture and technology.

Chapter 12 Ipv6-related OrganIzatIOns

http://www.iab.org
http://www.ietf.org
http://www.irtf.org

390

 Internet Society (ISOC): www.isoc.org

The Internet Society (ISOC) is a nonprofit organisation founded in 1992 to
provide leadership in Internet related standards, education, and policy.
With offices in Washington D.C., USA, and Geneva, Switzerland, it is dedi-
cated to ensuring the open development, evolution and use of the Internet
for the benefit of people throughout the world.

The Internet Society provides leadership in addressing issues that confront
the future of the Internet and is the organisational home for the groups
responsible for Internet infrastructure standards, including the Internet
Engineering Task Force (IETF) and the Internet Architecture Board (IAB).

The Internet Society acts not only as a global clearinghouse for Internet
information and education but also as a facilitator and coordinator of
Internet-related initiatives around the world. For over 15 years ISOC has
run international network training programs for developing countries and
these have played a vital role in setting up the Internet connections and
networks in virtually every country connecting to the Internet during
this time.

The Internet Society has more than 100 organisational and more than
28,000 individual members in over 80 chapters around the world.

 IPv6 Forum Groups
There are many groups organized specifically to advocate for the adoption of IPv6, given

the importance of the issue. There is an international umbrella group, called the IPv6

Forum, chaired by Latif Ladid, who wrote the foreword to this book. Their website is at

www.ipv6forum.org.

 Local IPv6 Forum Chapters
There are local chapters of the IPv6 Forum in many countries. Some of these national

groups use the term Forum (e.g., IPv6 Forum Downunder, at www.ipv6forum.org.au).

Some use the term Task Force (e.g., North American IPv6 Task Force, at www.nav6tf.

org). Some use the term Council (e.g., the German IPv6 Council, at www.ipv6council.

de). Altogether there are currently 58 national or regional groups under the international

Chapter 12 Ipv6-related OrganIzatIOns

http://www.isoc.org
http://www.ipv6forum.org
http://www.ipv6forum.org.au
http://www.nav6tf.org
http://www.nav6tf.org
http://www.ipv6council.de
http://www.ipv6council.de

391

IPv6 Forum. These groups advocate within their own country or region for the adoption

of IPv6 and put on conferences usually called IPv6 summits. There are links to all of

the chapters on the IPv6 Forum international site (www.ipv6forum.org), as well as

announcements about coming summits and other IPv6-related events.

 IPv6 Ready Logo Program
Affiliated with the IPv6 Forum is a group whose goal is to do testing of IPv6 equipment

and applications, ISPs who offer IPv6, and websites that are available over IPv6. This

testing and issuing of certifications is done under the IPv6 Ready Logo Program. Their

website is at www.ipv6ready.org. There are three main parts to the IPv6 Ready Logo

Program: Products, ISP, and website.

 IPv6-Ready Product Testing and Certification

Product testing uses test suites developed by TAHI (part of the Japan WIDE project)

and IPv6-ready test labs. This is overseen by the IPv6 Ready Logo Committee (v6LC).

There are both phase 1 (“Silver”) tests, which verify behavior of the MUST clauses of all

relevant RFCs, and phase 2 (“Gold”) tests, which verify behavior of both the MUST and

the SHOULD clauses of all relevant RFCs. The hundreds of products that have passed

these tests are published on the IPv6 Ready site at

• http://cf.v6pc.jp/logo_db/approved_list_ph1.php

• http://cf.v6pc.jp/logo_db/approved_list_ph2.php

There are several categories of test suites currently. The IPv6 Ready Logo can be

obtained for passing the Core Protocols tests, which include both Conformance and

Interoperability tests. There are advanced tests in the following areas:

• IPsec: End-Node and Security Gateway

• IKEv2: End-Node and Security Gateway

• Mobile IPv6: Correspondent Node, Home Agent, and Mobile Node

• NEMO: Home Agent and Mobile Router

• DHCPv6: Client, Server, and Relay Agent

• SIP: UA, Endpoint, B2BUA, Proxy, Registrar

Chapter 12 Ipv6-related OrganIzatIOns

http://www.ipv6forum.org/
http://www.ipv6ready.org
http://cf.v6pc.jp/logo_db/approved_list_ph1.php
http://cf.v6pc.jp/logo_db/approved_list_ph2.php

392

• SNMP: Management (SNMP-MIBs) – Agent and Manager

• MLDv2: Multicast Listener Discovery protocol (version 2)

The current test sites include

• BII: Beijing Internet Institute (People’s Republic of China)

• CableLabs (United States)

• CHT- TL: ChungHwa Telecom Labs (Taiwan)

• CNLabs (India)

• IRISA: Institut de Recherché en Informatique et Systemes Aleatories

(European Union)

• TEC (India)

• TTA: Telecommunication Technology Association (Korea)

• UNH- IOL: University of New Hampshire InterOp Lab (United States)

 IPv6-Enabled ISP and Website Certification

Information on how an ISP or a website can be certified as delivering IPv6-compliant

service is available at

• www.ipv6forum.com/ipv6_enabled

The ISP certification process was created by the Beijing Internet Institute (BII).

There is currently a basic level. The advanced level will be introduced shortly. The list of

certified ISPs is available at

• www.ipv6forum.com/ipv6_enabled/isp/approval_list.php

Notably, Malaysia has taken this even further and has three levels of ISP certification,

which has been mandated by the Malaysian government:

• Phase 1: Basic network connectivity tests

• Phase 2: Interconnectivity tests

• Phase 3: Commercial and advanced network services

In 2010, 12 ISPs had already passed the first two levels and were working on passing

the third.

Chapter 12 Ipv6-related OrganIzatIOns

http://www.biigroup.com/en/
https://www.cablelabs.com/specs/certification/
http://interop.ipv6.org.tw/English/index.php
http://criterionnetworklabs.com/
http://www.irisa.fr/tipi/wiki/doku.php
http://www.tec.gov.in/
http://test.tta.or.kr/English/
https://www.iol.unh.edu/testing/ip/ipv6
http://www.ipv6forum.com/ipv6_enabled
http://www.ipv6forum.com/ipv6_enabled/isp/approval_list.php

393

For websites, again there is a basic level currently available and an advanced level

coming soon. The list of certified websites is available at

• www.ipv6forum.com/ipv6_enabled/approval_list.php

 Informal IPv6 Network Administration Certification
Hurricane Electric, in addition to providing free tunneled service via 6in4, 6to4, and

Teredo, has put together an informal, self-administered certification program for IPv6

network administration. This covers aspects of IPv6 technology and implementation

on various platforms (Linux, Windows, Cisco routers, etc.). There are several levels.

At each succeeding level, you must answer harder questions. Several levels involve

accomplishing actual network administration tasks, such as deploying an IPv6-

compliant email server. To obtain that level, you must exchange an email with their IPv6

email server. The site is available at ipv6.he.net/certification/. There are multiple levels,

including Newbie, Explorer, Enthusiast, Administrator, Professional, Guru, and Sage.

This is not a formal program, like Microsoft or Cisco certification, but it is free and

very educational. I have already qualified at the top level, as an IPv6 Sage. Here is my

very cool certification badge:

Chapter 12 Ipv6-related OrganIzatIOns

http://www.ipv6forum.com/ipv6_enabled/approval_list.php
http://ipv6.he.net/certification/

394

 WIDE Project, Japan
Japan was an early leader in IPv6, and a consortium of Japanese IT companies headed by

Professor Jun Murai has done some very important work that has significantly advanced

the state of IPv6. These include reference implementations of the IPv6 stack for BSD

(Kame) and Linux (USAGI), the test suites for the IPv6 Ready testing program (TAHI).

They also provide IPv6 service to many developing countries in the region, such as the

Philippines. Their website is available at www.wide.ad.jp.

The Kame project completed its task and has been discontinued, but its website

(www.kame.net) has been left up, complete with its famous turtle logo (kame is Japanese

for turtle). If you connect over IPv4, the turtle just sits there. If you connect over IPv6,

the turtle dances. In the early days of IPv6, it was a rite of passage to verify you had

accomplished IPv6 connectivity by watching the kame dance.

 Summary
This chapter covered some of the major organizations involved in the management of

IPv6 addresses and the rollout of IPv6 globally.

IANA is the top-level organization that allocates IPv6 addresses (they ran out of

public IPv4 addresses in 2011, so they no longer allocate those).

Below IANA are the five Regional Internet Registries (RIRs): APNIC, ARIN, RIPE,

LACNIC, and AfriNIC. All these have reached end of normal allocation for IPv4

public addresses. They still provide blocks of IPv6 addresses to telcos, ISPs, and other

organizations.

There are several other organizations listed (NRO, IAB, IETF, IRTF, etc).

We also covered the IPv6 Forum, which was chartered by the IETF to oversee rollout

of IPv6 globally and provide testing and training for it. I have been heavily involved with

them since about 2004.

I finally mentioned a great program for free self-directed IPv6 training provided

by Hurricane Electric, who also provides free tunneled IPv6 via 6in4 tunneling. Even if

your ISP is not yet supporting IPv6, you can tunnel it into your network from them. See

https://tunnelbroker.net.

Chapter 12 Ipv6-related OrganIzatIOns

http://www.wide.ad.jp
http://www.kame.net
https://tunnelbroker.net

395

CHAPTER 13

IPv6 Projects
There are various projects you can do for free, given the information in this book and

open source components (or evaluation versions of Microsoft products) readily available

on the Internet.

It is possible to do the open source implementations based on FreeBSD, NetBSD,

OpenBSD, or various Linux flavors. Use the platform you are most familiar with. The

BSD variants have a powerful dual-stack packet filtering component called pf. This

can be used to add a host-based firewall to any project (to block access via anything

but the desired protocols) or even to build a multi-NIC router or firewall with complex

rules. In Linux, the equivalent component is called Netfilter/IP Tables. The BSD and

Linux packet filtering components have roughly the same functionality, but totally

different deployment and configuration schemes. Both have one part that lives in the

Kernel Space and one part that lives in user space. The configuration of the IPv4 and

IPv6 stacks is done in different ways, but the functionality is almost the same. Both the

BSD and Linux IPv6 implementations have passed IPv6 Ready Gold testing (at least one

release, possibly not the most recent). For the most part, other open source components

(Apache, Postfix, Dovecot, etc.) are pretty much the same regardless of what underlying

platform is used.

Microsoft Windows since version 7, Windows Server since 2008, and Exchange

Server each have excellent support for IPv6 and dual-stack operation. You can put

together a viable testbed network with just Microsoft products if you like (except for the

gateway router/firewall) or all with just open source or mix and match. It all depends on

your expertise and requirements.

Some open source components (e.g., SMTP MTA, POP3/IMAP mail retrieval agents)

are available in a variety of popular implementations (Postfix, QMail, EXIM, Dovecot,

Cyrus IMAP, etc.). Pretty much all these have support for IPv6, but in some cases, the

specifics to actually deploy these in dual-stack mode may be difficult to locate. I will

© Lawrence E. Hughes 2022
L. E. Hughes, Third Generation Internet Revealed, https://doi.org/10.1007/978-1-4842-8603-6_13

https://doi.org/10.1007/978-1-4842-8603-6_13

396

recommend components that I have actually deployed and where I have verified dual-

stack operation, but if you happen to prefer a different component, chances are the

necessary configuration information is available online somewhere.

Each project has a basic level of functionality described and various extensions

that can add more functionality (e.g., a basic router can be enhanced by adding packet

filtering and/or proxies).

 Accompanying Website
Rather than include these projects in this book, I have put these on the corresponding

website, at https://thirdinternet.com. You can download the installation guides in

PDF, and I can update them easily as new operating systems and releases of open source

projects come out.

These include

• How to deploy a dual-stack firewall with pfSense, including 6in4

tunneling (I use a version of this in my home network)

• How to deploy Windows Server with dual-stack operation in AWS

• How to deploy FreeBSD with dual-stack operation, both standalone

and in AWS

• Exploring IPv6 on your phone

 Hurricane Electric IPv6 Certification
I also strongly recommend that you do the projects in the Hurricane Electric IPv6

Certification sequence. See https://ipv6.he.net/certification/. Among other

projects, you will do the following:

• Configure IPv6 on your node.

• Connect to the IPv6 Internet.

• Deploy a working website available over IPv6.

• Deploy a working email server that accepts messages over IPv6.

• Deploy a working DNS server that supports IPv6.

Chapter 13 Ipv6 projeCts

https://thirdinternet.com
https://ipv6.he.net/certification/

397

• Configure a reverse DNS record for your IPv6 email server.

• Do network troubleshooting with ping and traceroute with IPv6

addresses.

They have automated tools to verify that the projects you deploy actually work.

 SixConf
On the preceding website (and on https://ipv6forum.com), you can find a very useful

free application (for Windows) that allows you to see (and completely control) the

internal details of IPv6 addresses and configuration called SixConf. Here is a screenshot

of the main window to give you an idea. A user guide is also available with full details.

This will help you understand the information in this book. I have used this app when

teaching IPv6 certification courses and find it really helps the students to understand

what is going on. It is also useful when deploying IPv6 even in complex networks.

For whatever reason, Microsoft chose to provide configuration tools for IPv6 on

their operating systems that look and act a lot like the ones for IPv4. This is kind of like

providing a 747 with controls based on those in a family car. IPv6 is far richer and more

complex, and this tool provides visibility into and control of these aspects.

Chapter 13 Ipv6 projeCts

https://ipv6forum.com

398

Note We need to provide a way to download this from an apress web page for
this book.

 Conclusion
If you have done all the exercises on the website, you now have a fairly complete dual-

stack testbed network and are familiar with many of the things that you will need to do as

a network administrator. Between the labs and the book, hopefully you now understand

the following things:

• It is not particularly difficult to obtain free tunneled IPv6 service,

even using free components. You do not need to wait for your ISP

to provide IPv6 service to go fully operational. Simple transition

mechanisms simplify the migration to full dual-stack operation. The

only problem is you need at least one public IPv4 address to use 6in4.

Failing that, 6rd is a reasonable substitute, but your ISP must provide

it to you.

• Most operating systems and many existing network applications

(BIND, Apache, Postfix, Dovecot, ssh/sshd, etc.) are already

fully capable of supporting full dual-stack operation. Network

configuration is not that different from IPv4.

• Most web applications (Apache or IIS based) get a “free ride,” once

the underlying web server has been migrated to dual stack. In

addition (although not covered in these labs), most Microsoft “.Net”

applications get a free ride.

• IPv4 NAT really doesn’t provide any useful function other than

extending the life of the IPv4 address space, and only then at a very

high price (in terms of lost capabilities and additional complexity).

It adds no security in firewall architectures. NAT is a crutch you no

longer need. IPv6 without NAT actually provides a simpler, better

firewall architecture (no need for BINAT, proxy ARP, NAT traversal,

etc.). We are really just returning to the pre-NAT “classical” firewall

architectures, not something new and untested.

Chapter 13 Ipv6 projeCts

399

• There are only a few really new concepts in IPv6 that current network

administrators need to master, such as tunneling, Application Layer

gateways, hexadecimal address representation, address scopes (e.g.,

link-local addresses), working without NAT, needing to provide

Router Advertisement messages (for SLAAC to work), multicast and

IPsec that actually work, etc. Everything else is remarkably similar to

working with IPv4.

• The supply of IPv4 public addresses is really almost gone, and there

is no alternative to this other than migration to IPv6. The timeline

on this is sooner than most people realize. The four main RIRs have

ended normal allocation of IPv4 to telcos, ISPs, and cloud providers,

and the fifth one will soon. You have better be ready to support IPv6

if you want to keep your job (or have your organization continue

operation) past that point.

Congratulations, and welcome to the Third Internet as its newest netizen!

Chapter 13 Ipv6 projeCts

401

Index

A
Abilene, 20
Address Resolution Protocol (ARP), 50

address resolution, 64
broadcast address, 64
definition, 63
DOS window, 65
InARP, 63, 65
network segment, 64

Address space (IPv4)
allocation blocks, 132–136
BINAT mapping, 139
Carrier-Grade NAT, 141–146
CIDR allocation block, 135, 136
customer premise (CPE NAT), 137–140
external interface, 139
legacy allocations, 131
NAT444, 140
NAT traversal protocols, 140
port forwarding, 138
public allocation pool, 120

Africa Region (AfriNIC), 388
American Registry for Internet Numbers

(ARIN), 10, 14, 128, 151, 323,
381, 383–384

Android
configuration, 327
IPv6test.com test, 329
Network IP address allocation, 328
Windows node, 329

Application Layer gateways (ALGs), 145,
172, 288, 292, 294–296, 319, 399

ARPANET, 1, 27, 34–36, 79, 117
Asia Pacific Network Information Center

(APNIC), 10, 11, 14, 126, 134, 148,
196, 381, 387

B
Bidirectional NAT (BINAT), 89–90, 139
Bidirectional Protocol Independent

Multicast (BIDIR-PIM), 73, 222
Bolt, Beranek, and Newman (BBN), 34
Border Gateway Protocol 4 (BGP-4), 78,

81–82, 93, 234
Bulletin Board Systems (BBSs), 31, 32

C
Carrier-Grade NAT (CGNAT),

105, 361–362
across customers, 141
dual-stack service, 141
NAT444 system, 142, 143
NAT464 working process, 143, 144
nodes, 145
problems, 144, 145

Classless Inter-domain Routing (CIDR),
61, 79–82, 135–136, 181, 202, 203

Computer networking, 32
Ethernet, 32
Internet (see Internet (ARPANET))
LANs/WANs, 39
software, 33, 34
Token Ring, 32

© Lawrence E. Hughes 2022
L. E. Hughes, Third Generation Internet Revealed, https://doi.org/10.1007/978-1-4842-8603-6

https://doi.org/10.1007/978-1-4842-8603-6

402

Core protocols
architectural model, 173
CATNIP, TUBA, and SIPP, 163
Internet layer, 174
link layer, 174
ND (see Neighbor Discovery (ND)

protocol)
network hardware

cables, 161
dancing kame, 160
enterprise-grade routers/

firewalls, 161
home network gateways, 161
hubs and switches, 161
implementation, 157
interface connectors, 158
IP phones, 162
nodes, 158
Wi-Fi access points, 159, 161

SEcure Neighbor Discovery (SEND), 216
standards, 164–173
TCPv6/IPv6, 164–173

Customer Premises Equipment (CPE),
137–140, 143, 297, 313, 318

D
Data Over Cable Service Interface

Specification (DOCSIS), 17
Deployment progress (IPv6)

adoption phase, 147
forum website, 150
google statistics, 152–155
infrastructure, 149, 150
IPv4 exhaustion, 150
maps, 148
predictions, 155
prefixes/transit, 148

Digital Subscriber Line (DSL), 17, 92, 111,
159, 161, 318, 346

Domain Name System (DNS), 337
application layer protocol, 341
authoritative servers, 345
caching-only server, 346
client access

proxy function, 346
queries, 346
recursive, 346, 347
servers, 346

definition, 337
distributed database engine, 338
DNSSEC, 352–354
domain names, 338–340
ENUM, 350, 351
host files, 337, 338
Mail eXchange (MX), 349
network information service, 338
prefix renumbering, 343
resolver, 340
resource records, 342, 343
root servers, 347–349
server configuration, 341
servers/zones, 343, 344
SRV record, 350
stealth server, 344
TLDs names, 339, 340
zone transfer, 344

Dual stack node, 290
application layer code, 296
client requirements, 298
cross-process file, 299
definition, 296
DNS server, 299
Happy Eyeballs scheme, 299
modification, 299
network model, 297

INDEX

403

open source servers, 300
tunneling (see Tunneling mechanisms)

Duplicate Address Detection (DAD), 20,
167, 191, 203, 205, 206, 209–210

Dynamic Host Configuration Protocol
(DHCPv4)

addresses, 105
autoconfiguration, 104, 105
auto network configuration, 105, 111–116
check network details, 116
client/server operating systems, 105
DHCPDISCOVER request, 106
DHCPOFFER message, 107
DHCPREQUEST message, 107
ipconfig commands, 108
manual configuration, 113, 115
network configuration, 104, 106–109
properties dialog, 113
TCP/IP network configuration, 112
verification, 115

Dynamic Host Configuration Protocol
(DHCPv6)

address reservation, 244
BOOTP, 238
commands, 253–255
DHCP Unique IDentifier, 244, 245
hosts communication, 238
implementations, 244
interface identifiers, 239
link layer address, 246
physical address, 246
ports and messages, 247, 248, 250
router advertisement message, 239
SOLICIT message, 251
standard information, 240–253
stateless information, 244
status codes, 250
working process, 251–253

E
Enhanced Data Rates for GSM Evolution

(EDGE), 18, 160
Enhanced Interior Gateway Routing

Protocol (EIGRP), 79–81, 232, 382
E.164 Number Mapping (ENUM), 17,

350–351, 374, 381
Ethernet, 32–33, 41–45, 50, 77, 96, 159,

175, 204, 245
Explicit Congestion Notification (ECN),

48, 98, 268
eXtensible Open Router Platform

(XORP), 69

F
File Transfer Protocol (FTP), 49, 77, 91,

164, 172, 285, 294, 333, 364, 374
5G (Internet and telephony), 375–376

G
General Packet Radio Service

(GPRS), 18, 260
Gopher, 23, 24
Government Open Systems

Interconnection Profile (GOSIP), 37

H
High-Speed Downlink Packet Access

(HSDPA), 18, 160
High-Speed Packet Access (HSPA), 18
High-Speed Uplink Packet Access

(HSUPA), 18
Hypertext Markup Language (HTML), 23,

24, 38, 40
Hypertext Transfer Protocol (HTTP), 23,

38, 40, 45, 77, 137, 138, 144, 295

INDEX

404

I, J
Identity Registration Protocol (IRP), 58,

327, 335, 375
Integrated Services Digital Networks

(ISDN), 16
Intermediate System to Intermediate

System routing protocol (IS-IS), 72,
78–82, 171, 232, 233

International-and national-level
organizations, 379

Internationalized Domain Names (IDNs),
340, 380

International Telecommunication Union
(ITU), 16, 197, 339, 350, 373

Internet2, 21–23
Internet Architecture Board (IAB),

389, 390
Internet (ARPANET)

application protocols, 35
centralization/decentralization, 34
e-mail standardization, 38
network control program, 34
Open System Interconnection

(OSI), 37
TCP/IP, 35
UNIX, 36
World Wide Web, 38

Internet Assigned Numbers Authority
(IANA), 9, 11, 13, 46, 58, 125, 151,
185, 245, 381, 382

Internet Control Message Protocol
(ICMPv4), 55, 73–76, 96, 168, 206,
219, 223

Internet Control Message Protocol
(ICMPv6), 76, 96, 102, 173, 177,
205, 210, 223–232, 307, 312

Internet Corporation for Assigned Names
and Numbers (ICANN), 9, 380

Internet Engineering Task Force
(IETF), 46, 389

Internet Exchange Points (IXPs), 39, 170
Internet Governance bodies

IANA, 381, 382
ICANN, 380
implementation, 379
organizations, 379
RIRs (see Regional Internet

Registries (RIRs))
Internet Group Management Protocol

(IGMP), 68, 70–72, 217, 219
Internet Key Exchange (IKE) protocol, 85,

140, 264, 266–269, 272,
275, 277–282

Internet Key Exchange (IKEv1 and IKEv2)
cryptography, 278
digital certificate, 279
IKE, 278
IKEv2 implementations, 280–282
ISAKMP/SKEME, 277
KINK nodes, 282
main/aggressive mode, 278
modes, 278

Internet Key Exchange (IKEv2)
protocol, 261

Internet Protocol Layer Security (IPsec)
AH and ESP features, 263
design and implementation

stage, 262
encryption and decryption, 264
hacking attack, 263
IPv6 addresses, 276
L2TP connections, 277
multicast network, 277
overview, 261
SA/SADB/SPI, 270
security, 262, 263

INDEX

405

standards, 264–269
transport mode

AH packet header, 271
cryptographic checksum, 270
ESP header, 272
extension headers, 271
key exchange protocol, 271

tunnel mode
encapsulation, 273
ESP header, 274
IP header mode, 273
network communications, 275
outer packet header, 275

Internet Protocol Television (IPTV), 8, 19,
23, 26, 28, 69, 92, 93, 158, 187, 217,
285, 298

Internet Protocol, Version 4 (IPv4), 51
addressing model, 57
address space (see Address

space (IPv4))
ARP (see Address Resolution

Protocol (ARP))
broadcast, 66–68
collision domains, 44
DHCPv4, 104–109
dotted decimal notation, 57
fragment offset, 55
fragment packets, 54
hardware devices, 41–45
header checksum, 55
identification, 54
Internet Group Management

Protocol, 72, 73
IPv6 packet headers, 56
link layer addresses, 63
MAC addresses, 62
manual network configuration,

110, 111

multicasting
broadcast, 67–69
client application, 68
Comcast subscriber, 69
definition, 66
downstream, 69
ICMPv4 protocol, 74–77
mechanisms and protocols, 68
standards, 70, 71

NAT packets, 82–93
network ports, 57–59
network switches, 62
nodes, 41
packet header structure, 53–56
packet transmission, 66
promiscuous mode, 43
QoS, 54
Request for Comments, 45–47
routers/gateway, 42
routing

address resolution, 93
components, 77
definition, 76
internetworking protocol, 76
network interfaces (NICs), 77
packet filtering firewalls, 77
print command, 79
proxy firewalls, 77
standard information, 78–82

standards track, 52
subnet mask, 59–61
TCP/IP (see Transmission Control

Protocol (TCP)/Internet
Protocol (IP))

TTL, 55
unicast/anycast, 66
user datagram protocol, 101–103
well-known ports, 59

INDEX

406

Internet Protocol, Version 6 (IPv6)
addressing model, 181, 182
allocation block

CIDR implementation, 202
deployment, 202
link layer addresses, 204
network ports, 203
overview, 196
reserving addresses, 197
Second Internet, 197
space addresses, 199, 201, 202
subnetting/supernetting, 203
testing address, 200

anycast address, 185
Asian thing, 14, 15
assignment scheme, 189–192
coloned hex notation, 192
compatible IPv6 addresses, 187
core protocols (see Core protocols)
deployment (see Deployment

progress (IPv6))
DHCPv6, 238–255
disintermediation, 28
domain-qualified nodenames, 12, 13
extension headers, 178, 179
features/capabilities, 15
forum groups, 390

administration tasks, 393
ISP/website certification, 392
local data, 390
logo program, 391
product testing/certification, 391, 392
WIDE Project, Japan, 394

fragmentation, 178
history, 1
Hurricane Electric Certification, 396
ICMPv6, 223–232
interface identifiers, 190, 194

Internet2, 20–22
IPv4, 6, 13, 14
IPv5, 26–27
link layer, 175, 176
mapped addresses, 188, 189
multicast addresses, 185, 186
NAT gateway, 236–238
network administrator, 398
network configuration

configuration, 255
manual configuration, 256–258
Stateless Address

Autoconfiguration, 256, 257
static node address, 258, 259

nodes, 8
OECD (see Organisation for Economic

Co-operation and
Development (OECD))

open source implementations, 395
packet headers, 176–180
packet transmission

addressing model, 216
broadcast, 216
multicast address type, 217
multicast listener discovery,

218, 219, 221
PIM protocol, 221, 222
standards, 218

packet transmission types, 182
pervasive computing, 7
prosumer, 8
randomization identifiers, 195, 196
routing, 232–235
scopes, 183
Second Internet (IPv4), 1–6
single node link, 193, 194
SixConf, 397
Sixscape Communications, 29

INDEX

407

snail mail, 7
solicited node, 187
subnet numbers, 192
TCP header checksum, 237
telcos, 16–20
telephone company, 10, 11
tipping point, 9
unicast addresses, 184
unique local, 184
Web 2.0, 23–27
websites, 396

Internet Relay Chat (IRC), 69
Internet Research Task Force

(IRTF), 389
Internet Service Providers (ISP), 11, 22, 39,

61, 87, 105, 110, 140, 161, 196, 217,
222, 256, 290, 302–304, 325, 340,
361, 392

Internet Society (ISOC), 9, 389, 390
Internet Systems Corporation (ISC),

105, 318, 341
Intra-Site Automatic Tunnel Addressing

Protocol (ISATAP), 286,
287, 311–312

Inverse Address Resolution Protocol
(InARP), 63, 65

iPhone
HE network application, 330
IP allocation info, 331
Ipv6-test.com site, 332
Windows node, 332

IP Multimedia Subsystem (IMS), 17, 18
IPsec Authentication header (AH),

90, 137, 232
IPv4 protocol, (see Internet Protocol,

Version 4 (IPv4))
IPv4 (Second Internet)

address space, 9

ARPANET, 1
dotted decimal notation, 6
First Internet map, 3
NCP node addresses, 2
Second Internet map, 4
Third Internet (IPv6), 4, 5

IPv5, 26–27
IPv6, see Internet Protocol,

Version 6 (IPv6)

K
Kerberized Internet Negotiation of Keys

(KINK), 266, 272, 275, 282
Kerberos Key Distribution Center (KDC),

272, 275, 282

L
Latin American and Caribbean Network

Information Center (LACNIC), 10,
14, 134, 151, 196, 381, 388

Layer 2 Tunneling Protocol (L2TP), 264,
277, 313–315

Lightweight Directory Access Protocol
(LDAP), 37, 333, 342, 350, 374

Long-Term Evolution (LTE), 18, 19, 129,
160, 241

M
Mobile devices

Android (see Android)
decentralized messaging, 334, 335
implementation, 333–335
iPhone

HE network application, 330
IP allocation info, 331
Ipv6-test.com site, 332

INDEX

408

Windows node, 332
mutual authentication, 334

Multicast Listener Discovery (MLD)
Protocol, 70, 72, 187, 206, 217–221

N
National LambdaRail (NLR) project, 20–22
Neighbor Discovery (ND) protocol

address resolution, 208
duplicate address detection, 206, 209
functions, 204, 205
ICMPv6 messages, 205
link-layer addresses, 206
neighbor unreachability detection, 213
next-hop determination, 212
prefix discovery, 208
redirect message, 214–216
router discovery, 207
stateless address

autoconfiguration, 210–212
Neighbor unreachability detection (NUD),

205, 213
NetBIOS Frames (NBF) protocol, 33
Network Address Port Translation

(NAPT), 71, 86, 203, 303, 342, 350
Network Address Translation (NAT), 7,

235–237, 292–294, 356
address masquerading, 85
bidirectional NAT, 89, 90
Carrier-Grade NAT, 361, 362
centralization

host protocol, 362
IPv4+NAT Internet, 360
ISP connection, 363
network, 364

content consumers/producers, 92

definition, 82
DNS64/NAT64, 367
email clients, 371, 372
firewall architecture, 85
5G, 375, 376
gateways, 359
hide-mode, 88–90
incoming connections, 365
internal node, 358
Internet, 367
messaging app, 372–375
port mapping, 87, 88, 359
port numbers, 359
private addresses, 85
public addresses, 366
ramifications, 90–93
ranges, 86
Skype, 365, 370, 371
standard information, 83, 84
STUN servers, 365
Traditional, 86
VoIP, 368, 369
WhatsApp, 371

Network Control Program (NCP), 1, 2,
27, 34, 35

Network Information Service (NIS), 240,
244, 253, 338

Network Interface Controller (NIC),
41–43, 62, 77, 264

Network Interface Connectors (NICs),
158, 159

Network Interface Controller (NIC), 42, 62
Networks in Motion (NEMO), 19, 391
Next-Generation Network (NGN)

aspects, 16
cable access networks, 17
Enhanced Data Rates for GSM

Evolution, 18

Mobile devices (cont.)

INDEX

409

4G/5G systems, 19
General Packet Radio Service, 18
High-Speed Packet Access, 18
IP Multimedia Subsystem, 17
legacy transport networks, 17
Long-Term Evolution, 18
telephone networks, 16
telephony, 19
Wireless Access in Vehicular

Environments, 20
Wireless Application Protocol, 18

Number Resource Organization (NRO),
130, 388–389

O
Open Shortest Path First (OSPFv2), 81–82,

173, 233
Open System Interconnection (OSI),

37–38, 46, 48, 49, 51, 78, 80,
117, 233

Organisation for Economic Co-operation
and Development (OECD), 13,
120–122, 125–126

allocation message, 121
deployment, 125, 126
economics, 127–131
fragmentation, 124
goals, 120
migration, 123
mobile telco service, 123
report information, 121
technology transition, 122
tunneling schemes, 122
unique autonomous systems, 130

Organizationally Unique Identifier (OUI),
62, 194, 195

P
Peer-to-peer applications, 25, 91
Peripheral Computer Interconnect

(PCI), 42, 62
Personal Area Networks (PAN), 7, 131,

168, 172
Potential routers list (PRL), 312
Prefixing, Encapsulation, and Translation

(PET), 318–319
Private IPv4 address, 355–357
Protocol Independent Multicast (PIM), 68,

70–73, 187, 221, 222
Proxies, 294–296
Public IPv4 address, 141, 298,

327, 355–359

Q
Quality of Service (QoS), 15, 16, 54, 177,

298, 323

R
Real-Time Transport Protocol (RTP), 17,

91, 102, 334, 368, 373
Regional Internet Registries (RIRs), 9, 11

AfriNIC, 388
APNIC, 387
ARIN, 383, 384
IAB, 389
IETF, 389
Internet Society, 390
IRTF, 389
LACNIC, 388
NRO, 388
RIPE NCC services, 385–387
services, 383

INDEX

410

Request for Comments (RFCs), 162
definition, 45
ISO standards, 46
learning process, 46
phrases, 47
standards process, 46

Réseaux IP Européens Network
Coordination Centre (RIPE NCC),
10, 126, 151, 381, 383, 385–387

Router Solicitation message, 211
Routing Information Protocol (RIP), 72,

77–81, 93, 120, 232, 233

S
Secure Key Exchange MEchanism for

Internet (SKEME), 277
SEcure Neighbor Discovery (SEND),

216, 225
Security Association Database

(SADB), 270
Security Parameter Index (SPI), 270
Server Message Block (SMB), 33, 34
Session Initiation Protocol (SIP), 11, 17,

85, 91, 137, 144, 240, 252, 282, 322,
350, 368, 373, 374

Short Message System (SMS), 18, 375
Signaling System 7 (SS7), 16
Skype, 370, 371
Softwires

components, 313
dual-stack lite, 316–318
dual-stack nodes, 317
hub/spoke, 312
mesh, 313
PET framework, 318
requirements, 314
standards, 314–316

UDP encapsulation, 314
Standard Generalized Markup Language

(SGML), 23, 24
Stateless Address Autoconfiguration

(SLAAC), 105, 203, 205, 210–212,
217, 239, 256

StreetTalk, 33

T
Time To Live (TTL), 55, 65, 76, 307,

345, 375
Token Ring, 32
Top-level domains (TLDs), 27, 126, 339,

340, 381
Transition mechanisms

capabilities, 285
co-existence, 290
definition, 285
dual stack, 296–301
proxies, 294–296
standards, 286–289
translation gateway, 292–294

Translation mechanisms
developers, 324, 325
IPv4/IPv6 addresses, 319, 320
IVI nodes, 321
NAT64/DNS64 gateway, 320, 321
network implementation, 322–324
transparency, 319

Transmission Control Protocol (TCP)/
Internet Protocol (IP)

connection oriented model, 94
IPv4

application/transport layers, 49
data flow, 49
definition, 48
DoD network model, 48

INDEX

411

Ethernet frame, 50
Internet/link layers, 50
network layer, 51
OSI layers, 49
outgoing data, 49

packet header, 97–101
protocol operation, 99
standard information, 94–97
state transition diagram, 100
transport layer protocol, 94

Transmission Control Protocol version 6
(TCPv6), 164–173

Trivial File Transfer Protocol
(TFTP), 101

Tunneling mechanisms
decapsulation process, 306
deployment (6rd), 311
firewall node, 303
ISATAP, 311
nested structure, 302
pfSense, 303
server/client side, 302
6in4 encapsulation, 305–308
6over4 tunneling, 307
6to4 translation, 307–309
softwires (see Softwires)
Teredo client, 309–311
transition, 291
working process, 301

Turner Broadcasting System (TBS), 28

U
Uniform Resource Identifier (URI), 11,

181, 350, 351, 373, 374
Unshielded twisted pair (UTP), 32, 43

User Datagram Protocol (UDP), 50, 101,
174, 238

checksum field, 103
connection-oriented model, 101
definition, 101
packet header, 103
standard information, 102
unreliable/connectionless model, 101

V
Virtual Local Area Networks (VLANs), 45,

62, 63, 67, 161
Virtual Private Networks (VPNs), 21, 23,

90, 157, 196, 236, 261, 263, 276, 298
Voice over Internet Protocol (VoIP), 8, 10,

13, 16, 17, 21, 23, 35, 91–93, 160,
196, 236, 334, 349, 368, 375

W, X, Y, Z
WhatsApp, 371–373, 375
Wide Area Information Server (WAIS),

23, 24, 38
WIDE Project, Japan, 394
Wireless Access in Vehicular

Environments (WAVE), 20
Wireless Application Protocol (WAP),

18, 92, 160
World Wide Web/Internet

client-server system, 22
Gopher, 23
HTTP and HTML, 24
hypertext/hypermedia, 23
Web 2.0, 24–26
web browsers, 24

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Foreword
	Introduction
	Chapter 1: Introduction
	History of This Work and the Term “Third Internet”
	Why IPv6 Is Important
	Wait. How Can the Internet Grow to 75 Billion Nodes?
	Why Was 2011 a Significant Year for the Second Internet?
	An Analogy: The Amazing Growing Telephone Number
	So Just What Is It That We Are Running Out Of?
	But You Said There Were 4.3 Billion IPv4 Addresses?
	Is IPv6 Just an Asian Thing?

	So Exactly What Is This “Third Internet”?
	Is It the Next-Generation Network (NGN) That Telcos Talk About?
	Is It Internet2 or National LambdaRail?
	Is It Web 2.0?
	Hypertext, WAIS/SGML, and Gopher
	HTML and HTTP
	Web 2.0

	Whatever Happened to IPv5?
	Let’s Eliminate the Middleman
	Why Am I the One Writing This Book? Just Who Do I Think I Am, Anyway?
	Summary

	Chapter 2: History of Computer Networks Up to IPv4
	Real Computer Networking
	Ethernet and Token Ring
	Network Software

	The Beginnings of the Internet (ARPANET)
	UNIX
	Open System Interconnection (OSI)
	Email Standardization
	Evolution of the World Wide Web

	And That Brings Us Up to Today
	Summary and a Look Ahead

	Chapter 3: Review of IPv4
	Network Hardware
	RFCs: The Internet Standards Process
	IPv4
	Four-Layer (“DoD”) IPv4 Architectural Model

	IPv4: The Internet Protocol, Version 4
	Relevant Standards for IPv4
	IPv4 Packet Header Structure
	IPv4 Addressing Model
	Network Ports
	IPv4 Subnetting
	MAC Addresses
	Mapping from IPv4 Addresses to Link Layer Addresses
	Address Resolution Protocol (ARP)
	Inverse ARP (InARP)

	Types of IPv4 Packet Transmissions
	IPv4 Broadcast
	IPv4 Multicast
	Relevant Standards for IPv4 Multicast
	Internet Group Management Protocol (IGMP)
	Protocol Independent Multicast (PIM)

	ICMPv4: Internet Control Message Protocol for IPv4
	IPv4 Routing
	Relevant Standard for IPv4 Routing

	Network Address Translation (NAT)
	Relevant Standard for IPv4 NAT
	Connection Without NAT (Inside the LAN)
	Connection Through Hide-Mode NAT
	BINAT (One-to-One NAT)
	Ramifications of Using NAT

	Basic IPv4 Routing
	TCP: The Transmission Control Protocol
	Standards Relevant to TCP
	TCP Packet Header

	UDP: The User Datagram Protocol
	Standards Relevant to UDP
	UDP Packet Header

	DHCPv4: Dynamic Host Configuration Protocol for IPv4
	The DHCPv4
	Useful Commands Related to DHCPv4
	IPv4 Network Configuration

	Manual Network Configuration
	Auto Network Configuration Using DHCPv4
	Summary

	Chapter 4: The Depletion of the IPv4 Address Space
	OECD IPv6 Report, March 2008
	OECD Follow-Up Report on IPv6, April 2010
	OECD Second Follow-Up Report on IPv6, November 2014
	How IPv4 Addresses Were Allocated in the Early Days
	Original “Classful” Allocation Blocks
	Classless Inter-Domain Routing (CIDR)

	Problems Introduced by Customer Premises Equipment NAT (CPE NAT)
	Implementing NAT at the Carrier: Carrier-Grade NAT (CGN)
	Summary

	Chapter 5: IPv6 Deployment Progress
	Google Statistics
	Predictions for Future Years
	Summary

	Chapter 6: IPv6 Core Protocols
	Network Hardware
	RFCs: A Whole Raft of New Standards for IPv6
	IPv6
	Four-Layer IPv6 Architectural Model
	Link Layer Issues with IPv6

	IPv6: The Internet Protocol, Version 6
	IPv6 Packet Header Structure
	IPv6 Addressing Model
	IPv6 Packet Transmission Types
	IPv6 Address Scopes
	IPv6 Address Types
	Automatically Generated Interface Identifiers Based on EUI-64
	Randomized Interface Identifiers
	IPv6 Address Allocation
	Subnetting in IPv6
	Link Layer Addresses

	Neighbor Discovery (ND) Protocol
	Router Discovery
	Address Resolution (Mapping IPv6 Addresses to MAC Addresses)
	Prefix Discovery
	Duplicate Address Detection (DAD)
	Stateless Address Autoconfiguration (SLAAC)
	Next-Hop Determination
	Neighbor Unreachability Detection (NUD)
	Redirect

	SEcure Network Discovery (SEND)
	Types of IPv6 Packet Transmission
	IPv6 Broadcast
	IPv6 Multicast

	ICMPv6: Internet Control Message Protocol for IPv6
	IPv6 Routing
	Network Address Translation
	TCP: The Transmission Control Protocol in IPv6
	TCP Packet Header

	UDP: The User Datagram Protocol in IPv6
	DHCPv6: Dynamic Host Configuration Protocol for IPv6
	Relevant RFCs for DHCPv6
	The DHCPv6
	Useful Commands Related to DHCPv6

	IPv6 Network Configuration
	Manual Network Configuration for IPv6-Only
	Auto Network Configuration Using Manually Specified (Static) IPv6 Address

	Summary

	Chapter 7: IPsec and IKEv2
	Internet Protocol Layer Security (IPsec)
	Relevant Standards for IPsec
	Security Association, Security Association Database, and Security Parameter Index
	IPsec Transport Mode and IPsec Tunnel Mode
	IPsec over IPv6
	IPsec in Multicast Networks
	Using IPsec to Secure L2TP Connections

	Internet Key Exchange (IKE)
	Internet Key Exchange Version 2 (IKEv2)
	Kerberized Internet Negotiation of Keys: KINK

	Summary

	Chapter 8: Transition Mechanisms
	Relevant Standards for Transition Mechanisms
	Transition Mechanisms
	Co-existence (Dual Stack and Dual-Stack Lite)
	Tunneling
	Translation
	Proxies (Application Layer Gateways)

	Dual Stack
	Tunneling
	6in4 Tunneling
	6over4 Tunneling
	6to4 Tunneling
	Teredo
	6rd: IPv6 Rapid Deployment
	Intra-site Automatic Tunnel Addressing Protocol (ISATAP)

	Softwires (Includes Dual-Stack Lite, MAP-E, MAP-T, and 4in6)
	Relevant Standards for Softwires
	Dual-Stack Lite
	PET (Prefixing, Encapsulation, and Translation)

	Translation
	NAT64/DNS64
	IVI

	Preferred Network Implementation Going Forward: IPv6-Only
	Supporting IPv6 for Developers at Sixscape
	Summary

	Chapter 9: IPv6 on Mobile Devices
	Android
	iPhone
	What Are the Implications of This?
	Decentralized Messaging
	Summary

	Chapter 10: DNS
	How DNS Evolved
	Host Files
	Network Information Service (NIS)
	DNS Was Invented

	Domain Names
	Top-Level Domain Names
	Internationalized Domain Names

	NS Resolver
	DNS Server Configuration
	DNS Protocol
	DNS Resource Records
	DNS Servers and Zones
	Different Types of DNS Servers
	Authoritative DNS Servers
	Caching-Only Servers

	Client Access to DNS
	Recursive DNS Queries

	The Root DNS Servers
	MX and SRV Resource Records
	ENUM
	DNSSEC (Secure DNS)
	Summary

	Chapter 11: The Future of Messaging with No NAT
	Private IPv4 Addresses
	Public IPv4 Addresses
	Network Address Translation
	NAT Gateways Can Run Out of Port Numbers

	The Need for Centralized Servers in the IPv4+NAT Internet
	Carrier-Grade NAT (NAT444)
	Centralization on the IPv4 Internet
	But Doesn’t NAT “Protect” My Network?

	NAT Traversal: How Skype Fakes Incoming Connections
	What if Everyone Had Public Addresses?
	IPv6: The NAT-Less Internet
	VoIP and IPv6
	Skype
	WhatsApp
	Email over IPv6
	The Future of Messaging on the Third Internet
	5G: The Grand Convergence of the Internet and Telephony
	Summary

	Chapter 12: IPv6-Related Organizations
	Internet Governance Bodies
	Internet Corporation for Assigned Names and Numbers (ICANN)
	Internet Assigned Numbers Authority (IANA)
	Regional Internet Registries (RIRs)
	American Registry for Internet Numbers (ARIN): www.arin.net
	Réseaux IP Européens Network Coordination Centre (RIPE NCC): www.ripe.net
	Asia Pacific Network Information Center (APNIC): www.apnic.net
	Latin American and Caribbean Network Information Center (LACNIC): www.lacnic.net
	Africa Region (AfriNIC): www.afrinic.net

	The Number Resource Organization (NRO): www.nro.net
	Internet Architecture Board (IAB): www.iab.org
	Internet Engineering Task Force (IETF): www.ietf.org
	Internet Research Task Force (IRTF): www.irtf.org
	Internet Society (ISOC): www.isoc.org

	IPv6 Forum Groups
	Local IPv6 Forum Chapters
	IPv6 Ready Logo Program
	IPv6-Ready Product Testing and Certification
	IPv6-Enabled ISP and Website Certification

	Informal IPv6 Network Administration Certification
	WIDE Project, Japan
	Summary

	Chapter 13: IPv6 Projects
	Accompanying Website
	Hurricane Electric IPv6 Certification
	SixConf
	Conclusion

	Index

