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Foreword

On February 5, 1999, I was chartered by the original IETF IPv6 Task Force and the 

IPv6 Deployment Working Group led by Jim Bound to promote the global rollout of 

IPv6, the successor to the foundation protocol of most networks, including the global 

Internet. I established the IPv6 Forum (see https://ipv6forum.com) and many national 

councils and chapters in over 90 countries. I have organized and helped present 

many international IPv6 summits over the years. This is one of the most important 

developments in IT in our time.

I have known Larry (the author of this book) for almost two decades. He has 

presented at many of these summits and conferences, run websites explaining IPv6, 

certified many telco and network engineers with the IPv6 Forum training, and created 

some breakthrough products (such as the first DNS (Domain Name System) appliance 

that supported IPv6) and now is pioneering end-to-end direct secure messaging over 

IPv6, something that is not possible (at least at the global scale) with the IPv4 + NAT 

Internet (which I call the “InterNAT”).

We have identified a need for some 20 million network professionals to understand 

this new technology and created the curricula for several courses aimed at in-service 

professionals. Larry created courses based on these curricula and certified many telco, 

network, and government IT people with them in IPv6.

We also identified a need to certify network equipment and software as being 

compliant with the new IETF (Internet Engineering Task Force) standards for IPv6. We 

worked with the TAHI group of the WIDE project in Japan to create testing platforms 

to verify this compliance. Several testing centers have been deployed around the world 

and certified many products. Larry deployed and ran one of these in Cebu, Philippines, 

for many years. He also helped some gentlemen from the Indian government to help set 

up their own testing center. You can find out more about these programs at https://

ipv6ready.org.

In 2007, Larry released a free PDF book called The Second Internet, which we 

published on the IPv6 Forum website. In 2010 he updated that with many changes that 

happened in the previous three years. Some 500K people worldwide have downloaded 

these free books and discovered the amazing new world of IPv6.

https://ipv6forum.com
https://ipv6ready.org
https://ipv6ready.org
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We recognized Larry’s contributions to the adoption of IPv6 by inducting him into 

the “IPv6 Hall of Fame” in 2019.

Since then, Larry realized that ARPANET was really the “First Internet,” making 

the IPv4 version the “Second Internet” and the IPv6 version the “Third Internet.” He 

understood that this was not a minor change in one Application Layer protocol, such 

as HTTP 1.0 to HTTP 1.1, but a change that affected all application protocols. It is a true 

generational change, as sweeping as the change from ARPANET to the IPv4 Internet in 

1983. He has now updated his free PDF book The Second Internet to the present day, 

now that IPv6 is being rapidly deployed globally (many countries now have over 50% of 

their traffic over IPv6). We are pleased that Apress/Springer have seen fit to publish this 

version and make it available globally.

Welcome to the Third Internet!

Latif Ladid, President of the global IPv6 Forum

https://ipv6forum.com

foreword

https://ipv6forum.com
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Introduction

This book is the end result of many years’ effort. It covers a lot of territory, starting with 

the big picture of the evolution of the Internet, through three generations:

• First generation: ARPANET, 1969–1982, 8-bit addresses, host-to-host 

protocol

• Second generation: IPv4 era, 1983–2028?, 32-bit addresses, followed 

by NAT (Network Address Translation) and RFC (Request for 

Comments) 1918 private addresses

• Third generation: IPv6 era, 2014 (start of major deployment) to 

perhaps 2100?, 128-bit addresses, many major improvements from 

what we learned from IPv4

There are hundreds of RFCs (Internet standards) from the IETF (Internet 

Engineering Task Force) related to IPv6. This book serves as a guide to these RFCs, 

broken up into major subtopics including links to the actual standards (available free). 

The most important ones are highlighted. Hopefully this will help you find the ones most 

relevant to what you are trying to understand, without being overwhelmed by the total 

collection. I have tried to explain what the most important ones are about, but the real 

details are in the RFCs themselves.

To understand what is important about IPv6, I have presented a history of how 

IPv4 address depletion happened and where all those billions of addresses went. This 

approach also helps those who already know IPv4 to make the leap to IPv6 with “IPv6 is 

like IPv4 with the following improvements and extensions.” I also explain the problems 

we are now facing with IPv4 since we are still using it 11 years after IANA (Internet 

Assigned Numbers Authority) ran out of public addresses. NAT was only ever supposed 

to be a temporary stopgap on the way to pure IPv6. It has made network architecture and 

software design far more complex than it should be. IPv6 allows a return to the simple 

monolithic IP address space of the early IPv4 Internet, with no need for NAT. IPv6 was 

based heavily on the hugely successful IPv4 design. It is IPv4 on steroids. IPv4 subnetting 

is very complicated, requiring many chapters or even an entire book to understand. IPv6 

subnetting is simplicity itself: all subnets are /64. Period.
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Many people think that the evolution of HTTP from 1.0 to 1.1 was a big deal. That 

was a minor change in one of the thousands of protocols in use on the Internet. A 

change in the Internet Layer (IPv4 to IPv6) affects every Application Layer protocol and 

will impact business models. Who will need an email account if we can all exchange 

email messages directly with each other, with no intermediary servers? DNS was okay 

for the IPv4 model with centralized servers, but we need something much better for 

billions of highly mobile nodes. The Web will continue to be around for some time, 

but IPv6 will make the evolution to true edge computing a reality – finally allowing us 

to take advantage of the incredible power of our computers and phones to run native 

applications that exchange data, instead of turning them into “dumb terminals” that only 

run web browsers.

I have tried to convey some of the amazing things that are now possible with the 

elimination of NAT, vast improvements in multicast, etc.:

• Any node (including phones) can now run servers, or do direct end- 

to- end connections, with no need for intermediary servers. Most 

snooping and hacking happen on intermediary nodes, which break 

TLS. S/MIME helps but is difficult for many users to deploy.

• Imagine being able to send emails and files and do chat and voice 

directly from one phone to another, with true end-to-end encryption 

and mutual strong authentication using client digital certificates – 

easy with IPv6 and PeerTLS.

• Since the first phones supported connections to the Internet, there 

were not enough public IP addresses for phones to get one, let alone 

a block (for hot spots). So they have had to use NAT, even double 

NAT (CGN). With IPv6 even phones can have public IP addresses and 

accept incoming connections (e.g., run servers).

• The United States, with 5% of the world’s population, wound up with 

41% of the public IPv4 addresses. Other countries were not amused. 

The IPv6 Internet is the first truly global Internet. Every country can 

have as many addresses as they can conceivably ever want. There are 

enough /48 blocks (each sufficient for the largest organization) for 

every human alive today to get over 5,000 of them. IP address scarcity 

is over. Even your phone can get 2 to the 64th addresses (an entire 

/64 block).

InTroduCTIon
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• With finally working multicast, we can do mass audio and video 

streaming on a practical basis – no more zillions of unicast 

connections (the YouTube model). This is as important as Ted 

Turner’s insight that a satellite is basically a really tall broadcast 

antenna.

We are at a major inflection point in IT, possibly the largest one since the first 

computers were sold, or the first networks were created. IPv4 is at end of life. The IETF 

even had a working group called “Sunset IPv4” that planned how to shut down IPv4 on 

the global backbone without major disruptions.

This book could only have been written by a “silverback” like me, who lived through 

the whole time and experienced the changes firsthand. I lived through the mainframe 

era, the minicomputer era, early timesharing systems, the personal computer era, and 

the growth and evolution of the Internet.

If you want (or have) a job in computer networking, computer security, or network 

software design, if you stick with IPv4, you are already obsolete. Adapt or die. The future 

is here. I hope this book will encourage you not only to move ahead with technology but 

also to understand how to do that.

InTroduCTIon
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CHAPTER 1

Introduction

 History of This Work and the Term “Third Internet”
This book is an update and expansion of my 2010 ebook, The Second Internet. That 

ebook has been available on the main website of the global IPv6 Forum (http://

ipv6forum.com) since 2010 with some 500,000 downloads worldwide. This book is 

actually still about the new Internet based on IPv6, but since 2010 I have realized that 

the ARPANET1 is not phase 1 of the First Internet; it IS the First Internet. That makes the 

Internet based on IPv4 (still what most people are using today) the real Second Internet, 

which makes the new Internet being created now, based on IPv6, the Third Internet.

One notable change since 2010 is that IPv6 is no longer just a Draft Proposed 

Standard. The Official IETF Standard for IPv6 has finally been released2 – RFC 82003: 

“Internet Protocol, Version 6 (IPv6) Specification,” July 2017 (STD 86). This replaces RFC 

2460 and several additions to it. So you need to get used to referring to RFC 8200 instead 

of RFC 2460!

The leap from the First Internet (ARPANET) to the Second Internet (IPv4 based) was 

clearly a generational change:

• The foundation protocol of the First Internet was usually referred 

to as NCP,4 but officially was called the “host- host”5 protocol. It was 

defined in a few RFCs. Many new RFCs (starting with RFC 7916 in 

1981) specified the new IPv4 and related protocols.

1 https://en.wikipedia.org/wiki/ARPANET
2 https://www.internetsociety.org/blog/2017/07/rfc-8200-ipv6-has-been-standardized/
3 https://tools.ietf.org/html/rfc8200
4 https://en.wikipedia.org/wiki/Network_Control_Program
5 https://tools.ietf.org/html/rfc714
6 https://tools.ietf.org/html/rfc791

© Lawrence E. Hughes 2022 
L. E. Hughes, Third Generation Internet Revealed, https://doi.org/10.1007/978-1-4842-8603-6_1

http://ipv6forum.com
http://ipv6forum.com
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https://en.wikipedia.org/wiki/Network_Control_Program
https://tools.ietf.org/html/rfc714
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https://www.internetsociety.org/blog/2017/07/rfc-8200-ipv6-has-been-standardized/
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• An IPv4-only node could not make a connection to, or exchange 

information with, an NCP-only node (and vice versa), without a 

complex gateway. The inability to interoperate often happens in 

generational changes. Translation between NCP and IPv4 was never 

accomplished.

• NCP had 8-bit addresses (max 28 or 256 addresses), while IPv4 has 

32-bit addresses (max 232 or 4.3 billion addresses). That is four times 

as many bits in each address as in NCP, but 224 (16.7 million) times as 

many addresses. Each additional bit doubles the number of addresses.

• The First Internet lasted from 1969 until 1982 with significant growth 

and evolution during those years. The Second Internet began 

operation on January 1, 1983, grew extremely rapidly, and is still 

running, although it is developing more and more serious issues 

related to exhaustion of the IPv4 public address space.7

• While applications such as email, remote terminal emulation, and 

file transfer existed in the First Internet, all such apps had to be 

rewritten (significantly) to work over IPv4.

• Engineers familiar only with NCP had to go back to the books (and 

training classes) to master the new IPv4. All software and hardware 

devices that worked with NCP had to be rewritten to work with IPv4. 

There was no “dual-stack” period since that transition was done via 

a “flag day” (only NCP before January 1, 1983, only IPv4 from then 

on). There were many serious problems with doing such an abrupt 

transition, like worldwide email broke for several months. The IETF 

wisely decided to do a more gradual transition from IPv4 to IPv6.

• NCP node addresses were represented as a single one- to three-digit 

decimal number (e.g., “10”), while IPv4 addresses were represented 

using dotted decimal (e.g., “123.45.67.89”), which at the time looked 

very alien to NCP users.

7 https://en.wikipedia.org/wiki/IPv4_address_exhaustion
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Figure 1-1. Map of the entire First Internet circa 1982
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Figure 1-2. One proposed map of the Second Internet, 2015

The leap from the Second Internet to the Third Internet is of the same magnitude:

• The foundation protocol of the Second Internet (IPv4) was defined 

in several RFCs. Many new RFCs (starting with RFC 1881 in 1995) 

specified the new IPv6 and related protocols.

• An IPv6-only node cannot make a connection to, or exchange 

information with, an IPv4-only node (and vice versa), without a 

complex gateway. One solution is “dual stack,” where every node has 

Chapter 1  IntroduCtIon
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both IPv4 and IPv6 and hence can make connections to both the 

Second and Third Internets. Another is to run only IPv6 internally 

and provide access to external legacy (IPv4-only) nodes via a NAT648 

gateway.

• IPv4 has 32-bit addresses (max 4.3 billion values), while IPv6 has 

128-bit addresses (max 340 trillion, trillion, trillion values). This is 

again four times as many bits as in IPv4, but now 296 times as many 

addresses as in IPv4. If you think of the IPv4 address space as the size 

of a basketball, the IPv6 address space is a sphere that would not only 

include the entire sun but go most of the way out to Venus. That’s a 

big ball.

• The Second Internet began operation in 1983 and will probably be 

mostly phased out9 by 2028 or so. There are no more public addresses 

for the Second Internet to grow with – all growth of the Second 

Internet today is in private Internets (networks that use RFC 1918 

private addresses and are not directly connected to the public IPv4 

Internet). Each of these private Internets is hidden behind an existing 

public IPv4 address with NAT10 (or even behind multiple layers 

of NAT11).

• While applications such as email, remote terminal emulation, and 

file transfer existed in the Second Internet, most applications (aside 

from web scripts) must be rewritten to at least some extent to work 

over IPv6 (or, more commonly, over both IPv4 and IPv6). Since IPv6 

has no NAT but ample global addresses, there are entirely new types 

of connections possible, such as servers on phones or end-to-end 

direct (e.g., connecting directly from my phone to yours, with no 

intermediary server).

8 https://en.wikipedia.org/wiki/NAT64
9 https://datatracker.ietf.org/wg/sunset4/about/
10 https://en.wikipedia.org/wiki/Network_address_translation
11 https://en.wikipedia.org/wiki/Carrier-grade_NAT
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• Engineers familiar only with IPv4 are having to go back to the 

books and training classes to master the new IPv6. Engineers and 

developers who don’t learn IPv6 will find it more and more difficult 

to remain employed, like NetWare engineers experienced once 

the transition to TCP/IP (Transmission Control Protocol/ Internet 

Protocol)–based networks took place. If you know IPv4 today, this 

book contains enough technical detail on IPv6 to get you well along 

your way to mastering IPv6. I have helped many senior network and 

telco engineers make the leap to IPv6 as a gold-certified IPv6 Forum 

trainer.

• IPv4 addresses were represented using dotted decimal notation (e.g., 

“123.45.67.89”), while IPv6 addresses are represented with what I call 

coloned hex notation (e.g., “2001:db8:ed3a:1000::2:1”), which looks 

very strange indeed to IPv4 engineers.

 Why IPv6 Is Important
The Second Internet (aka the Legacy Internet) is now 36 years old. Think about what 

kind of CPU, amount of RAM, and which operating system you were using in 1983 – 

probably a Z80 8-bit CPU with 64 kilobytes of RAM and CPM/80 or, if you were a 

businessman, an 8088 “16-bit” CPU and MSDOS 1.0. If you were really lucky, you 

might have had an expensive hard disk drive with a massive 10 megabytes of storage. 

What, many of you reading this weren’t even alive then? Ask your father what personal 

computing was like in 1983. I’ve been building, programming, and applying personal 

computers since my Altair 8800 in 1975. Hard to realize that is 44 years ago. Since 1983, 

network speeds have increased from 10 Mbps to 100 Gbps (10,000-fold increase). Access 

from home may have been 1200 baud (1.2 kbps) then, but 100 Mbps to 1 Gbps today. 

Amazingly we are still using essentially the same Internet Protocol. Think it’s about time 

for an upgrade?

The Second Internet has impacted the lives of billions of people. It has led to 

unprecedented advances in computing, communications, collaboration, research, and 

entertainment (not to mention time-wasting, dating, gossiping, and even less savory 

activities). The Internet is now understood to be highly strategic in every modern 

country’s economy. There are now people claiming that access to the Internet is a 

Chapter 1  IntroduCtIon
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“human right.”12 It is difficult to conceive of a country that could exist without it. Many 

enormous companies (such as Google) would not have been possible (or even needed) 

without it. Staggering amounts of wealth have been created (and consumed) by it. It 

made “snail mail” (paper mail physically delivered) follow the Pony Express into oblivion 

(amazingly, governments everywhere are still trying to keep post offices going, even 

though most of them lose gigantic amounts of money every year and they mostly only 

deliver advertising circulars). The number of emails sent daily is at least four times the 

number of first-class mails sent annually (in the United States).

Estimates are that there are about 26 billion nodes13 (computers, servers, or other 

network devices) connected to the Internet as of 2019. Neat trick for a protocol with only 

4.3 billion theoretically possible unique addresses, eh?

But wait. There’s more.
If you think that’s impressive, wait until you see what its rapidly approaching 

successor, the Third Internet (made possible by IPv6), will be. One estimate (same link 

as earlier) predicts some 75 billion nodes by 2025. Entirely new and far more flexible 

communication and connectivity paradigms are coming that will make email and texting 

seem quaint (e.g., 5G14). Major areas of the economy – such as telephony, entertainment, 

and almost all consumer electronic devices (MP3 players, TVs, radios) – will be heavily 

impacted or even collapse into the Third Internet as just more network applications (like 

email and web did in the First and Second Internets). The Second Internet (the one you 

are likely using today, based on IPv4) that you think is so pervasive and so cool is tiny 

compared to the potential size of the Third Internet. One of the popular terms being 

used to describe it is pervasive computing.15 That means it is going to be everywhere, even 

inside your body (embedded sensors communicating via a Personal Area Network (PAN) 

using your phone as a relay to the Third Internet).

Flash! The Second Internet is broken!

Most importantly, in the process of keeping IPv4 around way too long, we’ve 

already broken the Second Internet badly with something called NAT16 (Network 

Address Translation – much more on this later). NAT has turned the Internet into a 

12 https://gizmodo.com/internet-access-is-now-a-basic-human-right-1783081865
13 https://www.statista.com/statistics/471264/
iot-number-of-connected-devices-worldwide/
14 https://en.wikipedia.org/wiki/5G
15 https://www.computersciencedegreehub.com/faq/what-is-pervasive-computing/
16 https://en.wikipedia.org/wiki/Network_address_translation
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one-way channel, introduced many major security issues, and is impeding progress 

on newer applications like Voice over Internet Protocol (VoIP) and Internet Protocol 

Television (IPTV).

NAT has fragmented the old monolithic pre-1995 Second Internet into millions 

of private Internets, each hiding behind one public IPv4 address. You can easily make 

outgoing connections from your node to servers like www.facebook.com, but it is difficult 

or impossible for other people to make connections to your node. NAT has divided the 

world into a few producers (like www.facebook.com) and millions of consumers (like 

you). You can post some content to their sites, but they own the sites and have complete 

control over what you can post and can withdraw your right to post at any time, for 

any reason.

In the Third Internet, anyone can be a prosumer (producer and consumer) of 

content. You will be able to run any server or even a global TV network from your node. 

You will be able to connect directly from your node to anyone else’s node in the world 

(assuming no firewalls block that connection). There is no shortage of public addresses – 

we can all be first-class netizens. NAT was a necessary evil to keep the Internet on life 

support until the Third Internet was ready to be rolled out. The transition to IPv6 was 

supposed to be finished by 2010. NAT has now served its purpose and, like crutches 

when your broken leg has healed, should be cast aside. Its only purpose was to extend 

the life of the IPv4 address space while the engineers were getting IPv6 ready. IPv6 IS 

ready and in rapid adoption mode globally now. This book should be a “wake-up call” 

for everyone using the Internet.

Using a “horses and cars” metaphor, there is no reason to wait for the last horse 

to die (the last IPv4 node to be shut down) before we start driving cars (deploy IPv6). 

Another aspect of that is we no longer need horse doctors; we need car mechanics! Good 

news, everyone! IPv6 is ready for prime time today. My home is already fully migrated to 

dual stack (IPv4 + IPv6). It has been for over a decade.

 Wait. How Can the Internet Grow to 75 Billion Nodes?
If there are only about 7.5 billion people alive, how can the Internet possibly grow to 75 

billion nodes? The key here is to understand that the Third Internet (based on IPv6) 

is the Internet of Things.17 A human sitting at a keyboard will be a relatively rare thing. 

17 https://en.wikipedia.org/wiki/Internet_of_things
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However, IPv6 will make it far easier and cheaper to bring the next billion humans 

online using IPv6’s advanced features and almost unlimited address space. Many Asian 

countries and companies (who routinely have 5- to 10-year horizons in their planning) 

already consider IPv6 to be one of the most strategic and important technologies 

anywhere and are investing heavily in deploying IPv6. 2018 was the tipping point18 for 

IPv6. Adoption curves are starting to climb at steep rates reminiscent of the adoption of 

the World Wide Web back in the mid-1990s. By 2018, more than 50% of all global traffic 

was over IPv6 in many countries. IPv4 will be in decline, with worsening service and 

fewer and fewer public addresses, at any price. Also, today, many people have multiple 

devices connected to the Internet. In Singapore, 23% of the people have five or more 

nodes with Internet connectivity.

 Why Was 2011 a Significant Year for the Second Internet?
There is an entire chapter in this book on the depletion of the IPv4 address space. What 

this means (in English) is that we are running out of public IPv4 addresses for the Second 

Internet. On February 3, 2011, there was a very important event in the history of the Internet. 

I woke my kids up to watch it live-streamed over the Internet, so they could tell their kids 

that they saw the beginning of the end of the IPv4 Internet. IANA allocated the final five 

unallocated blocks of IPv4 public addresses to the five RIRs (Regional Internet Registries).

In the mid-1990s, the folks in charge of the Internet realized we would soon run out 

of public IPv4 addresses and only managed to keep the Internet going through some 

clever tricks (NAT and private addresses), kind of like using private extension numbers 

in a company PBX phone system. However, even with this trick (which is now causing 

major problems), we have pretty much run out for good. All the groups that oversee 

the Internet – like the Internet Assigned Numbers Authority (IANA19), the Internet 

Corporation for Assigned Names and Numbers (ICANN20), the Internet Society (ISOC21), 

the Internet Engineering Task Force (IETF22), and the Regional Internet Registries 

(RIRs23) – have been saying for some time that the world has to migrate to IPv6 now. 

18 https://en.wikipedia.org/wiki/Tipping_point_(sociology)
19 https://www.iana.org/
20 https://en.wikipedia.org/wiki/ICANN
21 https://en.wikipedia.org/wiki/Internet_Society
22 https://en.wikipedia.org/wiki/Internet_Engineering_Task_Force
23 https://en.wikipedia.org/wiki/Regional_Internet_registry

Chapter 1  IntroduCtIon

https://www.iana.org/
https://en.wikipedia.org/wiki/ICANN
https://en.wikipedia.org/wiki/Internet_Society
https://en.wikipedia.org/wiki/Internet_Engineering_Task_Force
https://en.wikipedia.org/wiki/Regional_Internet_registry
https://en.wikipedia.org/wiki/Tipping_point_(sociology)
https://www.iana.org/
https://en.wikipedia.org/wiki/ICANN
https://en.wikipedia.org/wiki/Internet_Society
https://en.wikipedia.org/wiki/Internet_Engineering_Task_Force
https://en.wikipedia.org/wiki/Regional_Internet_registry


10

The five Regional Internet Registries are ARIN,24 RIPE NCC,25 APNIC,26 LACNIC,27 and 

AfriNIC.28 They should know. They are the ones that manage and allocate public IP 

addresses to telcos, ISPs (Internet Service Providers), and cloud providers. They know 

that the IPv4 barrel is pretty much empty. We’ve got to provide tens of billions more 

globally unique Internet addresses, which has some far-reaching consequences. There is 

no additional source of IPv4 addresses, so these will have to be IPv6 addresses.

 An Analogy: The Amazing Growing Telephone Number
When I was very young, my family’s telephone had a five-digit phone number (let’s 

say it was 5-4573). That covered only my small town (about 10,000 people at the time). 

As the number of phones (and hence unique phone numbers within my geographic 

region) grew, the telephone company had to increase the length of everyone’s phone 

number. Our number became 385-4573 (seven digits), enough for 107 (10 million) 

phone numbers. This was enough to give everyone in my part of Florida a unique 

number, and we could ask the nice long-distance operator to connect us to people in 

other areas when we wanted to talk with them. When the telcos introduced the miracle 

of Direct Distance Dialing, our phone number grew to ten digits by adding an area code: 

for example, (904) 385-4573. In theory, this could provide unique numbers to 1010 (10 

billion) customers. In practice some digit patterns cannot be used, so it is somewhat less 

than that, and today many people have multiple phone numbers (landline, cell phone, 

fax, modem, VoIP, etc.). Estimates are that the current supply of ten-digit numbers will 

last US subscribers at least 50 more years. Increases in the length of phone numbers 

may be an inconvenience to end users (and publishers of phone books), but the tricky 

problems are mostly in the big telephone company switches. Phone number lengths 

have been increased several times over the years, without leading to the collapse of 

civilization.

24 https://www.arin.net/
25 https://www.ripe.net/
26 https://www.apnic.net/
27 https://www.apnic.net/
28 https://afrinic.net/
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With 5G, numeric (aka E.16429) phone numbers are going away. In the future, your 

“phone number” will look like sip:lhughes@sixscape.com. There are an essentially 

unlimited number of SIP URIs (Uniform Resource Identifiers).30 They are also 

conveniently organized into the same hierarchy used for email and web.

At the top (IANA) level, the final five unallocated blocks of IPv4 public addresses 

(16.7 million each) were given out to the five Regional Internet Registries31 on February 

3, 2011.32 Since that date, if the RIRs asked for additional blocks of IPv4 addresses, IANA 

would tell them, “Sorry. The cupboard is bare.” The RIRs had enough on hand to last a 

while, but those are gone now (except for Africa). I once bought some addresses from 

APNIC as a member and reserved a “/22” block of IPv4 addresses (a little over 1000 of 

the precious, and increasingly scarce, addresses for the Second Internet). These cost me 

about 1000 USD per year, but I could have used those for many things. You can think of 

this as staking out some of the last remaining lots in a virtual Oklahoma Land Rush. At 

the same time, I got my very own “/32” block of shiny new IPv6 addresses. You can think 

of this as getting an enormous spread of prime real estate in the virtual New World of 

the Third Internet. A few years ago, I got tired of paying the charges and returned those 

blocks to APNIC. I now have one public IPv4 at home, which I had to pay $50 for when 

I signed up with my current ISP and can keep so long as I have service with them (very 

effective marketing – if I gave this one up, it is unlikely I would ever get another).

There is a flourishing “gray market” for IPv4 addresses today. Going rate is about $16 

per public IPv4. That price will go up until IPv6 is widely deployed, at which point that 

price will drop to zero quickly.

 So Just What Is It That We Are Running Out Of?
There is a great deal of confusion and misunderstanding about this issue, as important 

as it is. Many people think that an “Internet address” is something like www.ipv6.

org. That is not an Internet address; that is a domain-qualified symbolic nodename. 

That is an important part of a URI (Uniform Resource Identifier), which adds things 

such as a protocol designator (e.g., http:, mailto:, or sip:), possibly a nonstandard port 

number (e.g., “:8080”), and often a file path (e.g., “/files/index.html”). There are still a 

29 https://en.wikipedia.org/wiki/E.164
30 https://en.wikipedia.org/wiki/SIP_URI_scheme
31 https://en.wikipedia.org/wiki/Regional_Internet_registry
32 https://www.nro.net/icann-nro-live-stream/
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staggering number of possible domain-qualified nodenames that are easy to remember, 

more than could ever be used in the next hundred years. So just what is it that we are 

running out of?

The nodenames that you (and most humans) use to specify a particular node on the 

Internet, like www.ipv6.org, are made possible by something called the Domain Name 

System (DNS33). Those nodenames are not used in the actual packets as source and 

destination addresses (see the section on the IPv4 addressing model for the gory details). 

The addresses used in the packets in the Second Internet are 32-bit binary numbers. 

These are usually represented for us slow and stupid humans in dotted decimal notation 

like 123.45.67.89. With a 32-bit address, there are 232 (about 4.3 billion) distinct values. 

When you use a symbolic nodename (known technically as a fully qualified domain 

name, or FQDN) in an application, that application sends it to a DNS server, which 

returns the numeric IP address associated with it. That’s the address that is used in 

packets on the wire, for routing the packet to its destination.

The DNS nodenames are like the names of people you call; the IP addresses are like 

their phone numbers. DNS is like an online telephone book that looks up the “phone 

number” (IP address) for “people” (nodes) you want to “call” (connect to). Did you know 

that you can surf to an IP address? Try entering the URL http://15.73.4.75. That’s a 

whole lot harder to remember than www.hp.com, which is why DNS was invented. It’s 

these 32-bit numeric addresses (that most people never see) that we are running out 

of. The good news is that you can keep typing www.hp.com and DNS will return both the 

old-style 32-bit IPv4 address and a new-style 128-bit IPv6 address, which will be put into 

the network packets. Given the choice, your applications will prefer to use the new IPv6 

address. You will hardly notice the difference unless you are a network engineer or a 

network software developer, except there’s going to be a whole bunch of cool new stuff 

to do and new ways of doing old things. Plus, the Internet is going to work better than it 

ever has before.

Can you imagine trying to use telephones today with five-digit telephone numbers? 

In a few years, that’s what IPv4 is going to feel like. I’ve been using IPv6 for over a decade, 

and IPv4 already looks antiquated to me. It’s amazing we were able to build the current 

Second Internet with something so primitive and limited. I’m creating new apps for IPv6 

already.

33 https://en.wikipedia.org/wiki/Domain_Name_System
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 But You Said There Were 4.3 Billion IPv4 Addresses?
There are 26 billion nodes connected to the Second Internet, but only 4.3 billion IPv4 

addresses? How does THAT work? Well, there are probably around 3 billion usable 

IPv4 public addresses (and essentially no new ones to allocate, except in very specific 

circumstances, like for IPv6 migration). The bulk of those nodes are not on the public 

IPv4 Internet, but in private Internets hiding behind NAT gateways. Pretty much all 

new nodes being added (like all those cell phones that can connect to the Internet) 

are in private Internets. There is no real shortage of addresses for private Internets. In 

theory, every public address could have as many as 16 million nodes (the number of 

possible nodes in the 10/8 private subnet) behind it. In practice a single NAT gateway 

can’t handle anywhere near that many nodes, but there can still be hundreds or even 

thousands of nodes in each private Internet. The problem is that nodes in private 

Internets can’t accept incoming connections, except via NAT traversal34 (which 

introduces many security issues). NAT also breaks a lot of important protocols, like 

VoIP and IPsec. NAT was only ever meant as a temporary stopgap measure during the 

transition to IPv6. A lot of people today (including telcos and ISPs) seem to think we can 

just go on using IPv4 with NAT forever. We can’t.
How did we get into this situation? Well, when the Second Internet was being 

launched, there were about 200 nodes on the First Internet, and 4.3 billion looked a lot 

like “infinity” to the people involved. So giant chunks of addresses were generously given 

out to early adopter organizations. For example, MIT and HP were given “class A” blocks 

of addresses (about 16.7 million addresses each, or 1/256 of the total address space). 

Smaller organizations were given “class B” blocks of addresses (each having about 

65,535 addresses). Most of these organizations are not using anywhere near all those 

addresses, but they have only rarely been willing to turn them back in to be reallocated 

to newcomers. As detailed in the Organisation for Economic Co-operation and 

Development (OECD) study on IPv4 address space depletion and migration to IPv6, it is 

very difficult and time-consuming to recover these “lost” addresses. Also, some blocks of 

IPv4 addresses were used for things like multicast (“class D”), experimental use (“class 

E”), and other purposes like addresses for private Internets (RFC 191835).

We are getting more efficient in our allocation of blocks of IPv4 addresses, but even 

with every trick we know, they are all gone now at the top (IANA) level and four of 

34 https://en.wikipedia.org/wiki/NAT_traversal
35 https://tools.ietf.org/html/rfc1918
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the five RIRs (ARIN, APNIC, RIPE, and LACNIC). There are something like 1.5 billion 

smartphones being sold each year (and this doesn’t even count other devices that might 

need addresses). There may be tens of billions of IoT nodes. How do we connect all 

these? This can only be done by going to longer IP addresses (hence, a larger address 

space). This is one of the main things that IPv6 is about.

 Is IPv6 Just an Asian Thing?
Some time ago, I heard some comments from US networking professionals and 

venture capitalists that IPv6 was an “Asian thing,” something that is of little interest 

or concern to Americans. This shows an unusually provincial view of an extremely 

serious situation. This attitude was only partly due to the inequitable distribution of 

addresses for the Second Internet (there are over six IPv4 public addresses per American 

citizen, compared with only about 0.28 per person for the rest of the world). It has a lot 

more to do with a lack of knowledge of how certain parts of the Second Internet really 

work, compounded by a limited time horizon compared with Asian businessmen, 

who routinely plan 5–10 years ahead. American business schools teach that nothing is 

important beyond the next quarter’s numbers. The depletion of IPv4 addresses is already 

here. Some American businessmen are now panicking (“Why didn’t you warn us about 

this?”).

Since 2010, US mobile telephone service providers have embraced IPv6 

enthusiastically, more so than other regions or industries. They realized they could 

deploy only IPv6 for a far lower cost than trying to keep IPv4 alive one more year. Also, it 

was becoming a challenge to knit together multiple /8 subnets (the largest you can create 

with IPv4 private addresses), each of which is 16.7M addresses. Many telcos have far 

more than 16.7M customers. With IPv6 there is no such problem. Now that all Android 

phones include 464XLAT,36 even legacy IPv4-only mobile apps work just fine. On iOS, 

Apple requires that apps work in an IPv6-only environment before they are approved for 

the App Store.

Any country or organization that (for whatever reason) doesn’t migrate to IPv6 

is going to still be “riding horses” while the rest of us are zipping around in these 

newfangled “cars.” When I wrote the 2010 version of this book, I was having nightmares 

about the United States being just as reluctant to go to IPv6 as they were to adopt the 

36 https://sites.google.com/site/tmoipv6/464xlat
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metric system (the United States is the only industrialized country not to have adopted 

the metric system, and I doubt they ever will). They could have decided to stay with IPv4. 

If they had, it would have become increasingly difficult for them to connect to non- 

US websites or for people in other countries to connect to US websites. It would have 

impacted all telephone calls between the United States and anywhere else in the world. 

It would have made IT products designed for the US market of little interest outside of 

the United States (kind of like automobiles that can’t be maintained with metric tools). 

This would have isolated the United States even further and essentially leave leadership 

in Information Technology up for grabs. Japan, China, and South Korea are quite serious 

about grabbing that leadership, and they are well along their way to accomplishing this, 

by investing heavily in IPv6 since the late 1990s. Since then, America has finally “gotten 

religion” about IPv6, especially in mobile telephone service providers where IPv6 is 

approaching 100%.

Being good engineers, while the IETF has the “streets dug up” increasing the size 

of IP addresses, they fixed and enhanced many of the aspects of IPv4 (QoS, multicast, 

routing, etc.) that weren’t done quite as well as they might have been (who could have 

envisioned streaming video 34 years ago?). IPv6 is not just bigger addresses. It’s a whole 

new and remarkably robust platform on which to build the Third Internet.

 So Exactly What Is This “Third Internet”?
Most things in computer technology evolve through various releases or generations, with 

significant new features and capabilities in the newer generations, for example, 2G, 3G, 

and 4G cell phones. The Internet is no exception. The remarkable thing, though, is that 

the Second Internet has lasted for 36 years already. The third generation has been quietly 

emerging for some time and is now well underway. 5G phones will be mostly based on 

IPv6. There are many technology trends going on right now, and some of them have 

been hyped heavily in the press. Some of them sound a lot like they might be the next 

generation of the Internet. Let’s see if we can narrow down what I mean by “the Third 

Internet” by discussing some of the things that it is not.
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 Is It the Next-Generation Network (NGN) That Telcos 
Talk About?
Telcos around the world have been moving toward something they call NGN37 for some 

time. Is that the same thing as the Third Internet? Well, there is certainly a lot of overlap, 

but, no, NGN is something quite different.

Historically, telephone networks have been based on a variety of technologies, 

mostly circuit switched, with call setup handled by SS738 (Signaling System 7). The core of 

the networks might be digital, but almost the entire last mile (the part of the telco system 

reaching from the local telco office into your homes and businesses) is still analog today. 

There was some effort at upgrading this last mile to digital with ISDN39 (Integrated 

Services Digital Networks), but some terrible decisions regarding tariffs (the cost of 

services) pretty much killed ISDN in many countries, including the United States.

The ITU40 (International Telecommunication Union), an agency of the United 

Nations that has historically overseen telephone systems worldwide, defines NGN as 

packet-switched networks able to provide services, including telecommunications, 

over broadband, with Quality of Service (QoS)–enabled transport technologies, and 

in which service-related functions are independent from underlying transport-related 

technologies. It offers unrestricted access by users to different telecommunication 

service providers. It supports generalized mobility, which will allow consistent and 

ubiquitous service to users.

In practice, telco NGN has three main aspects:

• In telco core networks, there is a consolidation (or convergence) of 

legacy transport networks based on X.25 and Frame Relay into the 

data networks based on TCP/IP (some still using IPv4, but more 

and more core networks are IPv6 today). It also involves moving 

from circuit-switched (mostly analog) voice technology (the Public 

Switched Telephone Network, or PSTN41) to Voice over Internet 

Protocol (VoIP42). So far, the move to VoIP is mostly internal to the 

37 https://en.wikipedia.org/wiki/Next-generation_network
38 https://en.wikipedia.org/wiki/Signalling_System_No._7
39 https://en.wikipedia.org/wiki/Integrated_Services_Digital_Network
40 https://en.wikipedia.org/wiki/International_Telecommunication_Union
41 https://en.wikipedia.org/wiki/Public_switched_telephone_network
42 https://en.wikipedia.org/wiki/Voice_over_IP
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telcos. What is in your house and company is good old POTS43 (Plain 

Old Telephone Service).

• In the “last mile,” NGN involves migration from legacy split voice and 

data networks to Digital Subscriber Line (DSL), making it possible to 

finally remove the legacy voice switching infrastructure. Today, more 

and more telcos are running FTTH44 (Fiber to the Home), which is of 

course digital all the way.

• In cable access networks, NGN involves migration of constant bit 

rate voice to Packet Cable standards that provide VoIP and Session 

Initiation Protocol (SIP) services. These are provided over DOCSIS45 

(Data Over Cable Service Interface Specification) as the cable data 

layer standard. DOCSIS 3.0 does include good support for IPv6, 

though it requires major upgrades to existing infrastructure. There is 

also a “DOCSIS 2.0 + IPv6” standard, which supports IPv6 even over 

the older DOCSIS 2.0 framework, typically requiring only a firmware 

upgrade in equipment. That will likely get rolled out before DOCSIS 

3.0 can be. Especially in the United States, DOCSIS 3.0 is finally being 

widely deployed, with speeds even above 1 Gbps.

A major part of NGN is IMS46 (the IP Multimedia Subsystem). To understand IMS, 

I highly recommend the book The 3G IP Multimedia Subsystem (IMS): Merging the 

Internet and the Cellular Worlds, by Gonzalo Camarillo and Miguel A. Garcia-Martin. 

This was published by John Wiley & Sons, in 2004. This book says that IMS (which is 

the future of all telephony) was designed to work only over IPv6, using DHCPv6, DNS 

over IPv6, E.164 Number Mapping (ENUM), and Session Initiation Protocol/Real-Time 

Transport Protocol (SIP/RTP) over IPv6. IMS is so IPv6 specific that some of the primary 

concerns are how legacy IPv4-only SIP-based user agents (hardphones and softphones) 

will communicate with the IPv6 core. One approach is to use dual-stack SIP proxies that 

can in effect translate between SIP over IPv4 and SIP over IPv6. Translation of the media 

component (RTP) is a bit trickier and will be handled by Network Address Translation 

between IPv4 and IPv6. Newer IPv6-compliant user agents will be able to interoperate 

43 https://en.wikipedia.org/wiki/Plain_old_telephone_service
44 https://en.wikipedia.org/wiki/Fiber_to_the_x
45 https://en.wikipedia.org/wiki/DOCSIS
46 https://en.wikipedia.org/wiki/IP_Multimedia_Subsystem
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directly with the IMS core, without any gateways, and solve many problems. They 

are beginning to appear. One example is some dual-stack IP phones from the Korean 

company Moimstone.47

The first “Internet over telco wireless service” in early 2G networks was WAP48 

(Wireless Application Protocol). WAP 1.0 was released in April 1998. WAP 1.1 followed 

in 1999, followed by WAP 1.2 in June 2000. The Short Message System (SMS49) was 

introduced, but only IPv4 was supported. Speed and capabilities were somewhat 

underwhelming.

2.5G systems improved on WAP with GPRS50 (General Packet Radio Service), with 

theoretical data rates of 56–114 Kbps. GPRS included “always on” Internet access, 

Multimedia Messaging Service (MMS51), and point-to-point service. It increased the 

speed of SMS to about 30 messages/second. Even Filipinos can’t text that fast. As with 

WAP, only IPv4 was supported.

2.75G systems introduced EDGE52 (Enhanced Data Rates for GSM Evolution), also 

known as EGPRS (Enhanced GPRS). EDGE service provided up to 2 Mbps to a stationary 

or walking user and 348 Kbps in a moving vehicle. IPv6 service has been demonstrated 

over EDGE but is not widely deployed.

3G systems introduced HSPA53 (High-Speed Packet Access), which consisted of two 

protocols, HSDPA (High-Speed Downlink Packet Access) with theoretical speeds of up 

to 14 Mbps service and HSUPA (High-Speed Uplink Packet Access) with up to 5.8 Mbps 

service. Real performance was again somewhat lower, but better than with EDGE. HSPA 

had good support for IPv6.

The last gasp for 3G (sometimes called “3.9G”) is LTE54 (Long-Term Evolution). 

LTE is completely based on IP and was supposed to be based on IPv6. Early versions of 

the specification clearly described it with IPv6 mandatory and IPv4 support optional. 

It was later reworded to make most aspects “IPv4v6” (dual stack). The reality is mostly 

47 http://moimstone.com/eng/main.php
48 https://en.wikipedia.org/wiki/Wireless_Application_Protocol
49 https://en.wikipedia.org/wiki/SMS
50 https://en.wikipedia.org/wiki/General_Packet_Radio_Service
51 https://en.wikipedia.org/wiki/Multimedia_Messaging_Service
52 https://en.wikipedia.org/wiki/Enhanced_Data_Rates_for_GSM_Evolution
53 https://en.wikipedia.org/wiki/High_Speed_Packet_Access
54 https://en.wikipedia.org/wiki/LTE_(telecommunication)

Chapter 1  IntroduCtIon

http://moimstone.com/eng/main.php
https://en.wikipedia.org/wiki/Wireless_Application_Protocol
https://en.wikipedia.org/wiki/SMS
https://en.wikipedia.org/wiki/General_Packet_Radio_Service
https://en.wikipedia.org/wiki/Multimedia_Messaging_Service
https://en.wikipedia.org/wiki/Enhanced_Data_Rates_for_GSM_Evolution
https://en.wikipedia.org/wiki/High_Speed_Packet_Access
https://en.wikipedia.org/wiki/LTE_(telecommunication)
http://moimstone.com/eng/main.php
https://en.wikipedia.org/wiki/Wireless_Application_Protocol
https://en.wikipedia.org/wiki/SMS
https://en.wikipedia.org/wiki/General_Packet_Radio_Service
https://en.wikipedia.org/wiki/Multimedia_Messaging_Service
https://en.wikipedia.org/wiki/Enhanced_Data_Rates_for_GSM_Evolution
https://en.wikipedia.org/wiki/High_Speed_Packet_Access
https://en.wikipedia.org/wiki/LTE_(telecommunication)


19

just IPv4. 3G was still based on two parallel infrastructures (circuit switched and packet 

switched). LTE is packet switched only (“all IP”). There are a few deployments of LTE 

(some of which are described incorrectly as “4G”) around the world.

4G systems have been around for some time. These provide even higher-speed 

wireless transports. Originally 4G was supposed to be the big change to IP only, but 

IPv6 wasn’t widely enough deployed, and vendors wanted to sell the higher speed as 

something really different.

So 5G is now being deployed. This will use an all-IP infrastructure for both wired and 

wireless. The specification for 5G claims peak downlink rates of as much as 1 Gbps and 

uplink rates of several hundred Mbps. 5G requires a “flat” IP infrastructure (no NAT), 

which can only be accomplished with IPv6. IPv4 address space depletion happened 

some time ago, so IPv4 is not even an option this time around. IPTV55 is a key part of 5G, 

which requires fully functional multicast, scalable to very large customer bases. That also 

requires IPv6.

So clearly the telco’s NGN is moving more and more toward IPv6. Some deployments 

are still mostly IPv4. However, NGN is just as clearly not the Third Internet described in 

this book. You might say that NGN (once it reaches 5G) will be just another one of the 

major subsystems hosted on the Third Internet, peer to email, the Web, IPTV, etc. 5G 

is also called “the Grand Convergence,” referring to the long-awaited merging of “the 

Internet” and “telephony” into a single seamless network.

There will be much more to the Third Internet than just telephony, including most 

broadcast entertainment, exciting new possibilities for non-telephonic communication 

paradigms (fully decentralized instant messaging and peer-to-peer (P2P) collaboration), 

smart building sensor and control systems, and ubiquitous connectivity in essentially 

all consumer electronics, including MP3 players, electronic book readers, cameras, and 

personal health monitoring. It will also impact automotive design. See  www.car- to- car.

org56 for some exciting new concepts in “cooperative Intelligent Transport Systems” 

that depend heavily on IPv6 concepts such as Networks in Motion (NEMO) defined in 

Request for Comments (RFC) 396357 and ad hoc networks. In fact, only IPv6 is being used 

in their designs, although it is a slightly modified version of IPv6 that is missing some 

55 https://en.wikipedia.org/wiki/IPTV
56 http://www.car-to-car.org/
57 https://tools.ietf.org/html/rfc3963
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common functionality such as Duplicate Address Detection (DAD). Their modified IPv6 

runs on top of a new, somewhat unusual Link Layer called the C2C Communication 

Network, which itself is built on top of IEEE 802.11p,58 also known as Wireless Access in 

Vehicular Environments (WAVE).

 Is It Internet2 or National LambdaRail?
Internet259 is an advanced academic and industrial consortium led by the research and 

education community, including over 200 higher education institutions and the research 

departments of several large corporations. They have deployed a worldwide research 

network called the Internet2 network. While IPv6 is definitely being used on Internet2, 

they also use a lot of IPv4. Their focus is more on very high performance than which 

version of IP is used. The first part of the Internet2 network (called Abilene60) was built in 

1998, running at 10 Gbps, even over Wide Area Network (WAN) links. It was associated 

with the National LambdaRail61 (NLR) project for some time. Internet2 and NLR have 

58 https://tools.ietf.org/html/rfc3963
59 https://en.wikipedia.org/wiki/Internet2
60 https://en.wikipedia.org/wiki/Abilene_Network
61 https://en.wikipedia.org/wiki/National_LambdaRail

Figure 1-3. NGN
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since split and moved forward along two different paths. Today, most links in the global 

Internet2 network are running at 100 Gbps. This is 10–100 times faster than typical WAN 

links used by major corporations today.

Internet2 also features advanced research into secure identity and access 

management tools, on-demand creation and scheduling of high-bandwidth, high- 

performance circuits, layer 2 Virtual Private Networks (VPNs), and dynamic circuit 

networks (DCNs).

A recent survey of Internet2 sites showed that only a small percentage of them have 

even basic IPv6 functionality deployed, such as IPv6 DNS, email, or VoIP over IPv6. 

IPv6 is independent of their goals. Essentially, Internet2 is primarily concerned more 

with extreme high-end performance (100 Gbps and up) and very advanced networking 

concepts not likely to be used in real-world systems for decades. Although they do 

profess support for IPv6, they have not aggressively deployed it, and it is definitely 

not central to their efforts. They are doing little or no work on IPv6 itself or in new 

commercial applications based on IPv6. I guess those areas are not very exciting to 

academicians. They are very exciting to me – actually, more exciting than 100 Gbps links.

The real-world Third Internet I am writing about in this book will be built primarily 

with equipment that mostly has the same performance as the current Second Internet 

(no more than 1 Gbps on WAN links for some time to come and only that high in 

advanced countries). In much of the world today, 5–120 Mbps is considered good. 

Maybe 100 Gbps will be widely deployed by 2030–2040, but ultrahigh performance is not 

necessary to provide the revolutionary benefits described in this book. To give you an 

idea, Standard-Definition (SD) TV requires about 2 Mbps bandwidth per simultaneously 

viewed channel, and High-Definition (HD) TV requires about 10 Mbps bandwidth. That 

is about the most bandwidth-intensive application you will likely see for most users for 

some time to come. Voice only requires about 8–64 Kbps for good quality. In Japan and 

Korea today, home Internet accounts typically have about 50–100 Mbps performance. 

In my hotel room in Tokyo several years ago, I measured 42 Mbps throughput. That is 

enough for almost any use today. I now have 1 Gbps Internet service in my home in SG 

(for about S$49 a month). Most users, even in companies, would be really challenged to 

make effective use of 100 Gbps bandwidth. With that bandwidth you could download the 

entire Encyclopedia Britannica in just a few seconds (including images) or a typical Blu- 

ray movie (about 25 gigabytes) in about 2 seconds. With current caps on network traffic 

volume, you would go through your entire month’s allowance in a matter of seconds. 

That is actually a serious concern even with 5G, with 1 Gbps potential speeds.
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The necessary equipment and applications for the Third Internet can in many cases 

be created with software or firmware upgrades (except for older and low-end devices 

that don’t have enough RAM or ROM to handle the more complex software and in high- 

end telco- and Internet Service Provider (ISP)–level products that include hardware 

acceleration).

The main technical advantages of the Third Internet will not be higher bandwidth, 

but the vastly larger address space, the restoration of the flat address space (elimination 

of NAT), and the general availability of working multicast. All these are made possible 

by migration to IPv6, which involves insignificant costs compared with supporting 100 

Gbps WAN links. Perhaps generally available WAN bandwidth in that range will be what 

characterizes the Fourth Internet. I personally would just consider that “faster Third 

Internet.”

So Internet2 is not the Third Internet I am writing about. Internet2 and NLR are 

primarily academic exercises that will not bear fruit for many decades. What they are 

doing is very important in the long run, but it does not address, and will not solve, 

the really major problems facing the Second Internet today. The Third Internet is 

being rolled out today and accounted for over 50% of global traffic in 2018. That is the 

beginning of the end for IPv4. Maybe 100 Gbps service will characterize the Fourth 

Internet.

 Is It Web 2.0?
First, if you think that the terms “World Wide Web” and “Internet” are synonymous, 

let me expand your worldview a bit, in the same way that Copernicus did for people’s 

view of our Solar System back in the mid-1500s. The “World Wide Web” is basically one 

Figure 1-4. Logos for Internet2 and National LambdaRail
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service that runs on a much larger, more complex thing, which is called the Internet. 

The Web is a simple client-server system based on HTTP62 (Hypertext Transfer Protocol) 

and HTML63 (Hypertext Markup Language). Due to extremely serious limitations and 

inefficiencies of these standards, both have been enhanced and extended numerous 

times. The result is still not particularly elegant to real network software designers or 

engineers, but it has clearly had a major impact on the world. The technology of the 

Web was a refinement and convergence of several ideas and technologies that were 

in widespread use before HTML and HTTP were created by Tim Berners-Lee in the 

late 1980s, at CERN. But there is a lot to the Internet beyond the Web (email, instant 

messaging, video conferencing, VoIP, file transfer, peer-to-peer (P2P), VPNs, IPTV, etc.). 

There are thousands of Internet protocols, of which the Web uses one (HTTP).

 Hypertext, WAIS/SGML, and Gopher

The terms Hypertext and Hypermedia were coined by Ted Nelson in 1965, at Brown 

University. These terms referred to online text documents (or rich media, including 

pictures, sound, and other media content) that contained links that allowed building 

paths from any word or phrase in the document to other parts of the same document 

or parts of other documents that were also online. In August 1987, Apple Computer 

released the first commercial Hypertext-based application, called HyperCard, for the 

Macintosh. There were already document storage and retrieval systems on the early 

Internet, such as WAIS64 (Wide Area Information Server). WAIS was based on the ANSI 

Z39.50:1988 standard and was developed in the late 1980s by a group of companies 

including Thinking Machines, Apple Computer, Dow Jones, and KPMG Peat Marwick. 

As with the Web, there were both WAIS servers and clients. A later version of WAIS was 

based on ANSI Z39.50:1992, which included SGML (Standard Generalized Markup 

Language, ISO 8879:1986) for more professional-looking documents. There was another 

Internet application called Gopher65 (University of Minnesota, circa 1991) that could 

distribute, search for, and retrieve documents. Gopher was also primarily text based and 

imposed a very strict hierarchical structure on information.

62 https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
63 https://en.wikipedia.org/wiki/HTML
64 https://en.wikipedia.org/wiki/Wide_area_information_server
65 https://en.wikipedia.org/wiki/Gopher_(protocol)
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 HTML and HTTP

Tim Berners-Lee combined these three concepts (Hypertext, WAIS/SGML, and Gopher 

document retrieval) to create HTTP and HTML. HTML was a very watered-down and 

limited markup language compared with SGML. SGML is capable of creating highly 

sophisticated, professional-looking books. In comparison, HTML allows very limited 

control over the final appearance of the document on the client’s screen. HTTP was 

a very simple protocol designed to serve HTML documents to HTTP client programs 

called web browsers. A basic HTTP server can be written in one afternoon and consists of 

about half a page of the C programming language (I’ve done it and retrieved documents 

from it with a standard browser). The first browser (Lynx,66 1992) was very limited (text 

only, but including Hypertext links). In 1993, at the National Center for Supercomputing 

Applications (NCSA) at the University of Illinois, the first Mosaic67 web browser was 

created (running on X Windows in UNIX). Because it was created for use on X Windows 

(a platform with good support for computer graphics), many graphics capabilities 

were added. With the release of web browsers for PC and Macintosh, the number of 

servers went from 500 in 1993 to 10,000 in 1994. The World Wide Web has since grown 

to millions of servers and many versions of the web client (Internet Explorer, Mozilla 

Firefox, Safari, Opera, Chrome, etc.). It’s been so successful that a lot of people today 

think that the “World Wide Web” is the Internet. It’s really just one small part of it.

 Web 2.0

The term Web 2.068 was first coined by Darcy DiNucci in 1999, in a magazine article. The 

current usage dates from an annual conference that began in 2004, called “Web 2.0,” 

organized and run by Tim O’Reilly (owner of O’Reilly Media, publisher of many excellent 

books on computing).

Many of the promoters of the term Web 2.0 characterize what came before 

(which they call Web 1.0) as being “Web as Information Source.” Web 1.0 is based on 

technologies such as PHP, Ruby, ColdFusion, Perl, Python, and ASP (Active Server 

Pages). In comparison, Web 2.0 is “Network as Platform,” or the “participatory Web.” 

It uses the technologies of Web 1.0, plus new things such as Asynchronous JavaScript, 

66 https://en.wikipedia.org/wiki/Lynx_(web_browser)
67 https://en.wikipedia.org/wiki/Mosaic_(web_browser)
68 https://en.wikipedia.org/wiki/Web_2.0
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XML, Ajax, Adobe Flash, and Adobe Flex. Typical Web 2.0 applications are the Wiki69 

(and the world’s biggest wiki, the Wikipedia70), blogging sites, social networking sites like 

Facebook, video publishing sites like YouTube, photographic snapshot publishing sites 

like Flickr, Google Maps, etc.

Andrew Keen (British-American entrepreneur and author) claims that Web 2.0 

has created a cult of digital narcissism and amateurism, which undermines the very 

notion of expertise. It allows anyone anywhere to share their own opinions and content, 

regardless of their talent, knowledge, credentials, or bias. It is “creating an endless 

digital forest of mediocrity: uninformed political commentary, unseemly home videos, 

embarrassingly amateurish music, unreadable poems, essays and novels.” He also says 

that Wikipedia is full of “mistakes, half-truths and misunderstandings.” Perhaps Web 

2.0 has made it too easy for the mass public to participate. Tim Berners-Lee’s take on 

Web 2.0 is that this is just a “piece of jargon.” In the finest tradition of Web 2.0, these 

comments, which were found in the Wikipedia article on Web 2.0, probably include 

some mistakes, half-truths, and misunderstandings.

Basically, Web 2.0 does not introduce any revolutionary new technology or 

protocols; it is more a minor refinement of what was already being done on the Web, in 

combination with a new emphasis on end users becoming not just passive consumers, 

but also producers of web content. The Third Internet will actually help make Web 2.0 

work better, as it removes the barriers that have existed in the Second Internet since 

the introduction of NAT to anyone becoming a producer of content. If anything, on the 

Third Internet, these trends will be taken even further by decentralizing things. There 

will be no need for centralized sites like YouTube or Flickr to publish your content, just 

more sophisticated search engines or directories that will allow people to locate content 

that will be scattered all over the world. Perhaps that will be the characterizing feature 

of Web 3.0? With IPv6 you can run any server (including a web server) on any computer 

you have, including your phone, and anyone in the world (who has IPv6) will be able to 

access it. Now that’s a major change.

Web 2.0 is a really minor thing compared with the Third Internet. What isn’t pure 

marketing hype is an evolutionary development of one of the major services (the 

World Wide Web) out of perhaps a dozen major subsystems that the Third Internet is 

capable of hosting. These include global telephony, newer forms of communication 

like decentralized instant messaging, major new peer-to-peer applications (not just 

69 https://en.wikipedia.org/wiki/Wiki
70 https://en.wikipedia.org/wiki/Main_Page
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file sharing), global broadcast entertainment via multicast IPTV, connectivity between 

essentially all consumer electronic products, personal healthcare sensor nets, smart 

building sensor nets, etc.

 Whatever Happened to IPv5?
Two of the common questions people ask when they start learning about IPv6 are “If 

it’s the next version after IPv4, why isn’t it called IPv5?” and “What happened to the first 

three versions of IP?”

There is a 4-bit field in every IP packet header that contains the IP version number 

in binary. In IPv4, that field contains the binary value 0100 (4 in decimal) in every 

packet. An earlier protocol (defined in RFC 1190,71 “Experimental Internet Stream 

Protocol, Version 2 (ST-II),” October 1990) used the binary pattern 0101 (5 in decimal) 

71 https://tools.ietf.org/html/rfc1190

Figure 1-5. Web 2.0 logo
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in the IP Version field of the packet header. The Internet Stream Protocol was not really 

a replacement for IPv4 and isn’t even used today, but unfortunately the binary pattern 

0101 was allocated to it. The next available bit pattern was 0110 binary (6 in decimal). It 

would be even more embarrassing than explaining that there was no IPv5 to explain why 

the IP version number field for IPv5 contained the value 6. Now you know.

So what did happen to IPv1, IPv2, and IPv3? Those never made it out of the lab. The 

first version of IP that was released to the general public was IPv4.

ARPANET72 (based on NCP) was the First Internet. It didn’t use any version of the 

Internet Protocol – it used NCP. IPv4, the foundation protocol of the Second Internet, 

was the first public release of the Internet Protocol. IPv6, the foundation protocol of the 

Third Internet, is the second public release of the Internet Protocol. So we could have 

been talking about the transition from IPv1 to IPv2!

There have been rumors about an IPv973 protocol in China. A venture capital firm 

in Hong Kong actually asked me if China was already that far ahead of the rest of the 

world, and shouldn’t we be supporting their version? It seems some researcher in a 

university there published a paper on an “IPv9,” but it was never implemented and 

wasn’t a replacement for IPv4 (let alone IPv6) anyway. It was a way to use ten-digit 

decimal phone numbers in a modified DNS implementation instead of alphanumeric 

domain names, for all nodes on the Internet. I guess if you speak only Chinese, a ten- 

digit numeric string may seem easier to use than an English domain name using Latin 

characters. Fortunately for Chinese speakers, we now have Internationalized Domain 

Names74 in Chinese and other languages.

There are even internationalized top-level domains (TLDs) now. For an example, see 

https://www.101domain.com/%E4%B8%AD%E5%9B%BD.htm.75

Actually, there is a real RFC about IPv9, which you might enjoy reading. See RFC 

1606,76 “A Historical Perspective on the Usage of IP Version 9,” April 1, 1994. This has 

nothing to do with the Chinese IPv9 and is much funnier. Please notice the release date 

of RFC 1606. There is a tradition of releasing gag RFCs on April 1. Some of them are 

hilarious (well, maybe you have to be a geek to see the humor).

72 https://en.wikipedia.org/wiki/ARPANET
73 https://www.telecomasia.net/content/strange-case-chinas-ipv9-0
74 https://en.wikipedia.org/wiki/Internationalized_domain_name
75 https://www.101domain.com/%E4%B8%AD%E5%9B%BD.htm
76 https://www.ietf.org/rfc/rfc1606.txt
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 Let’s Eliminate the Middleman
One of the things that the Third Internet does better than anything is disintermediation.77 

Just as email eliminated the need for a central post office and Amazon.com has mostly 

eliminated the need for physical bookstores, the features of the Third Internet will 

eliminate the need for many other existing centralized organizations and services. With 

a real decentralized end-to-end connectivity model, there is no need for two users to 

connect to a central server (such as Skype or Messenger) in order to chat with each other. 

They will simply connect directly to each other. That’s hard to do today, because of NAT 

and an acute shortage of public IPv4 addresses.

The restoration of the original (pre-NAT) flat address space and the plethora of 

public addresses will allow anyone or anything to connect directly to anyone or anything 

on the Third Internet. It’s going to be a very different online world. Many business 

models will go by the way, and many new ones will explode on the scene and make some 

new entrepreneurs very wealthy. Someone will need to provide centralized directory and 

presence servers that will let people locate each other, so that they can connect directly 

to each other. I am working on that very problem now.

Several years ago, a gentleman in my previous hometown of Atlanta, Georgia (home 

to Coca-Cola and UPS), had a small UHF TV station (WTBS, channel 17) that mostly 

broadcast old movies and Atlanta Braves baseball games, both of which he loved. He 

was one of the first people to realize that he could relay his TV station’s signal through 

a transponder on a geostationary satellite (“that’s just a really tall broadcast antenna”), 

and the rest is history. The man was Ted Turner,78 and his insight created the Turner 

Broadcasting System (TBS), which along the way produced CNN, CNN Headline News, 

Cartoon Network, Turner Network Television (TNT), and many other things. His success 

allowed him to buy the Braves baseball team and the entire film library of MGM (not 

to mention a famous starlet wife, sometimes also called “Hanoi Jane”). When he began 

relaying his channel 17 signal, his viewership went from maybe 10,000 to 10,000,000 

virtually overnight. That was a world-changing insight.

Some bright entrepreneur is going to realize that global multicast IPTV over IPv6 

is the same kind of opportunity. Wonder what they will create with the wealth thereby 

generated? What country will they be from? I’m betting on India.

77 https://en.wikipedia.org/wiki/Disintermediation
78 https://en.wikipedia.org/wiki/Ted_Turner
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I did warn you that this is revolutionary, highly disruptive technology. However, with 

great disruption comes great opportunity.

 Why Am I the One Writing This Book? Just Who Do 
I Think I Am, Anyway?
I have been personally involved in helping create and deploy the Third Internet for 

many years. I’ve spoken at IPv6 summits around the world, including Beijing, Seoul, 

Kuala Lumpur, Manila, Taipei, Potsdam, and Washington, DC. I have so far invested 25 

years of my life and about $9M of my own personal funds (which came from selling a 

previous Internet-based venture called CipherTrust where I was cofounder). I’ve built 

a new company in Singapore with lots of expertise in PKI and IPv6. It is called Sixscape 

Communications79 – we are “The Netscape for the IPv6 Internet.” The Third Internet is by 

far the biggest business and technology opportunity I’ve seen in my 45+ years in IT.

Now, have I gotten your attention? Great! Now let’s explore just what the Third 

Internet is all about.

 Summary
This chapter covered the three generations of the global Internet, from ARPANET to IPv4 

to IPv6. IPv6 is not just another version of one of the many Application Layer protocols 

like HTTP v1.1. It is deep in the network stack (in the Internet Layer), so it affects all 

Application Layer protocols.

The First Internet (ARPANET) only served a few thousand people, mostly in the 

United States. Most of the users were in the US military, the US government, and a few 

research institutions (mostly universities). It had 8-bit addresses and was based on the 

host-host protocol. It had many of the applications we still use today, like email, FTP, 

chat, etc. It lived from roughly 1969 to 1982.

The Second Internet (IPv4 generation) took over from the ARPANET in 1983 and 

grew to serve billions of users, worldwide. It used 32-bit addresses, but we ran out of 

unique IPv4 public addresses in 2011 and “broke” the Internet with NAT and private 

addresses. Many people are still using this today, but it will eventually be phased out.

79 https://sixscape.com/
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The Third Internet (IPv6 generation) began major deployment in about 2014 and will 

probably still be in widespread use in 2100. It uses 128-bit addresses, which means we no 

longer need NAT or private addresses. Every node can have a globally unique IP address, 

even phones and temperature sensors.

We also presented some analogies to help you understand what IPv6 is and what 

it isn’t.
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CHAPTER 2

History of Computer 
Networks Up to IPv4
A long time ago (in a galaxy not too far away), regular people started connecting 

computers together. A few brave souls tried to do this with dial-up 1200-baud modems 

over phone lines. Pioneers brought up Bulletin Board Systems (BBSs; message boards 

that one person at a time could dial into and exchange short messages, and later small 

files, with each other). I brought up the eighth BBS in the world, in Atlanta, in about 

1977, using code from the original CBBS in Chicago (created by Ward Christensen 

and Randy Suess). I used a modem donated by my friend Dennis Hayes (of Hayes 

Microcomputer Products). Later there were thousands of online Bulletin Board 

Systems, all over the world. Soon there followed commercial “information utilities” like 

CompuServe1 and The Source,2 which were like giant Bulletin Board Systems (BBSs) with 

many more features. Tens of thousands of users could connect to these simultaneously. 

It was like the first crude approximation to the Internet of today, based on circuit- 

switched connections over telephone lines. Everything was text oriented (non-graphical) 

and very slow. 1200 bits/second was typical at first, although later modems with speeds 

of 2400 bits/second, 9600 bits/second, 14.4 Kbps, 28.8 Kbps, and finally 56 Kbps were 

developed and came into widespread use. Later these modems were primarily used to 

dial into an ISP to connect to the Internet, and some people are still using them this way.

1 https://en.wikipedia.org/wiki/CompuServe
2 https://en.wikipedia.org/wiki/The_Source_(online_service)

© Lawrence E. Hughes 2022 
L. E. Hughes, Third Generation Internet Revealed, https://doi.org/10.1007/978-1-4842-8603-6_2
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 Real Computer Networking
While home computer users were playing around with modems and Bulletin Board 

Systems, the big computer companies were working on ways to connect “real” 

computers at higher speeds and with much more complex software.

 Ethernet and Token Ring
Much of this was based on Ethernet,3 which was created by a team at Xerox Palo Alto 

Research Center (PARC4) led by Robert Metcalfe5 between 1973 and 1975. The first 

released version (1976) ran at 3 Mbps. Metcalfe left PARC in 1979 to create 3Com6 

and create commercial products based on Ethernet. Working together with Digital 

Equipment Corporation (DEC), Intel, and Xerox (hence the “DIX”7 standard), 3Com 

released the first commercial products running at 10 Mbps. Ethernet was standardized 

in 1980 by the IEEE (Institute of Electrical and Electronics Engineers) as 802.3. Early 

versions ran on 10base2 (a small-diameter coax cable) or 10base5 (a larger-diameter 

coax cable). These used a “multidrop” architecture, which was subject to many reliability 

problems. With the introduction of the simpler to deploy and manage “unshielded 

twisted pair” (UTP) (actually four-pair, or eight-wire) cables (known as 10baseT, 

mid-1980s) and star architectures using “hubs” and later “switches,” Local Area Networks 

(LANs) really took off. Today, virtually all Ethernet networks use twisted pair copper wire 

(up to gigabit speed) or fiber-optic cable (for higher speed and longer runs). I helped 

deploy a 10base2 coax Ethernet network in Hong Kong in 1993. Trust me, twisted pair 

cabling is a lot easier to work with.

IBM for many years pushed a competing physical layer network standard called 

“Token Ring”8 (later standardized as IEEE 802.5). Token Ring was available in 4 Mbps 

and 16 Mbps versions. Later, a 100 Mbps version was created, but by then Ethernet 

3 https://en.wikipedia.org/wiki/Ethernet
4 https://en.wikipedia.org/wiki/PARC_(company)
5 https://en.wikipedia.org/wiki/Robert_Metcalfe
6 https://en.wikipedia.org/wiki/3Com
7 http://electronicstechnician.tpub.com/14091/css/Ieee-802-3-Ethernet-Dix-193.htm
8 https://en.wikipedia.org/wiki/Token_ring
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dominated the market, and Token Ring quietly died. FDDI9 (Fiber Distributed Data 

Interface) still in use today is based on the Token Ring concept.

 Network Software
Network software quickly evolved once Ethernet and Token Ring hardware became 

available. One of the main goals was to “hide” the differences between various hardware- 

level technologies (Ethernet, Token Ring, Wi-Fi, etc.) and the higher-level software. 

This led to the multiple layers of the network stack. The bottom layer is very hardware 

specific, and the upper layers introduce more and more hardware independence, so that 

applications can be written once and run over any hardware media.

DEC10 was one of the first companies to create networking software with DECnet11 

(1975). IBM had System Network Architecture (SNA,12 1974). Xerox created the PARC 

Universal Packet protocol13 (PUP protocol, late 1970s), which eventually evolved into 

Xerox Network Services14 (XNS, early 1980s) at PARC. XNS was the basis for the late 

Banyan VINES15 network OS, based on “VINES IP” (similar to but incompatible with 

IPv4 from TCP/IP). Banyan VINES included the first network directory service, called 

“StreetTalk.”16 XNS also was the basis for Novell NetWare17 (IPX/SPX, 1983), which 

eventually added its own NetWare Directory Services (NDS,18 1993).

Microsoft worked with 3Com to create their own network OS, called LAN Manager. 

It used the SMB19 (Server Message Block) protocol on top of either the NBF (NetBIOS20 

Frames) protocol or modified XNS. In 1990, Microsoft added support for TCP/IP as an 

alternate protocol (LAN Manager 2.0). With the release of Windows NT Advanced Server 

9 https://en.wikipedia.org/wiki/Fiber_Distributed_Data_Interface
10 https://en.wikipedia.org/wiki/Digital_Equipment_Corporation
11 https://en.wikipedia.org/wiki/DECnet
12 https://en.wikipedia.org/wiki/IBM_Systems_Network_Architecture
13 https://en.wikipedia.org/wiki/PARC_Universal_Packet
14 https://en.wikipedia.org/wiki/Xerox_Network_Systems
15 https://en.wikipedia.org/wiki/Banyan_VINES
16 http://banyan-vines.bamertal.com/
17 https://en.wikipedia.org/wiki/NetWare
18 https://en.wikipedia.org/wiki/NetIQ_eDirectory
19 https://en.wikipedia.org/wiki/Server_Message_Block
20 https://en.wikipedia.org/wiki/NetBIOS
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in 1993, Microsoft finally phased out LAN Manager. By Windows NT v3.5121 (May 1995), 

Microsoft encouraged users to deploy only TCP/IP (4 years ahead of Novell’s support for 

TCP/IP). This lead time allowed Microsoft to take over leadership in personal computer 

networks from Novell. Microsoft introduced their version of network directory services in 

Windows Server 2000, now known as Active Directory.22 The SMB protocol still survives 

as Microsoft’s “File and Printer Sharing” protocol (now layered on TCP/IP, instead of 

NetBIOS or XNS). An open source implementation of this is available as SAMBA.23

 The Beginnings of the Internet (ARPANET)
While all this commercial activity was going on, the US military (at their Defense 

Advanced Research Projects Agency, or DARPA24), with the help of Bolt, Beranek, and 

Newman (BBN25) and Mitre,26 were designing a new, decentralized communication 

system based on packet switching. Existing communication systems (telephone, radio, 

etc.) were centralized and hence subject to being completely disabled due to the failure 

or loss of a few central nodes. Packet-switched networks were highly decentralized and 

had a fascinating new property, which is that you could lose large parts of a network 

and the remaining parts would still work (assuming at least some links connected the 

working parts).

The first network protocol developed as part of ARPANET was called the 182227 

protocol (named after BBN Report 1822) and was implemented by a Network Control 

Program,28 so the protocol was often referred to as NCP. The first email was sent over 

NCP in 1971, and the File Transfer Protocol followed in 1973. On January 1, 1983 (“flag 

day”), NCP was turned off officially, leaving only IPv4 on the Internet. I consider the 

NCP era to be the First Internet and the IPv4 era as the Second Internet. That makes 

the evolving IPv6 era the Third Internet. Fortunately, there is no need for a flag day to 

go from IPv4 to IPv6, as they can coexist (and probably will for perhaps 5–10 years). 

21 https://en.wikipedia.org/wiki/Windows_NT_3.51
22 https://en.wikipedia.org/wiki/Active_Directory
23 https://en.wikipedia.org/wiki/Samba_(software)
24 https://en.wikipedia.org/wiki/DARPA
25 https://en.wikipedia.org/wiki/BBN_Technologies
26 https://en.wikipedia.org/wiki/Mitre_Corporation
27 www.networksorcery.com/enp/rfc/rfc878.txt
28 https://en.wikipedia.org/wiki/Network_Control_Program
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We learned not to do that from the NCP to IPv4 transition. They broke global email for 

months in that process.

In May 1974, Vint Cerf29 and Bob Kahn30 released the paper “A Protocol for Packet 

Network Interconnection.”31 This described a monolithic protocol called TCP that 

combined the features of both modern TCP and IPv4. Later Jon Postel32 was instrumental 

in splitting apart TCP and IP as we know them today. Vint Cerf is today considered the 

“father of TCP/IP” and is now an “Evangelist” at Google. He understands very well the 

problems with the current implementation of IPv4 (and why these things were done). 

He advocates for users to migrate to IPv6, which restores his original concept of a flat 

address space (no NAT), where any node can connect directly to any other node. One of 

my proudest possessions is a copy of RFC 791 (IPv4) autographed in person by Vint Cerf.

If you’d like to read about the creation of the Second Internet, I recommend the book 

Where Wizards Stay Up Late: The Origins of the Internet,33 by Katie Hafner and Matthew 

Lyon. It is of considerable interest to those of us creating the Third Internet, as we are 

facing some of the same problems they did. Only this time around, we’ve got over a 

billion legacy users (and staggering investments in hardware and software) to worry 

about. On the other hand, we’ve got three decades of operational experience with IPv4 to 

draw upon.

Higher-level software protocols were built on top of the TCP and IP layers, called 

“application protocols,” such as SMTP34 and IMAP35 (for email), FTP36 (for file transfer), 

Telnet37 (for terminal emulation), and more recently HTTP38 (used in the World Wide 

Web) and SIP39 and RTP40 (used in VoIP). The resulting suite of protocols became known 

29 https://en.wikipedia.org/wiki/Vint_Cerf
30 https://en.wikipedia.org/wiki/Bob_Kahn
31 https://ieeexplore.ieee.org/document/1092259
32 https://en.wikipedia.org/wiki/Jon_Postel
33 www.amazon.com/Where-Wizards-Stay-Up-Late/dp/0684832674
34 https://en.wikipedia.org/wiki/Simple_Mail_Transfer_Protocol
35 https://en.wikipedia.org/wiki/Internet_Message_Access_Protocol
36 https://en.wikipedia.org/wiki/File_Transfer_Protocol
37 https://en.wikipedia.org/wiki/Telnet
38 https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
39 https://en.wikipedia.org/wiki/Session_Initiation_Protocol
40 https://en.wikipedia.org/wiki/Real-time_Transport_Protocol
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for its two most important protocols, TCP and IP, or TCP/IP41 (its formal name is “the 

Internet Protocol Suite”).

 UNIX
About this time (1973), Bell Labs (a research group within AT&T) created an interesting 

new operating system (called PWB- UNIX42) and a new language (in which UNIX was 

written) called “C.”43 Because of a 1958 consent decree, AT&T as a regulated monopoly 

was not allowed to market or sell UNIX commercially. They licensed it (complete with 

source code) to several universities. One of these was the University of California at 

Berkeley44 (UCB; also famous for being the center of campus-based communist student 

activities at the time). The team at UCB extended UNIX in several very important 

ways such as adding Virtual Memory. They also integrated the new network protocol 

from ARPA as the first commercial implementation of TCP/IP. The “Berkeley System 

Distribution”45 of UNIX became a main branch. Over time, they rewrote most of it and 

wanted to release it for free. AT&T sued them in court, and it seems most of the examples 

of “stolen code” AT&T cited had actually been written at UCB. The judge ruled that if 

UCB rewrote the remaining 10% or so (so there was zero original AT&T code), they could 

release that. That rewrite became 386BSD,46 the starting point for FreeBSD47 (the first 

open source operating system). Later FreeBSD was chosen by Japan’s Kame48 project to 

deploy the first version (the “reference” implementation) of a IPv6 network stack, in an 

eerie echo of BSD UNIX’s choice for the first commercial IPv4 implementation.

UNIX and TCP/IP became very popular on college campuses, and with high-end 

workstation vendors, such as Sun, Silicon Graphics, and Intergraph. Personal computers 

were not powerful enough to run UNIX until the Intel 386, at which point UCB ported 

the BSD version to the 386. However, as documented above, most personal computer 

networking was already moving to TCP/IP.

41 https://en.wikipedia.org/wiki/Internet_protocol_suite
42 https://en.wikipedia.org/wiki/PWB/UNIX
43 https://en.wikipedia.org/wiki/C_(programming_language)
44 https://en.wikipedia.org/wiki/University_of_California,_Berkeley
45 https://en.wikipedia.org/wiki/Berkeley_Software_Distribution
46 https://en.wikipedia.org/wiki/386BSD
47 https://en.wikipedia.org/wiki/FreeBSD
48 https://en.wikipedia.org/wiki/Kame
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 Open System Interconnection (OSI)
While all this was going on, the ISO49 (International Organization for Standardization) 

in Europe was creating a very thoroughly engineered suite of network protocols called 

Open System Interconnection50 (OSI), or more formally X.20051 (July 1994).

Because “International Organization for Standardization” would 

have different acronyms in different languages (IOS in English, 

OIN in French for Organisation internationale de normalisation), 

our founders decided to give it the short form ISO. ISO is derived 

from the Greek isos, meaning equal.

This is where the famous “seven-layer” network model comes from (TCP/IP is really 

based on a “four-layer” model, which has caused no end of confusion among young 

network engineers). At one point the US government decided to officially adopt OSI for 

its networking (this was called GOSIP,52 or Government Open Systems Interconnection 

Profile, defined in FIPS 146-1, 1990). Unfortunately, OSI was really more of an academic 

specification, not a real working network system, like TCP/IP was. After many years, 

GOSIP was finally abandoned, and IPv4 was deployed, but GOSIP’s legacy has hindered 

the adoption of IPv6 in the United States (“Here we go again – GOSIP phase 2!”). X.40053 

email and X.50054 directory systems were built on top of OSI and will not run on TCP/

IP without substantial compatibility layers. One small part of X.500 (called X.509,55 

“The Authentication Framework”) was the source of digital certificates56 and Public Key 

Infrastructure,57 still used today. Lightweight Directory Access Protocol (LDAP58) was an 

attempt to create an X.500-like directory system for TCP/IP-based networks. That’s about 

all that is left of the mighty OSI effort today, outside of computer science textbooks and 

Cisco Press books.

49 https://en.wikipedia.org/wiki/International_Organization_for_Standardization
50 https://en.wikipedia.org/wiki/Open_Systems_Interconnection
51 www.itu.int/rec/t-rec-x.200-199407-i
52 https://en.wikipedia.org/wiki/Government_Open_Systems_Interconnection_Profile
53 https://en.wikipedia.org/wiki/X.400
54 https://en.wikipedia.org/wiki/X.500
55 https://en.wikipedia.org/wiki/X.509
56 https://en.wikipedia.org/wiki/Public_key_certificate
57 https://en.wikipedia.org/wiki/Public_key_infrastructure
58 https://en.wikipedia.org/wiki/Lightweight_Directory_Access_Protocol
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IPv6 was based heavily on IPv4 and was defined by the same group that defined IPv4 

(the IETF59). It is the “natural” and straightforward evolutionary step after IPv4. At this 

point everyone has decided that IPv6 is inevitable, although there were many battles and 

brave resistance for years.

 Email Standardization
By this time, essentially all computer vendors had standardized on TCP/IP, but there 

were still a lot of competing standards for email, including Microsoft’s MS-Mail, Lotus’s 

cc:Mail, and MCI Mail. The Internet folks used a much simpler email standard called 

SMTP60 (Simple Mail Transfer Protocol). It first became the connecting backbone 

between various email products (everyone had their email to SMTP gateways, so users 

could exchange messages across organizations). Soon, everyone started using SMTP 

(together with POP3 and later IMAP) all the way to the end user. Today virtually all 

email worldwide is based on SMTP and TCP/IP. However, Microsoft is forcing their own 

proprietary protocols (EWS and now Graph) into this space with Office 365. By the way, 

most of Office 365 works fine over IPv6. Teams and Azure are still IPv4-only (at least VMs 

in Azure are IPv4-only).

 Evolution of the World Wide Web
Several other Internet applications evolved, including WAIS (Wide Area Information 

Server, for storing and retrieving documents) and Archie61 (the very first search engine). 

In turn, these efforts were merged with the idea of Hypertext (documents with multilevel 

links) and evolved into HTML (Hypertext Markup Language) and HTTP (Hypertext 

Transfer Protocol). The World Wide Web was off and running. The first web browser 

and web server were created at the National Center for Supercomputing Applications62 

(NCSA) at the University of Illinois, Urbana-Champaign campus. The people who 

created those software projects (primarily Marc Andreessen63 and Eric Bina64) were 

59 https://en.wikipedia.org/wiki/Internet_Engineering_Task_Force
60 https://en.wikipedia.org/wiki/Simple_Mail_Transfer_Protocol
61 https://en.wikipedia.org/wiki/Archie_search_engine
62 https://en.wikipedia.org/wiki/National_Center_for_Supercomputing_Applications
63 https://en.wikipedia.org/wiki/Marc_Andreessen
64 https://en.wikipedia.org/wiki/Eric_Bina
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soon hired by Jim Clark,65 one of the founders of Silicon Graphics, to start Netscape,66 

one of the most successful and important companies in the Second Internet. They 

created a new and more powerful web server (Netscape Application Server67) and web 

browser (Netscape Navigator68). As an interesting aside, the original browser created by 

Andreessen at NCSA (Mosaic69) later became the starting point for Microsoft’s Internet 

Explorer web browser.

 And That Brings Us Up to Today
That pretty much brings us up to the present day where the entire world has 

standardized on IPv4 for both LANs (Local Area Networks) and WANs (Wide Area 

Networks). Multiprotocol Label Switching (MPLS) is not a competitor to TCP/IP; it 

is one more alternative at the Link Layer, peer to Ethernet and Wi-Fi. More and more 

companies and organizations built TCP/IP networks and connected them together to 

create the Internet. Major telcos provided “backbone” WAN connections and dial-up 

access service (soon known as ISPs or Internet Service Providers70). As the number of 

users (and the amount of traffic) on the Internet grew exponentially, Internet Exchange 

Points (IXPs)71 were created around the world. These are places where ISPs connect 

to each other so that traffic from a user of any provider can reach users of any other 

provider, worldwide.

If you’d like to understand more about the physical implementation of the 

Internet, see Tubes: A Journey to the Center of the Internet,72 by Andrew Blum. Highly 

recommended.

65 https://en.wikipedia.org/wiki/Jim_Clark
66 https://en.wikipedia.org/wiki/Netscape
67 https://en.wikipedia.org/wiki/Netscape_Application_Server
68 https://en.wikipedia.org/wiki/Netscape_Navigator
69 https://en.wikipedia.org/wiki/Mosaic_(web_browser)
70 https://en.wikipedia.org/wiki/Internet_service_provider
71 https://en.wikipedia.org/wiki/Internet_exchange_point
72 www.amazon.com/Tubes-Journey-Internet-Andrew-Blum/dp/0061994952
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 Summary and a Look Ahead
In this chapter, we covered the history of computer networking from the early days 

of modems and BBSs then to “real” early computer networking (DECnet, XNS, SNA, 

NetBIOS, NetWare, etc.) up to the consolidation of multiple network protocols into a 

single standard, which was TCP/IP (with version 4 of IP, or IPv4). We also covered the 

“precursor” to the IPv4-based Internet, which was called ARPANET, based on the host- 

host protocol (or NCP).

We covered some of the key participants (Bob Kahn, Vint Cerf) who created the 

technology used in the Second Internet and companies who pioneered the most widely 

used protocols, hardware, and applications (e.g., 3Com, Netscape).

Today, the most widely used application on the Second Internet is the World Wide 

Web. This evolved due to the widespread deployment of NAT and private addresses. 

These limited most users to only being able to make outgoing connections to a small 

number of centralized serves (that have public IP addresses), thereby centralizing 

functionality. This is comparable to dumb terminals (browsers) being used to access 

central mainframes (web servers) where the actual computing takes place.

In the Third Internet, there is no shortage of public IP addresses or need for NAT – 

even phones can now have public IP addresses and host servers or do end-to-end direct 

connections. This will lead to extensive decentralization. Now people can take advantage 

of the amazing computing power in their desktops, laptops, and even phones, rather 

than centralized computing on web servers. Rather than sending the entire GUI over 

the network (HTTP/HTML), we will run native GUI applications on our devices and 

exchange only data over the network. There will still be a need for shared databases, but 

web browsers and servers will decrease in importance. Zero-Trust Networks are a start in 

this direction. This is a major paradigm shift made possible by IPv6.

The original concept of the Internet was “complexity at the edge, simplicity at 

the core” – the World Wide Web has stood that on its head, primarily because of the 

limitation of IPv4 with NAT and private addresses.
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CHAPTER 3

Review of IPv4
This chapter is a brief review of IPv4,1 the foundation protocol of the Second Internet. 

I am covering it in this chapter to help you understand what is new and different in 

IPv6. It is not intended to be comprehensive. There are many great books listed in the 

bibliography if you wish to understand IPv4 at a deeper level. The reason IPv4 is relevant 

in this book is because the design of IPv6 is based heavily on that of IPv4. First, IPv4 

can be considered one of the great achievements in IT history, based on its worldwide 

success, so it was a good model to copy from. Second, there were several attempts to do a 

new design “from the ground up” with IPv6 (a “complete rewrite”). These involved really 

painful migration and interoperability issues. You need to understand what the strengths 

and weaknesses of IPv4 are to see why IPv6 evolved the way it did. You can think of IPv6 

as “IPv4 on steroids,” which takes into account the radical differences in the way we do 

networking today and fixing problems that were encountered in the first three decades 

of the IP-based Internet, as network bandwidth and the number of nodes increased 

exponentially. We are doing things over networks today that no one could have foreseen 

a quarter of a century ago, no matter how visionary they were.

 Network Hardware
There are many types of hardware devices used to construct an Ethernet network 

running TCP/IP. These include nodes, Network Interface Cards (NICs), cables, hubs, 

switches, routers, and firewalls.

A node is a device (usually a computer) that can do processing and has some kind of 

wired or wireless connection(s) to a network. Examples of nodes are desktop computers, 

1 https://en.wikipedia.org/wiki/IPv4

© Lawrence E. Hughes 2022 
L. E. Hughes, Third Generation Internet Revealed, https://doi.org/10.1007/978-1-4842-8603-6_3

https://en.wikipedia.org/wiki/IPv4
https://en.wikipedia.org/wiki/IPv4
https://doi.org/10.1007/978-1-4842-8603-6_3
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notebook computers, netbooks, smartphones, hubs,2 switches,3 routers,4 wireless access 

points,5 network printers, network-aware appliances, and so on. A node could be as 

simple as a temperature sensor, with no display and no keyboard, just a connection 

to a network. It could have a display and keyboard or be a “headless node” with a 

management interface accessed via the network with Telnet, Secure Shell6 (SSH), or a 

web browser. All nodes connected to a TCP/IP network must have at least one valid IP 

address7 (per interface). If a node has only one network interface, such as a workstation 

computer, it is called a host. If a node has multiple interfaces connected to different 

networks, and the ability to forward packets between them, it is called a gateway or 

a router. Routers and firewalls are special types of gateways that can forward packets 

between networks and/or control traffic in various ways as it is forwarded. Gateways 

make it possible to build internetworks.8 They are described in more detail under the 

“IPv4 Routing” section in this chapter.

A NIC9 (or Network Interface Controller) is the physical interface that connects a 

node to a network. It may also be called an Ethernet adapter if the network is based on 

Ethernet. It should have a female RJ-4510 connector on it (or possibly a coax or fiber-

optic connector). It could be an actual add-in Peripheral Computer Interconnect (PCI11) 

card. It could be integrated on the device’s motherboard. It could also be something 

that makes a wireless connection to a network, using Wi-Fi, WiMAX, or similar 

standard. Typically, all NICs have a globally unique, hard-wired MAC address12 (48 bits 

long, assigned by the manufacturer). A node can have one or more NICs (also called 

interfaces). Each interface can be assigned one or more IP addresses and various other 

relevant network configuration items, such as the address of the default gateway and the 

addresses of the DNS servers.

2 https://en.wikipedia.org/wiki/Ethernet_hub
3 https://en.wikipedia.org/wiki/Network_switch
4 https://en.wikipedia.org/wiki/Router_(computing)
5 https://en.wikipedia.org/wiki/Wireless_access_point
6 https://en.wikipedia.org/wiki/Secure_Shell
7 https://en.wikipedia.org/wiki/IP_address
8 https://en.wikipedia.org/wiki/Internetworking
9 https://en.wikipedia.org/wiki/Network_interface_controller
10 https://en.wikipedia.org/wiki/Registered_jack#RJ45
11 https://en.wikipedia.org/wiki/Conventional_PCI
12 https://en.wikipedia.org/wiki/MAC_address
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Network cables today are typically unshielded twisted pair13 (UTP) cables that actually 

have four pairs of plastic-coated wires, with each pair forming a twisted coil. They have 

RJ-45 male connectors on each end. They could also be fiber-optic cables for very high-

speed or long-run connections. Often today, professional contractors install UTP cables 

through the walls and bring them together at a central location (sometimes called the 

wiring closet) where they are connected together with a hub or a switch to form a star 

network.14 Cables typically are limited to 100 meters or less in length, but the maximum 

acceptable length is a factor of several things, such as network speed and cable design. 

Modern cables rated as “CAT5”15 or “CAT5E” are good up to 100 Mbps, while cables rated 

as “CAT6”16 are good up to a gigabit per second (1 Gbps). Today, you can get CAT7 cables 

for speeds up to 10 Gbps. Above that speed, you should be using optical fiber17 NICs 

and cables. It is also possible for twisted pair cables to be shielded if required to prevent 

interference from (or with) other devices.

An Ethernet hub18 is a device that connects multiple Ethernet cables together so 

that any packet transmitted by any node connected to that hub is relayed to all the 

other nodes connected to the hub. It typically has a bunch of female RJ-45 connectors 

in parallel (called ports). In effect it ties together the network cables plugged into it into 

a star network. Hubs have a speed rating, based on what speed Ethernet they support. 

Older hubs might be only 10 Mbps. More recent ones might be “fast Ethernet,” which 

means they support 100 Mbps. If you have five nodes (A, B, C, D, and E) connected 

together with a hub and node B sends a packet to node D, all nodes, including A, C, 

and E, will see the traffic. The nodes not involved in the transaction will typically just 

discard the traffic. This dropping of packets not addressed to a node is often done by 

the hardware in the NIC, so that it never interrupts the software driver. Many NICs have 

the ability to be configured in promiscuous mode.19 When in this mode, they will accept 

packets (and make them available to any network application) whether those packets 

are addressed to this node or not. If this mode is selected, the dropping of packets not 

addressed to you must be done in software. However, sometimes you want to see all 

13 https://en.wikipedia.org/wiki/Twisted_pair
14 https://en.wikipedia.org/wiki/Star_network
15 https://en.wikipedia.org/wiki/Category_5_cable
16 https://en.wikipedia.org/wiki/Category_6_cable
17 https://en.wikipedia.org/wiki/Optical_fiber_cable
18 https://en.wikipedia.org/wiki/Ethernet_hub
19 https://en.wikipedia.org/wiki/Promiscuous_mode
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traffic on the subnet. For instance, this would be useful with intrusion detection, for 

diagnostic troubleshooting, or for collecting network statistics. Hubs come in various 

sizes, from 4 ports up to 48 ports, and can even be coupled with other hubs to make 

large network “backbones.” You can also have a hierarchy of hubs, where several hubs 

distributed around a company actually connect into a larger (and typically faster) central 

hub. Hubs do no processing of the packets; they are really just a cluster of Ethernet 

extenders20 (repeaters) that clean up and relay any incoming signals from any port to 

all the other ports. Hubs are quite rare today. Most such devices today are now actually 

switches.

A network switch21 is similar to a network hub but has some control logic that 

minimizes unnecessary traffic. It partitions a LAN into multiple collision domains22 (one 

per switch port). Again, say you have a switch with cables connected to nodes A, B, C, 

D, and E. If B sends a packet to D, that packet will be sent out only to the port to which 

D is connected. Switches learn what nodes are connected to what ports by maintaining 

a table of MAC addresses vs. port number. When a switch is first powered on, this table 

is empty. As the nodes send packets through the switch, it learns what port each node is 

connected to.

If node A (connected to port 1) sends a packet to node B (connected to port 2), 

the switch adds the MAC address of A and the port it was seen on (1) to its table. In 

the future, when packets for A’s MAC address come in any port, they will only be sent 

out port 1. Since the switch hasn’t previously seen the MAC address of B (as a source 

address), it doesn’t know where B is located, so it sends this first packet out to all ports. 

If B replies to A’s packet, the switch adds B’s MAC address and port (2) to the table. In the 

future, packets sent to B’s MAC address will only be sent out port 2. Each addition to the 

table expires after a certain amount of time, to allow nodes to be moved to other ports. 

An incoming packet sent to a broadcast address will always be sent out to all ports. This 

behavior holds down excessive traffic that would normally just be dropped anyway by 

the unaddressed nodes (not to mention unnecessary packet collisions). It also provides a 

small degree of privacy, even if someone enables their NIC in promiscuous mode. If your 

LAN is built using switches instead of hubs, you can typically only sniff traffic originating 

from or terminating on the network segment connected to your port of the switch. Most 

switches are oblivious to IP addresses – they work only with MAC addresses. Because of 

20 https://en.wikipedia.org/wiki/Ethernet_extender‘
21 https://en.wikipedia.org/wiki/Network_switch
22 https://en.wikipedia.org/wiki/Collision_domain
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this, they are IP version agnostic. This means they will carry IPv4 or IPv6 traffic (or even 

other kinds of Ethernet traffic) so long as that traffic uses Ethernet frames with MAC 

addresses.

If you are using a switch, but one of your connected nodes really does want to see 

traffic from other network segments, some switches have a mirror port function that 

will allow all traffic from any combination of ports to be copied to one port, to which 

you connect the node that wants to monitor that traffic. This must be configured, 

which requires a management interface of some kind. Like hubs, switches come in 

various speeds, from 10 Mbps up to 1000 Mbps (1 Gbps). Unlike hubs, you can mix 

different speed nodes (10 Mbps, 100 Mbps, and even 1000 Mbps) on a single switch, 

so the speed rating is the maximum speed for nodes connected to it. Switches also 

come in sizes from 4 ports up to 48 ports, and better ones can be “stacked” (linked 

together) to effectively build a single giant switch. Lower-end (cheaper) switches 

may have few if any configuration options and may not even have a user interface. 

Smart (or managed) switches typically have a sophisticated GUI management 

interface (accessible via the network, usually over HTTP) or Command Line Interface 

(accessible either via a serial port, Telnet, or SSH) that allows you to configure various 

things and/or monitor traffic. Switches also typically include support for monitoring 

or control using SNMP (Simple Network Monitoring Protocol). Very advanced 

switches allow you to configure VLANs (Virtual Local Area Networks23), which allow 

you to effectively create multiple sub-switches that are not logically connected 

together, on a single physical switch. Some of these advanced functions process IP 

addresses (layer 3 functionality) and hence are IP version specific (an IPv4-only smart 

switch cannot process IPv6 addresses, but the basic layer 2 switch functionality may 

work fine). Very recent smart switches do support both IPv4 and IPv6 (dual stack), for 

layer 3 functionality with both IP versions.

 RFCs: The Internet Standards Process
Anyone studying the Internet, or developing applications for it, must understand the 

RFC24 system. RFC stands for Request for Comments. These are the documents that 

define the Internet Protocol Suite (the official name for TCP/IP) and many related 

23 https://en.wikipedia.org/wiki/Virtual_LAN
24 https://en.wikipedia.org/wiki/Request_for_Comments
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topics. Anyone can submit an RFC. Ones that are part of the Standards Track are usually 

produced by the IETF (Internet Engineering Task Force) working groups. Anyone 

can start or participate in a working group. Submitted RFCs begin life as a series of 

Internet Drafts, each of which has a lifespan of 6 months or less. Most drafts go through 

considerable peer review, and possibly quite a few revisions, before they are either 

abandoned or approved and issued an official RFC number (e.g., 793) and become part 

of the official RFC collection. There are other kinds of documents in addition to the 

Standards Track, including information memos (FYI), humor (primarily ones issued on 

April 1), and even one obituary, for Jon Postel, the first RFC editor and initial allocator of 

IP addresses, RFC 2468,25 “I Remember IANA,” October 1998. There is even an RFC about 

RFCs, RFC 2026,26 “The Internet Standards Process, Revision 3,” October 1996. That is a 

good place to start if you really want to learn how to read RFCs.

The Internet Standards Process is quite different from the standards process of the 

ISO (International Organization for Standardization) that created the Open System 

Interconnection (OSI) network specification. The ISO typically develops large, complex 

standards with multiple four-year cycles, with hundreds of engineers and much political 

wrangling. This was adequate for creating the standards for the worldwide telephony 

system but is far too slow and hidebound for something as freewheeling and rapidly 

evolving as the Internet. The unique standards process of the IETF is one of the main 

reasons that TCP/IP is now the dominant networking standard worldwide. By the 

time OSI was specified, TCP/IP was already created, deployed, and being revised and 

expanded. OSI never knew what hit it.

Learning to read RFCs is an acquired skill, one that anyone serious about 

understanding the Internet, and most developers creating things for it, should master. 

There are certain “terms of art” (terms that have precise and very specific meanings), 

like the usage of MUST, SHOULD, MAY, and NOT RECOMMENDED. As an example, the 

IPv6-ready tests examine all the MUST (mandatory) and SHOULD (optional) items from 

relevant RFCs.

RFCs are readily available to anyone for free. Compare this with the ISO standards, 

which can cost over $1000 for a complete set of “fascicles” for something like X.500. 

Today you can obtain RFCs easily in various formats by use of a search engine such as 

Google or Yahoo. The “official” source is the URL:

25 www.ietf.org/rfc/rfc2468.txt
26 www.ietf.org/rfc/rfc2026.txt
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www.rfc-editor.org/rfc/rfcXXXX.txt (where XXXX is the 

RFC number)

There is also an official RFC search page, where you can search for phrases (like 

“TCP”) in different tracks, such as RFC, STD, BCP, FYI, or all tracks. You can retrieve 

ASCII or PDF versions. It is at

www.rfc-editor.org/rfcsearch.html

There are over 8000 RFCs today. I have included many references to the relevant 

RFCs in this book. If you want to see all the gory details on any subject, go right to the 

source and read it. You may find it somewhat tough going until you learn to read “RFC-

ese.” A number of books on Internet technology are either just a collection of RFCs, or 

RFCs make up a large part of the content. There is no reason today to do that – anyone 

can download all the RFCs you want and have them in soft (searchable) form. I have 

not included the text of even a single RFC in this book (warning: if you try to read this 

book somewhere without Internet access like on a plane, you may want to look ahead 

and download any relevant RFCs while you have Internet access). The casual reader 

should not need to reference the actual RFCs. The complete set of RFCs is easily tens of 

thousands of pages and growing daily.

Most of the topics covered in this book also have considerable coverage on the 

Internet outside of the RFCs, such as in Wikipedia. Again, if you want to drill deeper in 

any of these topics, crank up your favorite search engine and have at it. The information 

is out there. What I’ve done is to try to collect together the essential information in a 

logical sequence, with a lot of explanations and examples, plus all the references you 

need to drill as deep as you like. I taught cryptography and Public Key Infrastructure for 

VeriSign for two years, so I have a lot of experience trying to explain complex technical 

concepts in ways that reasonably intelligent people can easily follow. Hopefully you will 

find my efforts worthwhile.

 IPv4
The software that made the Second Internet (and virtually all Local Area Networks) 

possible has actually been around for quite some time. It is technically a suite (family) of 

protocols. The core protocols of this suite are TCP (the Transmission Control Protocol) 

and IP (Internet Protocol), which gave it its common name, TCP/IP. Its official name is 

the Internet Protocol Suite.
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TCP was first defined officially in RFC 675, “Specification of Internet Transmission 

Control Program,” December 1974 (yes, 45 years ago). The protocol described in this 

document does not look much like the current TCP, and in fact, the Internet Protocol (IP) 

did not even exist at the time. Jon Postel was responsible for splitting the functionality 

described in RFC 675 into two separate protocols: (the new) TCP and IP. RFC 675 is 

largely of historical interest now. The modern version of TCP was defined in RFC 795, 

“Transmission Control Protocol – DARPA Internet Program Protocol Specification,” 

September 1981 (7 years later). It was later updated by RFC 1122, “Requirements for 

Internet Hosts – Communication Layers,” October 1989, which covers the Link Layer, IP 

Layer, and Transport Layer. It was also updated by RFC 3168, “The Addition of Explicit 

Congestion Notification (ECN) to IP,” September 2001, which adds ECN to TCP and IP.

Both of these core protocols, and many others, will be covered in considerable detail 

in the rest of this chapter.

 Four-Layer (“DoD”) IPv4 Architectural Model
Unlike the OSI network stack, which really does have seven layers, the DoD network 

model has four layers, as shown in the following.

Figure 3-1. Four-layer DoD model for IPv4
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Figure 3-2. Data flow in the four-layer model

It just confuses the issue to try to figure out which of the seven OSI layers the various 

protocols of TCP/IP fit into. It is simply not applicable. It’s like trying to figure out what 

color “sweet” is. The OSI seven-layer model did not even exist when TCP/IP was defined. 

Unfortunately, many people use terms like “layer 2” switches vs. “layer 3” switches. 

These refer to the OSI model. Books from Cisco Press and the Cisco certification exams 

are particularly adamant about using OSI terminology. I would be surprised if there is 

even a single actual OSI network running today. In this book we will try to consistently 

use the four-layer model terminology while referring to the OSI terminology when 

necessary for you to relate the topic to actual products or other books.

Note: outgoing data begins in the application and is passed down the layers of the 
stack (adding headers at each layer) until it is written to the wire. incoming data is 
read off the wire and travels up the layers of the stack (processing and removing 
headers at each layer) until it is accepted by the application. in the following 
discussion, for simplicity, i describe only the outgoing direction.

The Application Layer27 implements the protocols most people are familiar with (e.g., 

HTTP, SMTP, FTP). The software routines for these are typically contained in application 

programs such as browsers or web servers that make “system calls” to subroutines (or 

27 https://en.wikipedia.org/wiki/Application_layer
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“functions” in C terminology) in the “socket API”28 (an API is an Application Program 

Interface, or a collection of related subroutines, typically supplied with the operating 

system or C programming language compiler). The application code creates outgoing 

data streams and then calls routines in the socket API to actually send the data via 

TCP (Transmission Control Protocol) or UDP (User Datagram Protocol). Output to the 

Transport Layer is [DATA] using IP addresses.

The Transport Layer29 implements TCP30 (the Transmission Control Protocol) and 

UDP31 (the User Datagram Protocol). These routines are internal to the socket API 

(hence live in Kernel Space32). In the case of TCP, packet sequencing, plus error detection 

and retransmission, is handled. The Transport Layer prepends a TCP or UDP packet 

header to the data passed down from the Application Layer and then passes the resulting 

packet down to the Internet Layer for further processing. Output to the Internet Layer is 

[TCP HDR[DATA]], using IP addresses.

The Internet Layer33 implements IP34 (the Internet Protocol) and various other related 

protocols such as ICMP35 (which includes the “ping” function among other things). The 

IP routine takes the data passed down from the Transport Layer routines, adds an IP 

packet header onto it, and then passes the now complete IPv4 packet down to routines in 

the Link Layer. Output to the Link Layer is [IP HDR[TCP HDR[DATA]]] using IP addresses.

The Link Layer36 implements protocols such as ARP37 (Address Resolution Protocol) 

that map IP addresses to MAC addresses for transmission between nodes in a single 

network link. It contains protocols such as Ethernet, Wi-Fi, and MPLS. It also contains 

routines that actually read and write data (as fed down to it by routines in the Internet 

Layer) onto the network wire, in compliance with Ethernet or other standards. Output to 

wire: Ethernet frame containing the IP packet, using MAC addresses (or other Link Layer 

addresses for non-Ethernet networks).

28 www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.hali001/
thesocketapi.htm
29 https://en.wikipedia.org/wiki/Transport_layer
30 https://en.wikipedia.org/wiki/Transmission_Control_Protocol
31 https://en.wikipedia.org/wiki/User_Datagram_Protocol
32 www.linfo.org/kernel_space.html
33 https://en.wikipedia.org/wiki/Internet_layer
34 https://en.wikipedia.org/wiki/Internet_Protocol
35 https://en.wikipedia.org/wiki/Internet_Control_Message_Protocol
36 https://en.wikipedia.org/wiki/Link_layer
37 https://en.wikipedia.org/wiki/Address_Resolution_Protocol
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Each layer “hides” the details (and/or hardware dependencies) from the higher 

layers. This is called “levels of abstraction.” An architect thinks in terms of abstractions 

such as roofs, walls, windows, etc. The next layer down (the builder) thinks in terms of 

abstractions such as bricks, glass, mortar, etc. Below the level of the builder, an industrial 

chemist thinks in terms of formulations of clay or silicon dioxide to create bricks and 

glass. If the architect tried to think at the chemical or atomic level, it would be very 

difficult to design a house. Their job is made possible by using levels of abstraction. 

Network programming is analogous. If application programmers had to think in terms of 

writing bits to the actual hardware, applications such as web browsers would be almost 

impossible. Each Network Layer is created by specialists who understand the details at 

their level, and lower layers can be treated as “black boxes” by people working at the 

higher layers.

Another important thing about Network Layers is that you can make major changes 

to one layer, without impacting the other layers much at all. The connections between 

layers are well defined and don’t change (much). This provides a great deal of separation 

between the layers. In the case of IPv6, the Internet Layer is almost completely 

redesigned internally, while the Link Layer and Transport Layer are not affected much at 

all (other than providing more bytes to store the larger IPv6 addresses). If your product 

is “IPv6-only,” that’s about the only change you would need to make to your application 

software (unless you display or allow entry of IP addresses). If your application is “dual 

stack” (can send and receive data over IPv4 or IPv6), then a few more changes are 

required in the Application Layer (e.g., to accept multiple IPv4 and IPv6 addresses from 

DNS and try connecting to one or more of them based on various factors or to accept 

incoming connections over both IPv4 and IPv6). This makes it possible to migrate (or 

“port”) network software (created for IPv4) to IPv6 or even dual stack with a fairly minor 

effort. In comparison, changing network code written for TCP/IP to use OSI instead 

would probably involve a complete redesign and major recoding effort.

 IPv4: The Internet Protocol, Version 4
IPv4 is the foundation protocol of the Second Internet and accounts for many of its 

distinguishing characteristics, such as its 32-bit address size, its addressing model, and 

its packet header structure and routing. IPv4 was first defined in RFC 791 “Internet 

Protocol,” September 1981.
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 Relevant Standards for IPv4
RFC 791, “Internet Protocol,” September 1981 
(Standards Track)

RFC 792, “Internet Control Message Protocol,” September 1981 
(Standards Track)

RFC 826, “An Ethernet Address Resolution Protocol,” 
November 1982 (Standards Track)

RFC 1256, “ICMP Router Discovery Messages,” September 1991 

(Standards Track)

RFC 2390, “Inverse Address Resolution Protocol,” September 1998 

(Standards Track)

RFC 2474, “Definition of the Differentiated Services Field 
(DS Field) in the IPv4 and IPv6 Headers,” December 1998 
(Standards Track)

RFC 4650, “HMAC-Authenticated Diffie-Hellman for Multimedia 

Internet KEYing (MIKEY),” September 2006 (Standards Track)

RFC 4884, “Extended ICMP to Support Multi-Part Messages,” April 

2007 (Standards Track)

RFC 4950, “ICMP Extensions for Multiprotocol Label Switching,” 

August 2007 (Standards Track)

RFC 5494, “IANA Allocation Guidelines for the Address Resolution 

Protocol (ARP),” April 1009 (Standards Track)

RFC 5735, “Special Use IPv4 Addresses,” January 2010 (Best 
Current Practices)

Chapter 3  review of ipv4

https://www.ietf.org/rfc/rfc791.txt
https://www.ietf.org/rfc/rfc792.txt
https://www.ietf.org/rfc/rfc792.txt
https://www.ietf.org/rfc/rfc1256.txt
https://www.ietf.org/rfc/rfc2390.txt
https://www.ietf.org/rfc/rfc2474.txt
https://www.ietf.org/rfc/rfc4650.txt
https://www.ietf.org/rfc/rfc4884.txt
https://www.ietf.org/rfc/rfc4950.txt
https://www.ietf.org/rfc/rfc5494.txt
https://www.ietf.org/rfc/rfc5735.txt


53

 IPv4 Packet Header Structure
So what are these packet headers mentioned previously? In IPv4 packets, there is an 

IPv4 packet header,38 then a TCP (or UDP) packet header, and then the packet data. Each 

header is a structured collection of data, including things such as the IPv4 address of the 

sending node and the IPv4 address of the destination node. Why are we getting down to 

this level of detail? Because some of the big changes from IPv4 to IPv6 have to do with 

the new and improved IP packet header architecture in IPv6. In this chapter, we’ll cover 

the IPv4 packet header. Here it is.

The IP Version field (4 bits) contains the value 4, which in binary is “0100” (you’ll 

never guess what goes in the first 4 bits of an IPv6 packet header!).

The Header Length field (4 bits) indicates how long the header is, in 32-bit “words.” 

The minimum value is “5,” which would be 160 bits, or 20 bytes. The maximum length is 

15, which would be 480 bits, or 60 bytes. If you skip that number of words from the start 

of the packet, that is where the data starts (this is called the “offset” to the data). This 

will only ever be greater than 5 if there are options before the data part (which is not 

common).

38 https://en.wikipedia.org/wiki/IPv4#Header

Figure 3-3. IPv4 packet header

Chapter 3  review of ipv4

https://en.wikipedia.org/wiki/IPv4#Header


54

The Type of Service field (8 bits) is defined in RFC 2474,39 “Definition of the 

Differentiated Services Field (DS Field) in the IPv4 and IPv6 headers,” December 

1998. This is used to implement a fairly simple QoS (Quality of Service). QoS involves 

management of bandwidth by protocol, by sender, or by recipient. For example, you 

might want to give your VoIP connections a higher priority than your video downloads 

or the traffic from your boss higher priority than your co-worker’s traffic. Without QoS, 

bandwidth is on a first come–first served basis. 8 bits are not really enough to do a good 

job on QoS, and DiffServ is not widely implemented in current IPv4 networks. QoS is 

greatly improved in IPv6.

The Total Length field (16 bits) contains the total length of the packet (including 

the packet header) in bytes. The minimum length is 20 (20 bytes of header plus 0 bytes 

of data), and the maximum is 65,535 bytes (since only 16 bits are available to specify 

this). All network systems must handle packets of at least 576 bytes, but a more typical 

packet size is 1508 bytes. With IPv4, it is possible for some devices (like routers) to 

fragment packets40 (break them apart into multiple smaller packets) if required to get 

them through a part of the network that can’t handle packets that big. Packets that are 

fragmented must be reassembled at the other end. Fragmentation and reassembly is one 

of the messy parts of IPv4 that got cleaned up a lot in IPv6. A lot of hacking attacks exploit 

the messy scheme in IPv4.

The Identification (Fragment ID) field (16 bits) identifies which fragment of a once 

larger packet this one is, to help in reassembling the fragmented packet later. In IPv6 

packet fragmentation is not done by intermediate nodes, so all the header fields related 

to fragmentation are no longer needed.

The next three bits are flags related to fragmentation. The first is reserved and must 

be zero (an April Fool’s RFC41 once defined this as the “evil” bit, which the sender should 

set if they are doing something malicious). The next bit is the DF (Don’t Fragment) flag. 

If DF is set, the packet cannot be fragmented (so if such a packet reaches a part of the 

network that can’t handle one that big, that packet is dropped). The third bit is the MF 

(More Fragments) flag. If MF is set, there are more fragments to come. Unfragmented 

packets of course have the MF flag set to zero.

39 https://tools.ietf.org/html/rfc2474
40 https://en.wikipedia.org/wiki/IP_fragmentation
41 www.ietf.org/rfc/rfc3514.txt

Chapter 3  review of ipv4

https://tools.ietf.org/html/rfc2474
https://en.wikipedia.org/wiki/IP_fragmentation
https://en.wikipedia.org/wiki/IP_fragmentation
https://www.ietf.org/rfc/rfc3514.txt
https://tools.ietf.org/html/rfc2474
https://en.wikipedia.org/wiki/IP_fragmentation
http://www.ietf.org/rfc/rfc3514.txt


55

The Fragment Offset field (13 bits) is used in reassembly of fragmented packets. It is 

measured in 8-byte blocks. The first fragment of a set has an offset of 0. If you had a 2500-

byte packet, and were fragmenting it into chunks of 1020 bytes, you would have three 

fragments as follows:

 

The Time-To-Live (TTL) field (8 bits) is to prevent packets from being shuttled 

around indefinitely on a network. It was originally intended to be lifetime in seconds 

(hence the name), but it has come to be implemented as “hop count.” This means that 

every time a packet crosses a switch or router, the hop count is decremented by one. If 

that count reaches zero, the packet is dropped. Typically, if this happens, an ICMPv4 

message (“Time Exceeded”) is returned to the packet sender. This mechanism is how the 

traceroute command works. The primary purpose of TTL is to prevent looping (packets 

running around in circles).

The Protocol field (8 bits) defines the type of data found in the data portion of the packet. 

Protocol numbers are not to be confused with ports. Some common protocol numbers are

 

The Header Checksum field (16 bits) is the 16-bit one’s complement of the one’s 

complement sum of all 16-bit words in the header. When computing, the checksum 

field itself is taken as zero. To validate the checksum, add all 16-bit words in the header 

together including the transmitted checksum. The result should be 0. If you get any 

other value, then at least 1 bit in the packet was corrupted. There are certain multiple bit 

errors that can cancel out, and hence bad packets can go undetected. Note that since the 

hop count (TTL) is decremented by one on each hop, the IP header checksum must be 

recalculated at each hop. The IP header Checksum was eliminated in IPv6.

The Source IP Address field (32 bits) contains the IPv4 address of the sender (may be 

modified by NAT).
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The Destination IP Address field (32 bits) contains the IPv4 address of the recipient 

(may be modified by NAT in a reply packet).

Options (0–40 bytes) is not often used. These are not relevant to this book. If you 

want the details, read the RFCs.

Data (variable number of bytes) is the data part of the packet – not really part of the 

header. This is not included in the IP header checksum. The number of bytes in the Data 

field is the value of “Total Length” minus the value of “Header Length.”

 

Figure 3-4. IPv4 and IPv6 packet headers side by side
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 IPv4 Addressing Model
In IPv4, addresses are 32 bits in length. They are really just integer numbers from 0 to 

4,294,967,295. For the convenience of humans, these numbers are typically represented 

in dotted decimal notation. This splits the 32-bit addresses into four 8-bit fields and 

then represents each 8-bit field with a decimal number from 0 to 255. These decimal 

numbers cover all possible 8-bit binary patterns from 0000 0000 to 1111 1111. The 

decimal numbers are separated by “dots” (periods). Leading zeros can be eliminated. 

The following are all valid IPv4 addresses represented in dotted decimal:

 

Originally there were five classes of IPv4 addresses, as defined in RFC 791,42 “Internet 

Protocol,” September 1981:

Class A: First bit 0 (0.0.0.0–127.255.255.255), 8-bit network number, 24-bit node 

within network number, subnet mask 255.0.0.0. There are 128 class A networks, each 

containing 16.7M addresses.

Class B: First 2 bits “10” (128.0.0.0–191.255.255.255), 16-bit network number, 16-

bit node within network number, subnet mask 255.255.0.0. There are 16,384 class B 

networks, each containing 65,536 addresses.

Class C: First 3 bits “110” (192.0.0.0–223.255.255.255), 24-bit network number, 

8-bit node within network number, subnet mask 255.255.255.0. There are 2M class C 

networks, each containing 256 addresses.

Class D: First 4 bits “1110” (224.0.0.0–239.255.255.255), used for multicast.

Class E: First 4 bits “1111” (240.0.0.0–255.255.255.255), experimental/reserved (not 

forwarded by most routers).

 Network Ports
Each IP address on a network node has 65,536 ports associated with it (the port number 

is a 16-bit value, and 2 to the 16th is 65,536). Any of those ports can either be used to 

make an outgoing connection or to accept incoming connections. There is a list of  

42 https://tools.ietf.org/html/rfc791
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well-known ports43 that associates particular ports with certain protocols. For example, 

port 25 is associated with SMTP. There is nothing magical (or email-ish) about port 25. 

SMTP will work just as well on any other port, for example, 10025. Use of port 25 for 

SMTP is simply a convention that many people adopt. Such conventions make it easier 

to locate the SMTP server on a node you might not be familiar with. To be specific, ports 

are a Transport Layer thing, and there are really 65,536 TCP ports and another 65,536 

UDP ports for each address. IP and ICMP, which are Internet Layer things, do not have 

any port(s) associated with them.

Anyone can reserve port numbers44 with IANA. I happen to have been awarded two 

port numbers, 4604 for my Identity Registration Protocol (IRP) and 4605 for my SixChat 

protocol. IANA reviewed both requests and determined that they were innovative 

(did not duplicate any other protocols) and viable (did something useful) and met all 

requirements for a modern protocol (e.g., support for Explicit TLS).

When you deploy an Internet server (e.g., an SMTP server for sending and receiving 

email), the software opens a socket (a programming abstraction) in listen mode on a 

particular port (in the case of SMTP, port 25). An email client that wants to connect 

to it creates its own socket in connect mode and tells it to connect to a particular IP 

address (that of the SMTP server) using a particular port (in this case 25). When the 

connection attempt reaches the server, the server detects the attempt and accepts the 

connection (actually the port on the server that the connection is accepted on will be 

any available port, typically higher than 1024). A well-written server would then make 

a clone of itself (this is called forking in UNIX speak) and then go back to listening for 

further connections, while its clone went ahead and processed the connection. When 

the processing is complete on a given connection, the sockets used would be closed 

(on both server and client), and the clone of the server will quietly commit suicide. In 

43 https://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers
44 www.iana.org/assignments/service-names-port-numbers/service-names-port- 
numbers.xhtml

Figure 3-5. IRP port number registration
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theory you could have thousands of clones of the server all simultaneously handling 

email connections on a single server (given sufficient memory and other resources). 

Busy web servers (like those at Google) often have many thousands of connections being 

processed at any given time (but never more than 65,000 on a given interface – each 

connection uses up one port).

If threads are used instead of processes, the scheme is similar but has far less 

overhead.

In UNIX, ports with numbers under 1024 are special, and only software that has root 

privilege can use them. Most common Internet services use ports in that range. There 

are many well-known ports, but here are a few of the more common ones:

 

 IPv4 Subnetting
This leads us naturally into the topic of IPv4 subnetting.45 This is one of the more difficult 

areas of networking for people learning to work with IPv4. All addresses have two “parts,” 

the first part being the address of the network (e.g., 192.168.0.0) and the second being 

the node within that network (e.g., 0.0.2.5). These two parts can be split apart at some 

“bit boundary.” In this case, the address of the network is in the first 16 bits, and the node 

within the network is in the last 16 bits. The addresses of all nodes in such a network 

share the same first 16 bits, but each has a unique last 16 bits. So such a network might 

have nodes with addresses 192.168.2.5, 192.168.3.7, and 192.168.200.12, but not one with 

the address 192.169.2.1 (that address is in network 192.169.0.0, not network 192.168.0.0).

A subnet46 mask is a 32-bit value in which the first n bits (n=1–32) have the value 1 

and the remaining 32-n bits have the value 0. It is used to split an IPv4 address into its 

two parts (the first n bits and the last 32-n bits). In the network just described, the subnet 

45 www.cisco.com/c/en/us/support/docs/ip/routing-information-protocol- 
rip/13788-3.html
46 https://en.wikipedia.org/wiki/Subnetwork
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mask is 255.255.0.0 (the first 16 bits have the value 1; the last 16 bits have the value 0). 

You do a Boolean “AND” function of the address with the subnet mask to get the address 

of the network and a Boolean “AND” of the address with the one’s complement of the 

subnet mask (in this case 0.0.255.255) to get the node within subnet. This is difficult 

to visualize in dotted decimal. It is rather more obvious in binary. The Boolean “AND” 

function produces a 1 if both inputs are 1; else, it produces a 0. The “one’s complement” 

(Boolean “NOT”) function changes each 0 to a 1 and each 1 to a 0. With the “AND” 

function, where there is a 1 in the mask, the corresponding bit of the address “flows 

through” to the result. Where there is a 0 in the mask, the corresponding bit of the 

address is blocked (forced to the value 0). The following example (with addresses and 

mask shown in both dotted decimal and binary) should make this clear.

For subnet mask 255.0.0.0 (class A), the first 8 bits are the network address, and the 

last 24 are the node within subnet.

For subnet mask 255.255.0.0 (class B), the first 16 bits are the network address, and 

the last 16 are the node within subnet.

For subnet mask 255.255.255.0 (class C), the first 24 bits are the network address, and 

the last 8 are the node within subnet.

Subnetting was easy when the three IP address classes (A, B, and C) were used. 

The first few bits of the address determined the subnet mask. If the first bit of the 32-bit 

address was “0,” then the address was class A, and the subnet mask was 255.0.0.0. If the 

first 2 bits of the address were “10,” then the address was class B, and the subnet mask 

was 255.255.0.0. If the first 3 bits of the address were “110,” then the address was class C, 

and the subnet mask was 255.255.255.0. This could actually be done automatically, so no 

one worried about subnet masks.

Figure 3-6. IP addresses and subnet masks
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One of the changes made in the IPv4 addressing model in the mid-1990s was to 

introduce Classless Inter-domain Routing,47 in RFC 1519,48 “Classless Inter-domain 

Routing (CIDR),” September 1993. It was later replaced by RFC 463249, “Classless Inter-

domain Routing (CIDR),” August 2006.

When CIDR was introduced, there were two consequences. First, the split between 

the two parts of the address could come at any bit boundary, not just after 8, 16, and 24 

bits. Second, several small blocks (e.g., /28 blocks) could be carved out of a bigger block 

anywhere in the address space (perhaps from an old class A block, such as 7.x.x.x), so 

you could no longer determine the correct subnet mask by looking at the first few bits 

of an address. For example, a “/8” (class A) block might be carved up into 65,536 “/24” 

(class C) subnets, which could be allocated to different organizations.

Let’s say your ISP, instead of giving you a class C block, only gives you a “/28” block 

of real (routable) IPv4 addresses, which would be 16 real IPv4 addresses, for example, 

123.45.67.0 through 123.45.67.15. First, two of these addresses are not usable (may not 

be assigned to nodes). 123.45.67.0 is the “network address,” and 123.45.67.15 is the 

“broadcast address.” That leaves 14 usable addresses (123.45.67.1 through 12.45.67.14). 

So what is your subnet mask? If you check the preceding table of useful CIDR block sizes, 

a /28 subnet has a subnet mask of 255.255.255.240. In binary that is 1111 1111 1111 1111 

1111 1111 1111 0000 (first 28 bits are 1; last 4 bits are 0). However, by the old rules (first 

bit is a 0), these are really from a “class A” block, so the automatically generated subnet 

mask would have been 255.0.0.0, which is not correct.

Now, what if your organization really has 100 nodes that need IP addresses? How 

do you give each of them unique addresses if you only have 14 usable addresses to work 

with? That’s where Network Address Translation (NAT) comes in (covered in the next 

chapter). If you think CIDR made your life more “interesting,” wait until you see what 

NAT does to it! Getting rid of CIDR and NAT is one of the big wins in IPv6. In fact, you will 

find that the entire subject of subnets has become totally trivial.

47 https://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing
48 https://tools.ietf.org/html/rfc1519
49 https://tools.ietf.org/html/rfc4632
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 MAC Addresses
IPv4 addresses are not actually used at the lowest layer of the IPv4 network stack (the 

Link Layer). Each network hardware interface actually has a 48-bit “MAC address” 

burned into it by the manufacturer. The first 24 bits of this (called the “Organizationally 

Unique Identifier50” or OUI) specify the manufacturer and are purchased by vendors 

from the IEEE51 (Institute of Electrical and Electronics Engineers). A given vendor may 

have multiple OUIs, but a given OUI is associated only with one vendor. The last 24 bits 

of this (called the “Network Interface Controller–Specific” part) are assigned by each 

manufacturer, to be unique within a given OUI. This means that the entire 48-bit value 

is globally unique. For example, Dell Computer has a number of OUIs assigned to them 

by the IEEE, including 00-06-5B, 00-08-74, and 00-18-8B. If you encounter a NIC with a 

MAC address that has one of those sets of 24 bits, it was made by Dell Computer. When 

you use the command “ipconfig /all” in Windows, you get a list of network configuration 

information for all your interfaces (some of which are “virtual”). If you look for “Local 

Area Connection,” that is information about your main (or only) network connection 

to your LAN. Under that, you will see an item labeled “Physical Connection,” followed 

by six pairs of hex digits, separated by dashes. That is the MAC address of your Network 

Interface Controller (NIC). Mine is 00-18-8B-78-DA-1A. This means my NIC was made 

by Dell (my whole computer was, but the MAC address doesn’t tell you that). Actually, 

since the NIC I’m using is on the motherboard (not an add-on PCI card), this does tell 

me the motherboard was made by Dell.

You can look up the vendor of any device based on its OUI (or MAC-48 address). See

www.whatsmyip.org/mac-address-lookup/

This site tells me that the Ethernet adapter in my desktop computer (MAC address 

9C-5C-8E-8F-2F-B0) was created by ASUSTek Computer Inc.

Network switches come in two varieties. “Layer 2” switches (which I would call Link 

Layer switches) only work with MAC addresses. They don’t even “see” IP addresses. 

Hence, “Layer 2” switches are IP version agnostic; they work equally well with IPv4 or 

IPv6 or a mixture of the two (dual stack). “Layer 3” switches (sometimes called “smart” 

switches) work with MAC addresses, but they also understand and can see IP addresses 

(these work at both the Link Layer and the Internet Layer, in terms of the four-layer 

Model). They can do things like create VLANs (Virtual LANs) to segregate traffic based 

50 https://en.wikipedia.org/wiki/Organizationally_unique_identifier
51 https://en.wikipedia.org/wiki/Institute_of_Electrical_and_Electronics_Engineers
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on IP addresses. An IPv4-only “layer 3 switch” cannot work with IPv6 traffic (or at least 

none of its “higher-level” functions will affect IPv6 traffic). There are now a few dual-

stack “layer 3” switches on the market, such as the SMC 8848M, which I happen to be 

running in my home network. I can even manage it over IPv6 (via Web and SNMP) and 

create VLANs52 based on IPv6 addresses.

 Mapping from IPv4 Addresses to Link Layer Addresses
The software in the Application Layer, the Transport Layer, and the Internet Layer of the 

IPv4 stack work with IP addresses. But the Link Layer (and the hardware) works with 

MAC addresses (or other Link Layer addresses). How do IPv4 addresses get mapped 

onto Link Layer addresses?

 Address Resolution Protocol (ARP)
There are two protocols in IPv4 (that don’t even exist in IPv6) called ARP53 (Address 

Resolution Protocol) and InARP54 (Inverse Address Resolution Protocol). These 

protocols live in the Link Layer. ARP maps IP addresses onto Link Layer addresses. This 

is kind of like the mapping between FQDNs and IP addresses done in the Application 

Layer by DNS, but down in the Link Layer. InARP maps Link Layer addresses onto IP 

addresses (kind of like a reverse DNS lookup).

ARP is defined in RFC 826,55 “An Ethernet Address Resolution Protocol,” November 

1982. ARP operates only within the network segment (routing domain) that a host is 

connected to. It does not cross routers. It is used to determine the necessary Link Layer 

addresses to get a packet from one node in a subnet to another node in the same subnet 

(which could be a “default gateway” node that knows how to relay it on further). But for 

the hop from the sender to the default gateway, it is the same problem as getting the 

packet to any other local node. When the sender goes to send a packet, if the recipient’s 

address is on the local link, an ARP request is done for the recipient’s address, and the 

packet is sent to the recipient. If the recipient’s address is not on the local link, an ARP 

52 https://en.wikipedia.org/wiki/Virtual_LAN
53 https://en.wikipedia.org/wiki/Address_Resolution_Protocol
54 www.oreilly.com/library/view/internet-core-protocols/1565925726/
ch03s01s03s01.html
55 https://tools.ietf.org/html/rfc826
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request is done instead for the sender’s default gateway address, and the packet is sent to 

the default gateway node, which will then worry about forwarding it on toward the real 

recipient.

Say Alice (one IPv4 node) wants to send a packet to Bob (another IPv4 node, on the 

same Ethernet network segment). Assume Alice does not currently know Bob’s MAC 

address. Each machine has a table of IP addresses and MAC addresses (called an ARP 

table). At this time, there is no entry in Alice’s ARP table with Bob’s IP address and MAC 

address. So Alice first sends an Ethernet ARP request to all machines on the network 

segment (using the Ethernet broadcast address), with the following info:

 

All machines on the network segment will receive the packet, but everyone other 

than Bob will ignore it (“Not for me – IGNORE!”). Bob understands Ethernet protocol 

and IPv4. He recognizes his own IPv4 address (“It’s for ME!”). He adds Alice’s IPv4 

address and Alice’s MAC address into his ARP table (for future reference) and then sends 

a response Ethernet ARP packet back to Alice, using her MAC address (which he now 

knows) instead of the broadcast address, with the following info:

 

Only Alice gets the response (this was not a broadcast). Alice sees that this is a 

RESPONSE, and the sender’s address tells her whom the response was from. Alice then 

adds Bob’s IP address and MAC address into her ARP table. Now that she knows how to 

send things to Bob, she goes ahead with sending the packet that she originally was trying 

to send. This process is called address resolution, hence the name Address Resolution 

Protocol.
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The ARP table has expiration times (TTL), and when an entry becomes “stale,” it will 

be discarded, and the next time a packet is sent to that address, a new fresh entry will be 

added to the ARP table.

In Windows, you can view your ARP table at any time, in a DOS window, with the 

command “arp –a”. The results might look something like the following.

 Inverse ARP (InARP)
There is another protocol called Inverse ARP (InARP) that maps Link Layer addresses 

onto IP addresses. InARP is defined in RFC 2390,56 “Inverse Address Resolution 

Protocol,” September 1998.

InARP is needed only by a few network hardware devices (like ATM). It works almost 

exactly like ARP, except different opcodes are used and the sender sends the recipient’s 

MAC address (which it knows), but zero fills the recipient’s IP address (which it wants 

to know). The recipient recognizes its own MAC address and responds with the same 

information that it does to an ARP. The older RARP (Reverse ARP) protocol is now 

deprecated.

56 https://tools.ietf.org/html/rfc2390

Figure 3-7. Reverse ARP listing

Chapter 3  review of ipv4

https://tools.ietf.org/html/rfc2390
https://tools.ietf.org/html/rfc2390


66

 Types of IPv4 Packet Transmissions
The most common type of packet transmission is unicast.57 This is when one node 

(A) sends a packet to just one other node (B). A and B can be in the same local link or 

halfway around the world. So long as routable IP addresses are used and a routing path 

is available between A and B, it is still called unicast.

Another kind of transmission is broadcast58 (covered in more detail in the following). 

Here a node can transmit a packet to all nodes in the local link. Any node not interested 

in a broadcast packet will just drop it. If the packet was an ICMP Echo Request (ping), all 

nodes on the local link might reply to it, which could cause a lot of excess traffic.

There is another kind of transmission called anycast.59 Here a node can transmit a 

packet to a single node out of a set of some collection of nodes (e.g., the “nearest” DNS 

server). Usually only a single node will accept the transmission and reply to the sender. 

This mechanism is somewhat limited in IPv4 but works really well in IPv6. DNS anycast 

is used with the root DNS servers to allow multiple copies of each root server, to handle 

the load and minimize turnaround on root server requests. DNS anycast is usually done 

at the BGP routing level.

There is one more kind of transmission called multicast.60 Here one node can send a 

single stream of packets, such as a digitized radio program, and any number of recipient 

nodes can subscribe to that multicast and receive it. Usually listening is a passive act; 

no responses are sent to the sender. The sender has no knowledge of which or even 

how many nodes are receiving the transmission. It is efficient because other nodes 

further along the network handle replication of the traffic to nodes beyond them. This 

is analogous to many radios receiving a transmission from a single radio transmitting 

station. This is covered in more detail in the following. This is supported in IPv4 but 

works far better in IPv6.

 IPv4 Broadcast
Any node can send a packet to a special IPv4 address (255.255.255.255), and all nodes on 

the local link will receive it. Any destination address that has all ones in the “node within 

57 https://en.wikipedia.org/wiki/Unicast
58 https://en.wikipedia.org/wiki/Broadcasting_(networking)
59 https://en.wikipedia.org/wiki/Anycast
60 https://en.wikipedia.org/wiki/Multicast
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subnet” field is broadcast (e.g., 172.16.255.255 in 172.16/16). Usually, there is some 

kind of information in the packet that allows most nodes to realize that packet does not 

concern them (e.g., if a broadcast packet contains a DHCPv4 request, all nodes that don’t 

have a DHCPv4 server will ignore it). This mechanism can help locate servers or solve 

other problems (like not yet having a valid IP address), but it can put unnecessary loads 

on all nodes that aren’t involved. It can also lead to broadcast storms, which involve 

massive amounts of useless traffic clogging or totally shutting down an IPv4 network. 

As an example, a “smurf attack”61 sends zillions of pings to the broadcast address with 

the source address containing the spoofed address of the node under attack (not the 

address of the actual sender). All nodes on the local link “respond” to the poor node 

under attack, which amplifies the attack. There are certain kinds of misconfigurations or 

hardware failures in network switches that can cause broadcast storms as well.

Packets sent to the broadcast address do not cross routers (or VLAN boundaries), so 

appropriate use of these can limit the extent of disruption due to excessive broadcasts 

or storms. The set of nodes that a broadcast will reach is called a broadcast domain. 

Switches do not block broadcasts – they relay packets with a broadcast destination 

address out all ports (unlike packets with a unicast destination address).

Broadcast is used in the DHCPv4, to allow a node to find and communicate with the 

DHCPv4 server before it even gets an address.

Broadcast does not exist in IPv6, because it can be so trouble-prone. Other 

mechanisms (e.g., multicast or solicited node multicast) are used to locate DHCPv6 

servers or solve other problems for which broadcast may be used in IPv4.

 IPv4 Multicast
Multicast allows a node to transmit a stream of data to one of a number of special 

“multicast” addresses. Multicast supports only UDP, not TCP. Any number of other 

nodes can subscribe to that address and receive the datagrams. As one example, this 

could be used to send “broadcast” (in the media sense) radio or television programs. 

Multicast packet transmission differs from broadcast packet transmission in that only 

nodes that have subscribed to that multicast address receive the packets.

Sites like YouTube, and services like “on-demand” television, use traditional unicast 

(one sender connecting to one recipient) transmissions to each user. This requires a 

61 https://en.wikipedia.org/wiki/Smurf_attack
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great deal of bandwidth and a powerful network infrastructure at the transmission site, 

especially if there are a large number of recipients (potentially millions). Multicast is 

necessary to bring costs and network bandwidth requirements low enough to make it 

competitive with media “broadcast” over satellite or cable systems.

There are several mechanisms and protocols involved in IPv4 multicast:

• An IP multicast group address (one of the IPv4 “class D” addresses 

described previously)

• A sending node that can convert some kind of data such as audio 

and/or video into digital form and transmit the resulting UDP packets 

to that multicast group address

• A multicast distribution tree, where every router crossed supports 

multicast operation

• A new protocol called IGMP (Internet Group Management Protocol) 

that allows clients to subscribe to a particular multicast transmission

• Another new protocol called PIM (Protocol Independent Multicast) 

that sets up multicast distribution trees

• Clients that can “subscribe” to specific multicast addresses (receive 

the data being transmitted by the sender) and process the received 

digital data into some kind of service, such as audio or video

Assuming there is a multicast program available on a particular multicast address 

(e.g., 239.1.2.3), a consumer can use a multicast client application to extend the 

distribution tree associated with that address to reach their computer. This corresponds 

to selecting a channel on a television. There may be multiple routers between the 

sender and this subscriber. All those routers must support multicast and be informed 

to replicate packets from the sender to that recipient. IGMP62 is used to subscribe to a 

specific multicast address, and PIM63 is used to inform all intervening routers to extend 

the distribution tree to this client. The multicast server does not need to know anything 

about the recipients and does not get any response from them. The creation of the 

distribution tree and subscriptions to particular multicast addresses are handled by the 

clients and intervening multicast routers, not by the multicast server.

62 https://en.wikipedia.org/wiki/Internet_Group_Management_Protocol
63 https://en.wikipedia.org/wiki/Protocol_Independent_Multicast
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Unlike unicast routers, a multicast router does not need to know how to reach all 

possible distribution trees, only those for which it is passing traffic from a sender to a 

recipient. If there is no recipient subscribed to a given channel “downstream” from a 

router (from the sender to recipient), there is no need for it to replicate packets and 

forward them downstream. If a recipient downstream from that router subscribes 

to a particular address, then that router will start replicating incoming upstream 

packets from the multicast address and relay them downstream toward that recipient 

(or recipients). This is called adding a “graft” onto the tree. If there are recipients 

downstream on a particular path from a multicast router and the last one “tunes out,” 

then the last router in the path between the server and that node is informed to stop 

replicating packets along that path. This is called “pruning” the distribution tree. It is 

possible that one subscriber “tuning out” could result in an entire chain of multicast 

routers being pruned if there are no other subscribers down that path.

Multicast is often used for services such as IPTV, including applications such as 

distance learning. Not all IPv4 routers support multicast and the related protocols, so 

IPv4 multicast works best in “walled garden” networks, for example, within a single ISP’s 

network (e.g., Comcast subscriber accessing multicast content from Comcast). In such 

a situation, it is possible to ensure that all intervening routers support the necessary 

protocols (which are optional in IPv4).

It is possible to build a fully IPv4 multicast-compliant router using open source 

operating systems and an open source package called XORP64 (eXtensible Open Router 

Platform, at www.xorp.org). XORP was first developed for FreeBSD, but is available 

on Linux, OpenBSD, NetBSD, and Mac OS X. The XORP technology and team was 

transferred to a commercial startup backed by VCs (called XORP Inc.65). Many modern 

enterprise-class routers support Ipv4 multicast, but not all do. Not many small office/

home office (SOHO)–class routers do. In IPv6, multicast is an integral part of the 

standard, and support is mandatory in all IPv6-compliant devices. It also works in a very 

different way and is much more scalable.

Internet Relay Chat66 (IRC) uses a different approach to multicast (not the standard 

multicast protocols) and creates a spanning tree across its overlay network to all nodes 

that subscribe to a given chat channel. Unlike multicast-delivered media content, IRC is 

a two-way channel.

64 https://en.wikipedia.org/wiki/XORP
65 www.xorp.org/
66 https://en.wikipedia.org/wiki/Internet_Relay_Chat
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 Relevant Standards for IPv4 Multicast
RFC 1112, “Host Extensions for IP multicasting,” August 1989 

(Standards Track)

RFC 2236, “Internet Group Management Protocol, Version 2,” 

November 1997 (Standards Track)

RFC 2588, “IP Multicast and Firewalls,” May 1999 (Informational)

RFC 2908, “The Internet Multicast Address Allocation 

Architecture,” September 2000 (Informational)

RFC 3376, “Internet Group Management Protocol, Version 3,” 

October 2002 (Standards Track)

RFC 3559, “Multicast Address Allocation MIB,” June 2003 

(Standards Track)

RFC 3973, “Protocol Independent Multicast – Dense Mode (PIM-

DM),” January 2005 (Experimental)

RFC 4286, “Multicast Router Discovery,” December 2005 

(Standards Track)

RFC 4541, “Considerations for Internet Group Management 

Protocol (IGMP) and Multicast Listener Discovery Protocol (MLD) 

Snooping Switches,” May 2006 (Informational)

RFC 4601, “Protocol Independent Multicast – Sparse Mode 

(PIM-SM): Protocol Specification (Revised),” August 2006 

(Standards Track)

RFC 4604, “Using Internet Group Management Protocol 

Version 3 (IGMPv3) and Multicast Listener Discovery Protocol 

Version 2 (MLDv2) for Source-Specific Multicast,” August 2006 

(Standards Track)

RFC 4605, “Internet Group Management Protocol (IGMP)/

Multicast Listener Discovery (MLD)–Based Multicast Forwarding 

(IGMP/MLD Proxying),” August 2006 (Standards Track)
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RFC 4607, “Source-Specific Multicast for IP,” August 2006 

(Standards Track)

RFC 4610, “Anycast-RP Using Protocol Independent Multicast 

(PIM),” August 2006 (Standards Track)

RFC 5015, “Bidirectional Protocol Independent Multicast (BIDIR-

PIM),” October 2007 (Standards Track)

RFC 5060, “Protocol Independent Multicast MIB,” January 2008 

(Standards Track)

RFC 5110, “Overview of the Internet Multicast Routing 

Architecture,” January 2008 (Informational)

RFC 5135, “IP Multicast Requirements for a Network Address 

Translation (NAT) and a Network Address Port Translator 

(NAPT),” February 2008 (Best Current Practices)

RFC 5332, “MPLS Multicast Encapsulations,” August 2008 

(Standards Track)

RFC 5374, “Multicast Extensions to the Security Architecture for 

the Internet Protocol,” November 2008 (Standards Track)

RFC 5384, “The Protocol Independent Multicast (PIM) Join 

Attribute Format,” November 2008 (Standards Track)

RFC 5401, “Multicast Negative-Acknowledgement (NACK) 

Building Blocks,” November 2008 (Standards Track)

RFC 5519, “Multicast Group Membership Discovery MIB,” April 

2009 (Standards Track)

RFC 5740, “NACK-Oriented Reliable Multicast (NORM) Transport 

Protocol,” November 2009 (Standards Track)

RFC 5771, “IANA Guidelines for IPv4 Multicast Address 

Assignments,” March 2010 (Best Current Practice)

RFC 5790, “Lightweight Internet Group Management Protocol 

Version 3 (IGMPv3) and Multicast Listener Discovery Version 2 

(MLDv2) Protocols,” February 2010 (Standards Track)
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 Internet Group Management Protocol (IGMP)
IGMP67 is an Internet Layer protocol that supports IPv4 multicast. It manages the 

membership of IPv4 multicast groups and is used by network hosts and adjacent 

multicast routers to establish multicast group membership. There are three versions of 

it so far. IGMPv1 is defined in RFC 1112, “Host Extensions for IP Multicasting,” August 

1989. IGMPv2 is defined in RFC 2236, “Internet Group Management Protocol, Version 

2,” November 1997. IGMPv3 is defined in RFC 3376,68 “Internet Group Management 

Protocol, Version 3,” October 2002.

Some “layer 2” switches have a feature called “IGMP snooping,” which allows 

them to look at the “layer 3” packet content, to enable multicast traffic to go only to 

those ports that have subscribers on them while blocking it (and thereby reducing 

unnecessary traffic) on ports with no subscribers. A switch without IGMP snooping will 

flood all connected nodes in the broadcast domain with all multicast traffic. This can 

be used by hackers to “deny service” to clients who are too busy receiving and ignoring 

multicast traffic to handle useful traffic. This is called a Denial of Service, or DoS, 

attack. Active IGMP snooping is described in RFC 4541,69 “Considerations for Internet 

Group Management Protocol (IGMP) and Multicast Listener Discovery Protocol (MLD) 

Snooping Switches,” May 2006.

 Protocol Independent Multicast (PIM)

PIM70 supports IPv4 multicast. It is called “protocol independent” because it does not 

include its own network topology discovery mechanism. PIM does not include routing, 

but provides multicast forwarding by using static IPv4 routes, or routing tables created by 

IPv4 routing protocols, such as RIP, RIPv2, OSPF, IS-IS or BGP.

PIM Dense Mode is defined in RFC 3973,71 “Protocol Independent Multicast – Dense 

Mode (PIM-DM),” January 2005. This uses dense multicast routing, which builds 

shortest-path trees by flooding multicast traffic domain-wide and then pruning branches 

where no receivers are present. It does not scale well.

67 https://en.wikipedia.org/wiki/Internet_Group_Management_Protocol
68 https://tools.ietf.org/html/rfc3376
69 https://tools.ietf.org/html/rfc4541
70 https://en.wikipedia.org/wiki/Protocol_Independent_Multicast
71 https://tools.ietf.org/html/rfc3973
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PIM Sparse Mode is defined in RFC 4601,72 “Protocol Independent Multicast – Sparse 

Mode (PIM-SM),” August 2006. PIM-SM builds unidirectional shared trees routed at a 

rendezvous point per group and can create shortest-path trees per source. It scales fairly 

well for wide-area use.

Bidirectional PIM is defined in RFC 5015,73 “Bidirectional Protocol Independent 

Multicast (BIDIR-PIM),” October 2007. It builds shared bidirectional trees. It never builds 

a shortest-path tree, so there may be longer end-to-end delays, but it scales very well.

 ICMPv4: Internet Control Message Protocol for IPv4
ICMPv474 is a key protocol in the Internet Layer that complements version 4 of the 

Internet Protocol (IPv4). It was originally defined in RFC 792,75 “Internet Control 

Message Protocol,” September 1981. There are several ICMPv4 messages defined. Some 

of these are generated by the network stack in response to errors in datagram delivery. 

Some are used for diagnostic purposes (to check for network connectivity). Others are 

used for flow control (source quench) or routing (redirect).

72 https://tools.ietf.org/html/rfc4601
73 https://tools.ietf.org/html/rfc5015
74 https://en.wikipedia.org/wiki/Internet_Control_Message_Protocol
75 https://tools.ietf.org/html/rfc792
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An ICMPv4 message consists of an IPv4 packet header, followed by 8 bytes that 

specify the details for each ICMPv4 message, followed by 32 or more bytes of data 

(depending on implementation).

The IP header Version field contains the value 4 (for IPv4).

The IP header Type of Service contains the value 0.

The IP header Length field contains the sum of 20 (header length) + 8 (ICMPv4 

header length) + number of bytes of data to be sent in message.

The IP header Time To Live field is set to some reasonable count (or very specific 

counts if used to implement the traceroute function).

The IP header Protocol field contains the value 1 (ICMPv4).

The IP header Source IP Address field contains the IPv4 address of the sending node.

The IP header Destination IP Address field contains the IPv4 address of the intended 

target node.

The ICMPv4 header Type of Message field (8 bits) specifies the ICMPv4 message 

type, such as 8 for Echo Request. See the following for the most possible ICMPv4 

message types.

Figure 3-8. ICMPv4 message syntax
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The ICMPv4 header Code field (8 bits) specifies options for the specified ICMPv4 

message. For example, with Message Type 3, the code defines what failed, for example, 

0 means “Destination network unreachable,” while 1 means “Destination host 

unreachable.”

The ICMPv4 header Checksum (16 bits) field is defined the same way as for an IPv4 

header but covers the bytes in the ICMPv4 message (not including the IP header bytes).

The ICMPv4 header Identifier field (16 bits) can contain an ID, used only in Echo 

messages.

The ICMPv4 header Sequence Number field (16 bits) contains a sequence number, 

also used only in Echo messages.

For a ping diagnostic, the sending node transmits an ICMPv4 Echo Request message 

(Type = 8). The ID can be set to any value (0–65,535), and the sequence number is set 

initially to 0 and then is incremented by one for each ping in a sequence. The Data field 

(following the ICMPv4 header) can contain any data (typically some ASCII string). When 

the receiving node gets an ICMPv4 Echo Request, it sends an ICMPv4 Echo Reply (Type 

= 0). The Identifier, Sequence Number, and Data fields in the reply must contain exactly 

what were sent in the request.

If the destination of a packet is unreachable, your TCP/IP stack will return a 

Destination Unreachable ICMPv4 packet, with the code explaining what could not be 

reached.

Figure 3-9. ICMPv4 header Sequence Number field options
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If a packet cannot be sent by the preferred path (e.g., due to a link specified in a 

static route being down), an ICMPv4 Redirect message will be sent to the packet sender 

(typically the previous router), which should then try other paths.

If the TTL in a packet header is decremented all the way to zero, the packet is 

discarded, and a Time Exceeded ICMPv4 message will be sent to the packet sender.

If a node is receiving packets faster than it can handle them, it can send an ICMPv4 

Source Quench message to the sender, who should slow down.

According to the standards, all nodes should always respond to an Echo Request 

with an Echo Reply. Due to use of this function by many hackers and worms (for network 

mapping), many sites now violate the standard and do not reply to Echo Requests. 

Many ISPs now actually block Echo Requests. Note that in IPv6, you cannot just block all 

ICMPv6 messages, as it is a far more integral part of the protocol.

 IPv4 Routing
TCP/IP was designed from the beginning to be an internetworking76 protocol. This term 

is where the name “Internet” comes from. TCP/IP supports ways to get packets from one 

node to another, even across multiple networks, by various routes through a possibly 

complex series of interconnections. If one or more links go down, the packets may 

travel by another route. Even within a given group of packets (say, ones that constitute 

a long email message), some of the packets may go by one route and others by another. 

The process of determining a viable route (or routes) to get traffic from A to B is called 

routing. This is one of the most complex areas of TCP/IP. There are entire long books on 

the subject. We will be covering only the simplest details, in order to show how routing 

differs between IPv4 and IPv6.

Some simpler network protocols (such as Microsoft’s NetBIOS or NetBEUI) are 

non-routing. They will work only within a single LAN. TCP/IP and NetWare’s IPX/SPX77 

support routing. You can connect multiple networks together with them and any node 

in any network can (in general) exchange data with any other node in any connected 

network. The Internet is simply the largest set of interconnected networks in the world. 

TCP/IP’s flexible routing capabilities are one of the things that make it possible.

76 https://en.wikipedia.org/wiki/Internetworking
77 https://en.wikipedia.org/wiki/IPX/SPX
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There are many components used to create IP-based networks, including NICs, 

cables, bridges, switches, and gateways. Of these, only gateways (network devices that 

can forward packets from one network segment to another) do routing. There are 

several kinds of gateways. The simplest case is a router, which uses various protocols, 

such as RIP, OSPF, and BGP, to determine where to forward packets, depending on 

their destination address. It is possible to build a router from a generic PC (or another 

computer) if it has multiple network interfaces (NICs), connected to multiple networks 

and the ability to forward packets between two or more interfaces. Most operating 

systems with network support can be configured to do packet forwarding (accepting 

a packet from one network, via one NIC, and then forwarding it on to another 

network, via a different NIC). Typically, no changes are made to the IP packet other 

than decrementing the hop count in the IP packet header. If NAT is being performed, 

numerous changes may be made to the IP packet header. If the packet is layered over 

Ethernet, there may be a new Ethernet frame78 wrapped around the IP packet for each 

stage of its journey.

It is also possible for a gateway node to do other processing as the packets flow 

through it, such as filtering packets on certain criteria (e.g., allow traffic using port 25 to 

node 172.20.0.11 to pass, but block port 25 traffic to all other nodes). These are called 

packet filtering firewalls. They are really just routers that allow more control over the 

flow of traffic and can help protect the network from various attacks. Even in a packet 

filtering firewall, all processing still takes place at the Internet Layer. More sophisticated 

packet filtering firewalls can “inspect” the contents of the packets and maintain a record 

(“state”) of things that really are associated with higher levels of the network stack 

(e.g., Transport or Application Layer). This is called deep packet inspection, or stateful 

inspection.

It is also possible to have a bastion host that doesn’t just forward traffic; it receives 

protocol connections on behalf of nodes on the Internet network and relays them 

onward if they are acceptable. They act as a proxy for the internal servers. Processing 

here takes place at the Application Layer. Proxy firewalls are much more secure, but also 

more complex and slower. Typically, a proxy server must be created for each protocol 

handled by the firewall (e.g., SMTP, HTTP, FTP). There can be both incoming proxies (as 

described previously) and outgoing proxies (your node makes an outgoing connection 

to a proxy in your firewall, and it makes a further outgoing connection to the node you 

78 https://en.wikipedia.org/wiki/Ethernet_frame
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really want to connect to). These allow better control than a simple packet filtering 

firewall. If a firewall both does packet forwarding with stateful inspection and has proxy 

servers (incoming and/or outgoing) for at least some protocols, it is called a hybrid 

firewall and can provide the best of both worlds.

 Relevant Standard for IPv4 Routing
• RFC 1058, “Routing Information Protocol,” June 1988 (Historic)

• RFC 1142, “OSI IS-IS Intra-domain Routing Protocol,” February 1990 

(Informational)

• RFC 1195 “Use of OSI IS-IS for Routing in TCP/IP and Dual 

Environments,” December 1990 (Standards Track)

• RFC 2328, “OSPF Version 2,” April 1998 (Standards Track)

• RFC 2453, “RIP Version 2,” November 1998 (Standards Track)

• RFC 4271, “A Border Gateway Protocol 4 (BGP-4),” January 2006 
(Standards Track)

In Windows, you can view all currently known routes with the “route print” 

command.
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Figure 3-10. Output of the IPv4 route print command

There are several routing protocols for IPv4 that are typically handled only in the 

core or where a customer network meets the core, the edge router. These include RIP, 

RIPv2, EIGRP, IS-IS, OSPF, and BGP.

TCP/IP routing is a very deep, complex subject, and we will be touching only on 

the most obvious aspects in this book, to give a rough idea of the differences in routing 

between IPv4 and IPv6.

RIP: Routing Information Protocol,79 version 1. Defined in RFC 1058,80 “Routing 

Information Protocol,” June 1988. This protocol is very old and of primarily historic 

interest, since it does not support address blocks based on CIDR81 (it is a classful routing 

protocol). It is used to exchange routing information with gateways and other hosts. It 

is based on the distance vector algorithm,82 which was first used in the ARPANET, circa 

1967. RIP is a UDP-based protocol, using port 520.

79 https://en.wikipedia.org/wiki/Routing_Information_Protocol
80 https://tools.ietf.org/html/rfc1058
81 https://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing
82 https://en.wikipedia.org/wiki/Distance-vector_routing_protocol
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RIPv2: Routing Information Protocol, version 2.83 Defined in RFC 2453,84 “RIP 

Version 2,” November 1998. Although OSPF and IS-IS are superior, there were so 

many implementations of RIP in use it was decided to try to improve on it. Extensions 

were made to incorporate the concepts of autonomous systems (ASs), IGP/EGP 

interactions, subnetting and authentication, as well as address blocks based on CIDR 

(it is a “classless” routing protocol). The lack of subnet masks in RIPv1 was a particular 

problem. RIPv2 is limited to networks whose longest routing path is 15 hops. It also uses 

fixed “metrics” to compare alternative routes, which is an oversimplification. However, 

RIPv2 becomes unstable if you try to account for different metrics. See RFC for details.

EIGRP: Enhanced Interior Gateway Routing Protocol.85 This is not an IETF protocol, 

but a Cisco proprietary routing protocol based on their earlier IGRP.86 EIGRP is able to 

deal with addresses allocated via CIDR (it is a classless routing protocol), including use of 

variable-length subnet masks. It can run separate routing processes for IPv4, IPv6, IPX, 

and AppleTalk protocols, but does not support translation between protocols. For details, 

see Cisco documentation. There is an RFC that covers a subset of the full Cisco EIGRP, RFC 

7868,87 “Cisco’s Enhanced Interior Gateway Routing Protocol (EIGRP),” May 2016.

IS-IS: Intermediate System to Intermediate System routing protocol.88 IS-IS 

(pronounced “eye-sys”) was originally developed by Digital Equipment Corporation 

(DEC) as part of DECnet Phase V and formally defined as part of ISO/IEC 10589:2002 

for the Open System Interconnection reference design. It is not an Internet standard, 

although the details are published as Informational RFC 1142,89 “OSI IS-IS Intra-domain 

Routing Protocol,” February 1990 (since reclassified as historic by RFC 714290 in 2014). 

Another RFC specifies how to use IS-IS for routing in TCP/IP and/or OSI environments: 

RFC 1195,91 “Use of OSI IS-IS for Routing in TCP/IP and Dual Environments,” December 

1990. IS-IS is an Interior Gateway Protocol, for use within an administrative domain or 

network. It is not intended for routing between autonomous systems, which is the role 

83 https://community.cisco.com/t5/networking-documents/
ripv2-routing-information-protocol/ta-p/3117425
84 https://tools.ietf.org/html/rfc2453
85 https://en.wikipedia.org/wiki/Enhanced_Interior_Gateway_Routing_Protocol
86 https://en.wikipedia.org/wiki/Interior_Gateway_Routing_Protocol
87 https://tools.ietf.org/html/rfc7868
88 https://en.wikipedia.org/wiki/IS-IS
89 https://tools.ietf.org/html/rfc1142
90 https://tools.ietf.org/html/rfc7142
91 https://tools.ietf.org/html/rfc1195
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of BGP. It is not a distance vector algorithm; it is a link-state protocol.92 It operates by 

reliably flooding network topology information through a network of routers, allowing 

each router to build its own picture of the complete network. OSPF (developed by the 

IETF about the same time) is more widely used, although it appears that IS-IS has certain 

characteristics that make it superior in large ISPs.

OSPFv2: Open Shortest Path First,93 version 2. Unlike EIGRP and IS-IS, OSPF is an 

IETF standard. OSPFv2 is defined in RFC 2328,94 “OSPF Version 2,” April 1998. OSPF is 

the most widely used Interior Gateway Protocol today (as opposed to BGP, which is an 

Exterior Gateway Protocol). Like IS-IS, OSPF is a link-state protocol.95 It gathers link-

state information from available routers and builds a topology map of the network. It 

was designed to support variable-length subnet masking (VLSM) or CIDR addressing 

models. Changes to the network topology are rapidly detected, and it converges on a 

new optimal routing structure within seconds. It allows specification of different metrics 

(“cost of transmission” in some sense) for various links to allow better modeling of the 

real world (where some links are fast and some slow). OSPF does not layer over UDP or 

TCP but uses IP datagrams with a protocol number of 89. This is very different from RIP 

or BGP. OSPF uses multicast, including the special addresses:

 

For routing IPv4 multicast traffic, there is MOSPF (Multicast Open Short Path First), defined 

in RFC 1584,96 “Multicast Extensions to OSPF,” March 1994. However, this is not widely used. 

Instead, most people use PIM97 in conjunction with OSPF or other Interior Gateway Protocols.

BGP-4: Border Gateway Protocol 4.98 Defined in RFC 4271,99 “A Border Gateway 

Protocol 4 (BGP-4),” January 2006. This version supports routing only IPv4. There are 

defined multiprotocol extensions (BGP4+) that support IPv6 and other protocols, which 

will be described in Chapter 5.

92 https://en.wikipedia.org/wiki/Link-state_routing_protocol
93 https://en.wikipedia.org/wiki/Open_Shortest_Path_First
94 https://tools.ietf.org/html/rfc2328
95 https://en.wikipedia.org/wiki/Link-state_routing_protocol
96 https://tools.ietf.org/html/rfc1584
97 https://en.wikipedia.org/wiki/Protocol_Independent_Multicast
98 https://en.wikipedia.org/wiki/Border_Gateway_Protocol
99 https://tools.ietf.org/html/rfc4271
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BGP is an Exterior Gateway Protocol100 (compare with IS-IS and OSPFv2, which 

are Interior Gateway Protocols101). It is not used within networks, but only between 

autonomous systems.102 Its primary function is to exchange AS network reachability 

information with other AS networks. This includes information on the list of 

autonomous systems (ASs) that reachability information traverses. This is sufficient for 

BGP to construct a graph of AS connectivity from which routing loops can be pruned, 

and, at the AS level, certain policy decisions may be enforced.

BGP-4 includes mechanisms for supporting CIDR. They can advertise a set of 

destinations as an IP prefix, eliminating the concept of network “class,” which was 

present in early BGP implementations. BGP-4 also has mechanisms that allow 

aggregation of routes and AS paths. Most networks that obtain service from ISPs never 

deploy BGP themselves. It is mostly for exchange of information between ISPs, especially 

if they are multihomed (obtain upstream service from more than one source). This 

would be referred to as Exterior Border Gateway Protocol or EBGP. Enormous networks 

that are too large for OSPF could deploy BGP themselves as a top level linking multiple 

OSPF routing domains (this would normally be referred to as Interior Border Gateway 

Protocol or IBGP).

BGP is a path vector protocol.103 It does not use IGP metrics, but makes routing 

decisions based on path, network policies, and/or rulesets. It replaces the now defunct 

Exterior Gateway Protocol (EGP), which was formally specified in RFC 904,104 “Exterior 

Gateway Protocol Formal Specification,” April 1984.

 Network Address Translation (NAT)
It is also possible for a gateway to do Network Address Translation105 (NAT) as packets 

are forwarded. One form of this (“Full Cone” or “Static” NAT) allows multiple internal 

nodes (which use private addresses, such as 10.1.2.3) to be translated to globally routable 

addresses (like 123.45.67.89) on the way out. It also can translate the globally routable 

destination address of packets sent in reply to an outgoing packet back to the private 

100 https://en.wikipedia.org/wiki/Exterior_Gateway_Protocol
101 https://en.wikipedia.org/wiki/Interior_gateway_protocol
102 https://en.wikipedia.org/wiki/Autonomous_system_(Internet)
103 https://en.wikipedia.org/wiki/Path_vector_routing_protocol
104 https://tools.ietf.org/html/rfc904
105 https://en.wikipedia.org/wiki/Network_address_translation
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address of the originating node, so that the internal node can complete a query/response 

transaction. The port numbers in outgoing packets are shifted by a NAT gateway in such 

a way that it can figure out which internal node to send reply packets to. This allows 

many internal nodes to “share” (hide behind) a single globally routable Ipv4 address 

(necessary now that we are running out of these). NAT will be covered in more detail in 

the next chapter.

 Relevant Standard for IPv4 NAT
RFC 1918, “Address Allocation for Private Internets,” February 
1996 (Best Current Practices)

RFC 2663, “IP Network Address Translation (NAT) Terminology 
and Considerations,” August 1999 (Informational)

RFC 2694, “DNS Extensions to Network Address Translations 

(DNS_ALG),” September 1999 (Informational)

RFC 2709, “Security Model with Tunnel-mode IPsec for NAT 

Domains,” October 1999 (Informational)

RFC 2993, “Architectural Implications of NAT,” November 2000 
(Informational)

RFC 3022, “Traditional IP Network Address Translation 
(Traditional NAT),” January 2001 (Informational)

RFC 3235, “Network Address Translation (NAT)-Friendly 

Application Design Guidelines,” January 2002 (Informational)

RFC 3519, “Mobile IP Traversal of Network Address Translation 

(NAT) Devices,” April 2003 (Standards Track)

RFC 3715, “IPsec-Network Address Translation (NAT) 
Compatibility Requirements,” March 2004 (Informational)

RFC 3947, “Negotiation of NAT-Traversal in the IKE,” January 
2005 (Standards Track)

RFC 4008, “Definitions of Managed Objects for Network Address 

Translations (NAT),” March 2005 (Standards Track)
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RFC 4787, “Network Address Translation (NAT) Behavioral 
Requirements for Unicast UDP,” January 2007 (Best Current 
Practices)

RFC 4966, “Reasons to Move the Network Address Translation – 

Protocol Translator (NAT-PT) to Historic Status,” (Informational)

RFC 5128, “State of Peer-to-Peer (P2P) Communication Across 

Network Address Translations (NATs),” March 2008 (Informational)

RFC 5207, “NAT and Firewall Traversal Issues of Host Identity 

Protocol (HIP) Communication,” April 2008 (Informational)

RFC 5382, “NAT Behavioral Requirements for TCP,” October 
2008 (Best Current Practices)

RFC 5389, “Session Traversal Utilities for NAT (STUN),” 
October 2008 (Standards Track)

RFC 5508, “NAT Behavioral Requirements for ICMP”, April 2009 
(Best Current Practices)

RFC 5597, “Network Address Translation (NAT) Behavioral 

Requirements for the Datagram Congestion Control Protocol,” 

September 2009 (Best Current Practices)

RFC 5684, “Unintended Consequences of NAT Deployments 
with Overlapping Address Space,” February 2010 
(Informational)

It should be obvious from the number of RFCs that explain how NAT affects other 

things that NAT has a heavy impact on almost every aspect of networks. There are also 

a lot of “Informational” RFCs required to explain exactly how it impacts these things. 

Removing NAT has no downside (given sufficient public addresses) and vastly simplifies 

network architecture and management in addition to lowering costs. It also vastly 

simplifies application design and implementation. The removal of NAT and restoration 

of the flat address space is one of the main benefits of moving to IPv6. Unfortunately, we 

have an entire generation of network engineers who have assumed that NAT is “the way 

networks are done” and don’t realize it was created only as a temporary crutch to extend 

the life of the IPv4 address space until IPv6 could be completed and deployed. Before 

NAT, the IPv4 Internet was “flat,” and firewalls had very effective security without NAT  
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(I call this “classic firewall architecture”). In IPv6, we are simply returning to the original 

concept of “any node to any node connectivity” that characterized the pre-NAT IPv4 

Internet. Protocols like SIP, IPsec, IKE, and Mobile IP will work far better without NAT 

in the way. DNS is also greatly simplified in the absence of NAT (no internal vs. external 

“views” are required).

Unfortunately, there is no possible way to remove NAT from the current Internet. 

There are far too many users to handle with the possible public addresses, and 

essentially all the routable addresses are already in use. The only possible way now to 

remove NAT is by migrating to IPv6.

Most routers and firewalls typically include NAT for IPv4 as part of their 

functionality, although it would be possible to have a NAT gateway without any filtering 

or routing capabilities that does only NAT.

In general, any gateway that modifies the source and/or destination addresses in a 

packet (possibly also the source port number) is doing NAT. There are several forms of it, 

the most popular being address masquerading (hide-mode NAT) and one-to-one (BINAT, 

or static NAT).

Most IPv4 networks today make use of private addresses as defined in RFC 1918,106 

“Address Allocation for Private Internets,” February 1996. Basically, three blocks of 

addresses (10.0.0.0/8, 172.16.0.0/12, and 192.168.0.0/16) were permanently removed 

from the available Internet allocation pool, marked as “unroutable” on the Internet, 

and reserved for use as something similar to telephone extension numbers in an office 

(hiding behind a single company phone number, via a Private Branch Exchange). It is 

possible for any company to use addresses from any or all of these ranges to number the 

nodes inside their networks. However, these addresses cannot be routed on the Internet 

from anyone, since they are no longer globally unique. Hence, if the users of nodes with 

those addresses want to use the Internet, there must be address translation to and from 

“real” (globally unique) addresses at the gateway that connects them to the Internet, 

which is what NAT does.

One thing that confuses people is that internal telephone extensions don’t look 

like public telephone numbers (e.g., 100, 101, 1125 vs. 9472-4173). However, private IP 

addresses look just like public addresses (except for the address ranges) and in fact used 

to be public addresses that were repurposed.

The RFC 1918 private addresses are in the following ranges:

106 https://tools.ietf.org/html/rfc1918
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Figure 3-11. RFC 1918 address ranges

Figure 3-12. New private IP address block for CGN

More recently another range was reserved for CGN (Carrier-Grade NAT107). These 

addresses cannot be used by end users, only ISPs deploying CGN:

Note that the most popular form of NAT is more properly called NAPT (“Network 

Address Port Translation”), which involves the translation of both IP addresses and port 

numbers.

NAT is defined in RFC 3022,108 “Traditional IP Network Address Translation 

(Traditional NAT),” January 2001. Some aspects of NAT are defined in RFC 2663,109 “IP 

Network Address Translation (NAT) Terminology and Considerations,” August 1999.

One form of NAT traversal (STUN) is defined in RFC 5389,110 “Session Traversal 

Utilities for NAT (STUN),” October 2008. STUN is a protocol that serves as a tool for other 

protocols in dealing with Network Address Translation (NAT) traversal. It can be used 

by an endpoint to determine the IP address and port allocated to it by a NAT. It can also 

be used to check connectivity between two endpoints and as a keepalive protocol to 

maintain NAT bindings. STUN works with many existing NATs and does not require any 

special behavior from them.

 Connection Without NAT (Inside the LAN)
Say you have two nodes (Alice and Bob) on your LAN. Alice has the address 10.50.3.12, 

and Bob has the address 10.50.3.75 (both private addresses). They can make connections 

within their LAN (to any address in the 10.0.0.0/8 network) with no problem. Say there is 

a web server (port 80) at 10.1.20.30.

107 https://en.wikipedia.org/wiki/Carrier-grade_NAT
108 www.ietf.org/rfc/rfc3022.txt
109 www.ietf.org/rfc/rfc2663.txt
110 www.ietf.org/rfc/rfc5389.txt
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In the following, we will specify the port number appended to the IP address, 

separated by a colon (e.g., 10.50.3.12:12345). When Alice makes a connection to the web 

server, the destination port is 80, but her source port is a randomly chosen value greater 

than 1024 that is not already in use (e.g., 12345 or 54321). The same source port would 

be used for the duration of the connection. Replies from the server would be sent using 

Alice’s source address and port as the destination address and port in the reply packets. 

See the following for example.

Note: the preceding behavior is somewhat simplified. Such a server could accept 
only one connection at a time, which would have to complete before anyone 
else could connect. this is because a given address:port can only handle one 
connection at any given time. a real-world server would have a parent process 
listening for connections on a well-known port (e.g., 80). when some client 
connects to the well-known port, the parent process would create a child process 
(or thread), which would accept the connection (using yet another unused port 
number) and process it. Meanwhile, the main process would go back to listening 
for further connections on the well-known port. if ten users were connected at 
a time, there would be 11 processes running, one main process and ten child 
processes (one for each connection). from the viewpoint of the client (e.g., with 
“netstat –na”), it would appear that the remote port (the one on the server) was 
the original well-known port (e.g., 80).

 Connection Through Hide-Mode NAT
But how do Alice and Bob connect to www.ipv6.org? That node happens to have an IPv4 

address of 194.63.248.52, and we’re still in Chapter 3 (about Ipv4), so they don’t have IPv6 

yet! Let’s say there is a NAT gateway where their LAN (or ISP) connects to the Internet. It 

has an “outside” address (which must be a valid, routable Ipv4 address) of 12.34.56.137. If 

Figure 3-13. Port mapping for IPv4 NAT

Chapter 3  review of ipv4

http://www.ipv6.org


88

either Alice or Bob connects to www.ipv6.org (over Ipv4), the web page there will indicate 

to both of them that they are connecting over IPv4, from the address 12.34.56.137, not 

from their respective private addresses, even if the connections are made at the same 

instant. The web server log will show that both are connected from that one public 

address. How can www.ipv6.org reply with the correct web page to each of them?

With hide-mode NAT, the gateway is translating the source address in Alice’s packets 

from 10.50.3.12 to 12.34.56.137. It is also translating the source address in Bob’s packets 

from 10.50.3.75 to 12.34.56.137. The destination address is 194.63.248.52:80 for both 

Alice and Bob. Their browsers would each choose a random source port. Let’s say 

Alice’s chose 10123 and Bob’s chose 20321. The NAT gateway would not only translate 

the source address from both Alice and Bob; it would also shift the source ports and 

keep track of that shift in a table, which contains the source address, the original source 

port, and the shifted source port (for each connection). Let’s say Alice’s port is shifted 

to 30567 and Bob’s to 40765. The new source address for outgoing connections and the 

old destination address for incoming connections will always be the same (the outside 

address of the NAT gateway), so it does not need to keep those in the table. The resulting 

NAT table would look like the following.

Alice’s connection to www.ipv6.org appears to be coming from 12.34.56.137:30567. 

When www.ipv6.org replies to Alice, it is sent from 194.63.248.52:80 to 

12.34.56.137:30567. The NAT gateway looks up that port in its table and sees that it was 

used for an outgoing connection from 10.50.3.12:10123, so it translates the destination 

address and port to Alice’s private address and port, thereby forwarding the packets 

correctly to Alice.

Bob’s connection to www.ipv6.org appears to be coming from 12.34.56.137:40765. 

When www.ipv6.org replies to Bob, it is sent from 194.63.248.52:80 to 12.34.56.137:40765. 

The NAT gateway looks that port up in its table and sees that it was used from a 

Figure 3-14. Example of outgoing and incoming port mapping for NAT
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connection from 10.50.3.75:20321, so it translates the destination address and port to 

Bob’s private address and port, thereby forwarding those packets correctly to Bob.

 BINAT (One-to-One NAT)
If you are doing NAT at your gateway, most routers or firewalls support another form 

of NAT, which is known as BINAT (bidirectional NAT) or one-to-one NAT (sometimes 

also static NAT). This works much the same as regular (hide-mode) NAT, except there 

is no port shifting involved. This means there can only be one internal node associated 

with each globally routable external address. This is used only for servers that must be 

accessible from the outside world.

Typically, a server has both an internal (private) address (e.g., 10.0.0.13) and 

an external (unique, globally routable) address (e.g., 12.34.56.131). With outgoing 

connections, the gateway rewrites the source address of each packet to be the external 

address for that node (but does not shift the port). For incoming connections, the 

gateway rewrites the destination address to be the internal address for that node. 

Internally, the node will have only the internal address. However, if you connected to 

www.ipv6.org from such a node, the resulting web page would show a connection not 

from the internal address of the server, but from the unique external address associated 

with that node. This is similar to hide-mode NAT except that there is exactly one internal 

node per external address (rather than many), there is no port shifting, and the mapping 

can be done in both directions (incoming and outgoing connections).

There is a minor problem of the “missing ARP” that must be solved in some way for 

this to work (there is no physical node at the external address, so no node will respond to 

ARP requests concerning that address). One approach is to configure a static ARP on the 

gateway that can supply that response. Every operating system or router has some way 

to do this. Without that, connections from the outside will not work. It is also possible 

in most cases to assign the external address as an alias to the outside interface of the 

gateway (in addition to its real address). Solving the missing ARP problem is one of the 

most difficult things for firewall administrators to master. This problem only exists in 

IPv4. As no NAT is needed or done in IPv6, there is no missing ARP (actually in IPv6, it 

would be a missing ND response).

BINAT at least allows incoming connections but uses up one globally routable IPv4 

address for each server node. Most SOHO gateways do not support BINAT. Many do have 

a simpler mechanism called port redirection, which allows incoming connections to the 
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hide-mode external address. At most one internal server can be configured as the target 

for any given port. So you could configure an internal mail server and redirect ports 

25 (SMTP), 110 (POP3), and 143 (IMAP) to it. However, if you have two internal web 

servers both configured for port 80, you could not redirect port 80 on the gateway to both 

servers.

 Ramifications of Using NAT
When Network Address Translation happens, the NAT gateway is actually rewriting 

new values into the address and port number fields in the IP and TCP (or UDP) packet 

headers of all packets flowing through the NAT gateway, according to the rule just 

specified. For outgoing packets, it is rewriting the source address and source port. For 

incoming packets, it is rewriting the destination address and destination port. Obviously, 

this would invalidate the IP and TCP header checksums (the IP header contains source 

and destination addresses; the TCP header contains the source and destination port 

numbers). Therefore, the NAT gateway also has to recalculate both IP and TCP header 

checksums and rewrite those as well.

Packet fragmentation is a real complication for TCP and UDP via NAT. A NAT 

gateway must reassemble an entire packet, in order to be able to recalculate the TCP 

checksum (which covers all bytes in the payload, plus the pseudo header, which contains 

the source and destination addresses). It typically must then re-fragment the packet for 

further transmission.

What about the IPsec Authentication header (AH)? (Note: IPsec will be discussed 

in detail in Chapter 6.) The IPsec AH algorithm works like a checksum, but there is a 

key that only the sender has, required to generate the cryptographic checksum. All this 

address and port rewriting invalidates the existing AH cryptographic checksum, and the 

NAT gateway does not have the necessary key to regenerate a correct new AH for the 

modified packet headers. Because of this IPsec does not work through a NAT gateway. 

Actually, AH is performing its function very effectively; it is detecting tampering with 

the contents of the packet header! It just happens that this tampering is done by a NAT 

gateway, not a hacker. It’s kind of like getting hit by “friendly fire” in a war zone (getting 

shot by your own side). If any node other than the original sender could generate a new 

valid AH checksum, then AH would not be very useful! IPsec and NAT are mutually 

exclusive (although IPsec VPNs can be made to work in conjunction with NAT traversal).
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Another ramification involves FTP (File Transfer Protocol). FTP is a very old protocol 

(RFC 765111 is from 1980, back in the days of the First Internet). In active mode, FTP uses 

separate connections for control traffic (commands) and for data traffic. The initiating 

host identifies the corresponding data connection with its Network Layer and Transport 

Layer addresses. Unfortunately, NAT invalidates this. Fortunately, here, it is possible 

to create a reverse FTP proxy (included on most firewalls) that solves this problem. 

Without such a proxy though, FTP will not work if NAT is in place, even for outgoing 

connections. My company early on ported a popular one for IPv4 to IPv6. That allowed 

FTP connections to dual-stack networks such as freebsd.org to work from our own dual-

stack network.

“Peer-to-peer” (like Kazaa, not “real” peer-to-peer) applications have the same kinds 

of problems with NAT. You must somehow provide a way for your peers to connect to 

you for these applications to work. All participants really need a real, globally routable IP 

address. This is not easy to arrange on the Second Internet. All such “fake” peer-to-peer 

applications must use NAT traversal.

SIP (Session Initiation Protocol112) is used with many things, including VoIP and 

video conferencing. It also has major problems with NAT. SIP may use multiple ports 

to set up a connection and transmit the analog stream over RTP (Real-Time Transport 

Protocol). IP addresses and port numbers are encoded in the payload and must be 

known prior to the traversal of NAT gateways (this was bad protocol design, but now 

we are stuck with it). Again, a SIP proxy on the gateway can help resolve this problem. 

Another solution is to use NAT traversal, such as STUN. Unfortunately, in these days of 

widespread NAT, both the caller and the callee are typically behind NAT, so VoIP must 

overcome problems with NAT both going out from the caller and coming in to the callee. 

If this sounds like an ugly mess, it is.

Another problem with NAT is the limit of 65,536 ports on the NAT gateway. When 

NAT was first deployed, most network applications used only one or two ports. Some 

recent applications (Apple’s iTunes and Google Maps) use 200–300 ports at a time 

for better performance. If each node is using 300 ports, then there can be at most 200 

nodes behind a given external IPv4 address. If the NAT gateway runs out of ports, there 

can be very mysterious failures in network applications. For example, in Google Maps, 

some areas of the map never get drawn. There is no way for end users (or typically even 

the network administrator) to determine that this has happened other than by seeing 

111 https://tools.ietf.org/html/rfc765
112 https://en.wikipedia.org/wiki/Session_Initiation_Protocol
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mysterious failures in some applications. This means that a larger number of NAT 

gateways (and valid external IPv4 addresses) are required today than in the past, for a 

given number of users behind NAT. Just as we are running out of public IPv4 addresses!

Some legacy applications (like web surfing and email) work okay through one 

layer of NAT. Even with chat, today there must be an intermediary system that two or 

more chatters connect to via outgoing connections from their nodes (e.g., AOL Instant 

Messenger). In a flat address space (especially with working multicast), much better 

connectivity models are possible that may require little or no central facilities.

As the IPv4 addresses run out, it will become more common to have multiple 

layers of NAT (CGN). This can happen today, if you deploy a Wi-Fi access point with 

NAT behind a DSL modem that also has NAT. If you think a single layer of NAT causes 

problems, you should try dealing with multiple layers of it!

With the wide-scale deployment of NAT, we have lost the original end-to-end model 

of the early Second Internet, which was a core feature. We’ve also broken one of the 

fundamental rules of protocol design: never tamper with source or destination addresses 

or ports in an IP packet.

Today users are either content producers who can publish information or videos (e.g., 

cnn.com, youtube.com) or content consumers who can view the content published by the 

producers. It is much more complicated and expensive to be a producer in the current 

Second Internet (with NAT in the way) than to be a consumer. There are relatively few 

producers and millions of consumers. This was not that much of a problem when most 

people were running mainly web browsers and email clients on their nodes. As newer 

applications emerge (VoIP, IPTV, multiplayer games, peer-to-peer), this new “digital 

divide” between producers and consumers is becoming more of a problem. Today, many 

people would like to be prosumers (both producers and consumers of content). With 

IPv6 that is simple.

Another problem is that since the first implementation of networking on 

smartphones (WAP), there were not enough public IPv4 addresses for phones, so 

historically there have never been public IP addresses on phones. Phones could only 

be used to make outgoing connections – you could not deploy a server on your phone, 

and Alice’s phone could not connect directly to Bob’s phone. With IPv6 for the first time, 

phones have public addresses and hence can run servers or do end-to-end connections.

All these problems go away with a flat address space (no NAT). Unfortunately, there 

is no way to restore the flat address space of the early (pre-NAT) Second Internet. The 

Second Internet is now permanently broken (there are not enough addresses to allow 
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even the existing users to have access without NAT, even if we use all the remaining 

unallocated addresses today). The only real solution is to switch to IPv6 (at least for 

protocols such as VoIP, P2P, multiplayer games, IPTV, and IPsec VPNs).

 Basic IPv4 Routing
In the simplest case, where two nodes (A and B) are on the same network segment (not 

separated by any router), no routing is required. Let’s say node A wants to send a packet 

to node B. Node A determines if node B is in the same network segment by examining 

B’s IP address and the network subnet mask. If node B is in the same subnet as A’s IP 

address, then B is a local node. Node A simply uses B’s MAC address from its ARP table 

to send the packet to B. If there is no entry for B’s IP address, then node A does address 

resolution (obtains the MAC address for B), as described earlier.

If B’s address is not in the local subnet, B is not a local node, and the packet (with 

B’s correct IP address as the destination) is sent to the node that serves as the default 

gateway for A’s subnet (A may first have to do an ARP to obtain the MAC address of 

the default gateway). The default gateway is a node with multiple network interfaces 

that knows how to forward the packet on toward the network in which B’s IP address is 

found. Note that by default, packet forwarding (relaying packets from one interface to 

another on a multihomed system) is not enabled. It must be specifically enabled for each 

protocol (IPv4 and IPv6). The address of a network’s default gateway is known to every 

node in a subnet, either through manual configuration or via DHCPv4. Once the default 

gateway receives the packet, it may already have the necessary routing information to 

know where to send that packet (either via static routes or via a routing protocol, such 

as RIP, OSPF, and/or BGP). In the case of a home network, your SOHO router typically 

just knows how to forward packets for the outside world to yet another gateway at the 

ISP, where the real routing takes place (via its own default gateway, which is a node at 

the ISP).

Once your traffic gets to your default gateway, that node typically uses an Interior 

Gateway Routing Protocol (RIP, RIPv2, or OSPF) to route that traffic to the edge of your 

overall network (e.g., the place your organization’s or ISP’s network connects to the rest 

of the Internet). At that point, an Exterior Gateway Routing Protocol (typically BGP-4) is 

used to determine the best route to the correct edge router for the destination address. 

Once your traffic arrives there, once again an Interior Gateway Routing Protocol (RIP, 

RIPv2, or OSPF) takes over and gets the packets to the default gateway of the subnet 
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where the destination node lives. From there, ARP is used to forward the packets to the 

actual destination node, because the default gateway and the destination node are now 

on the same subnet. And all this takes place in the blink of an eye, billions of times a day, 

just like clockwork.

 TCP: The Transmission Control Protocol
TCP, the Transmission Control Protocol,113 is defined in RFC 793,114 “Transmission 

Control Protocol,” September 1981. This is a Transport Layer115 protocol. TCP 

implements a reliable, connection-oriented116 model. When we say reliable, we 

aren’t talking about a “well-designed” or “robust” protocol. With respect to TCP, 

“reliable” simply means that the protocol includes error detection and recovery (via 

retransmission). The term connection oriented refers to the fact that TCP is designed to 

handle potentially large streams of data (typically larger than a single packet). It does 

this by breaking the large object up into multiple packet-sized chunks and sending 

those packets out and to the recipient. For example, a large email message or a JPEG 

photograph might require quite a few packets. Software that uses TCP typically opens 

(initiates) a connection for I/O, reads and/or writes potentially a lot of data from/to 

it, and then, when done, closes (terminates) the connection. This is very similar to the 

process for reading and writing files, and in fact in UNIX, network streams are just a 

special kind of file.

 Standards Relevant to TCP
RFC 793, “Transmission Control Protocol,” September 1981 
(Standards Track)

RFC 896, “Congestion Control in IP/TCP Internetworks,” January 

1984 (Unknown)

113 https://en.wikipedia.org/wiki/Transmission_Control_Protocol
114 https://tools.ietf.org/html/rfc793
115 https://en.wikipedia.org/wiki/Transport_layer
116 https://en.wikipedia.org/wiki/Connection-oriented_communication
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RFC 1001, “Protocol Standard for a NetBIOS Service on a 
TCP/UDP Transport: Concepts and Methods,” March 1987 
(Standards Track)

RFC 1002, “Protocol Standard for a NetBIOS Service on a 
TCP/UDP Transport: Detailed Specifications,” March 1987 
(Standards Track)

RFC 1006, “ISO Transport Service on Top of the TCP Version: 3,” 

May 1987 (Standards Track)

RFC 1085, “ISO Presentation Services on Top of TCP/IP-Based 

Internets,” December 1998

RFC 1086, “ISO-TP0 Bridge Between TCP and X.25,” 

December 1988

RFC 1144, “Compressing TCP/IP Headers for Low-Speed Serial 
Links,” February 1990 (Standards Track)

RFC 1155, “Structure and Identification of Management 

Information for TCP/IP-Based Internets”, May 1990 

(Standards Track)

RFC 1180, “TCP/IP Tutorial,” January 1991 (Informational)

RFC 1213, “Management Information Base for Network 

Management of TCP/IP-Based Internets: MIB II,” March 1991 

(Standards Track)

RFC 1323, “TCP Extensions for High Performance,” May 1992 

(Standards Track)

RFC 2018, “TCP Selective Acknowledgement Options,” October 

1996 (Standards Track)

RFC 2126, “ISO Transport Service on Top of TCP (ITOT),” March 

1997 (Standards Track)

RFC 2873, “TCP Processing of the IPv4 Precedence Field,” June 

2000 (Standards Track)

RFC 2883, “An Extension to the Selective Acknowledgement 

(SACK) Option for TCP,” July 2000 (Standards Track)
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RFC 2988, “Computing TCP’s Retransmission Timer,” November 

2000 (Standards Track)

RFC 3042, “Enhancing TCP’s Loss Recovery Using Limited 

Transport,” January 2001 (Standards Track)

RFC 3293, “General Switch Management Protocol (GSMP) 

Packet Encapsulation for Asynchronous Transfer Mode (ATM), 

Ethernet and Transmission Control Protocol (TCP),” June 2002 

(Standards Track)

RFC 3390, “Increasing TCP’s Initial Window,” October 2002 

(Standards Track)

RFC 3517, “A Conservative Selective Acknowledgement 

(SACK)-Based Loss Recovery Algorithm for TCP,” April 2003 

(Standards Track)

RFC 3782, “The New Reno Modifications to TCP’s Fast Recovery 

Algorithm,” April 2004 (Standards Track)

RFC 3821, “Fiber Channel over TCP/IP (FCIP),” July 2004 

(Standards Track)

RFC 4015, “The Eifel Response Algorithm for TCP,” February 2005 

(Standards Track)

RFC 4022, “Management Information Base for the 
Transmission Control Protocol (TCP),” March 2005 
(Standards Track)

RFC 4614, “A Roadmap for Transmission Control Protocol 
(TCP) Specification Documents,” September 2006 
(Informational)

RFC 4727, “Experimental Values in IPv4, IPv6, ICMPv4, ICMPv6, 

UDP and TCP Headers,” November 2006 (Standards Track)

RFC 4898, “TCP Extended Statistics MIB,” May 2007 

(Standards Track)

RFC 4996, “Robust Header Compression (ROHC): A Profile for 

TCP/IP (ROHC-TCP),” July 2007 (Standards Track)
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RFC 5348, “TCP Friendly Rate Control (TFRC): Protocol 

Specification,” September 2008 (Standards Track)

RFC 5482, “TCP User Timeout Option,” March 2009 

(Standards Track)

RFC 5681, “TCP Congestion Control,” September 2009 
(Standards Track)

RFC 5682, “Forward RTO-Recovery (F-RTO): An Algorithm 

for Detecting Spurious Retransmission Timeouts with TCP,” 

September 2009 (Standards Track)

RFC 5734, “Extensible Provisioning Protocol (EPP) Transport over 

TCP,” August 2009 (Standards Track)

 TCP Packet Header

Source Port (16 bits): Specifies the port that the data was written to on the sending node.

Figure 3-15. TCP packet header
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Destination Port (16 bits): Specifies the port that the data will be read from on the 

receiving node.

Sequence Number (32 bits): Meaning depends on the value of the SYN flag:

• If the SYN flag is set, this field contains the initial sequence 

number. The sequence number of the actual first data byte (and the 

acknowledgment number in the resulting ACK) will then be that 

value plus 1.

• If the SYN flag is clear, this field contains the accumulated sequence 

number of the first data byte of this packet for the current session.

Acknowledgement Number (32 bits): Used to acknowledge receipt of data:

• If the ACK flag is set, this field is the next sequence number that the 

receiver is expecting. This acknowledges receipt of all previous bytes.

• If the ACK flag is clear, this field is not used.

Data Offset (4 bits): Specifies the size of the TCP header in 32-bit words. The 

minimum value is 5 words (20 bytes), and the maximum value is 15 words (60 bytes), 

allowing for up to 40 bytes of options.

Reserved (4 bits): Not currently used and must be zeros.

There are eight 1-bit flags (8 bits total) as follows (in order from most significant bit 

to least significant bit):

• CWR: Congestion Window Reduced. If set by the sender, it indicates 

it has received a TCP segment with the ECE flag set and has 

responded in a congestion control mechanism.

• ECE: ECN Echo. If the SYN flag is set, then ECE set indicates that the 

TCP peer is ECN capable. If the SYN flag is clear, then the ECE flag set 

indicates that a Congestion Experienced flag in the IP header set was 

received during normal transmission.

• URG: Indicates whether the Urgent Pointer field is significant.

• ACK: If set, indicates that the Acknowledgement Number field is 

significant. All packets after the initial SYN packet sent by a node 

should have this flag set.
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• PSH: Push flag. If set, asks to push any buffered data to the receiving 

application.

• RST: Reset flag. If set, resets the connection.

• SYN: Synchronize flag. If set, synchronizes sequence numbers. Only 

the first packet sent from each end should have this flag set.

• FIN: Finished flag – if set, no more data is coming.

Window Size (16 bits): Size of the receive window, which is the number of bytes that 

the receiver is willing to receive.

Checksum (16 bits): Used for error checking of the TCP header and data.

Urgent Pointer (16 bits): If the URG flag is set, this is the offset from the sequence 

number indicating the last urgent data byte.

Options (from zero to ten 32-bit words): Optional, not commonly used – see RFC for 

details.

Protocol Operation

 1. Connection is established using a three-way handshake, which 

creates a virtual circuit.

 2. Data is transferred over the virtual circuit until connection is 

terminated.

 3. Connection termination closes the established virtual circuit and 

releases allocated resources.

TCP operation is controlled by a state machine, with 11 states:

 1. LISTEN: Wait for a connection request from a remote client.

 2. SYN-SENT: Wait for the remote peer to send back a segment with 

SYN and ACK flags set.

 3. SYN-RECEIVED: Wait for the remote peer to send back 

acknowledgment after sending back a connection.

 4. ESTABLISHED: The port is ready to exchange data with the 

remote peer.

 5. FIN-WAIT-1

 6. FIN-WAIT-2
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 7. CLOSE-WAIT

 8. CLOSING

 9. LAST-ACK

 10. TIME-WAIT: Ensure the remote peer has received 

acknowledgment of the termination request (< 4 minutes).

 11. CLOSED

Notes
TCP uses sequence numbers to detect lost packets and/or reorder packets that 

arrive out of order. The cumulative acknowledgment scheme informs the sender that 

all packets up to the acknowledged sequence number have been received. Selective 

Figure 3-16. TCP state transition diagram (from Wikipedia)
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acknowledgment (RFC 2018117) allows for optimization of this feature. Lost data is 

automatically retransmitted by the sender. End-to-end flow control provides for a 

mismatch in performance between sender and receiver. A sliding window algorithm 

allows multiple packets to be in progress, which increases efficiency. Recently, 

congestion control has been added into TCP to avoid network congestion.

TCP is very complicated. The good news is that when used over IPv6, TCP works 

essentially the same way. The very minor changes will be covered later.

 UDP: The User Datagram Protocol
The User Datagram Protocol is defined in RFC 768,118 “User Datagram Protocol,” August 

1980. Like TCP, it is also a Transport Layer119 protocol. Unlike TCP, UDP implements 

an unreliable, connectionless model. When we say unreliable, we just mean that error 

detection and recovery are not built into the protocol, so it is up to the application to 

do any desired error detection and recovery. By connectionless, we mean that each 

transmission consists of a single (but complete) packet. In IPv4, a packet is typically 

1508 bytes, but can be more or less. If you send a big packet, it will likely be fragmented 

somewhere along the way and reassembled at the other end. Each datagram is an atomic 

event, not connected to any other datagram. UDP does not handle streams of data (as 

is done with the connection-oriented model). Software that uses UDP does not need to 

open or close a connection; it can simply read or write datagrams at any time, and each 

operation sends or receives one packet. This is a much simpler model than TCP, with 

less overhead. However, when using UDP you are responsible for doing certain things 

that TCP does for you, such as error detection and retransmission. UDP is often used for 

things like streaming audio or video. It is also used for DNS queries and responses and 

for TFTP120 (Trivial File Transfer Protocol).

117 https://tools.ietf.org/html/rfc2018
118 https://tools.ietf.org/html/rfc768
119 https://en.wikipedia.org/wiki/Transport_layer
120 https://en.wikipedia.org/wiki/Trivial_File_Transfer_Protocol
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 Standards Relevant to UDP
RFC 768, “User Datagram Protocol,” August 1980 
(Standards Track)

RFC 2508, “Compressing IP/UDP/RTP Headers for Low-Speed 
Serial Links,” February 1999 (Standards Track)

RFC 3095, “Robust Header Compression (ROHC): Framework 

and Four Profiles: RTP, UDP, ESP and Uncompressed,” July 2001 

(Standards Track)

RFC 3828, “The Lightweight User Datagram Protocols (UDP-Lite),” 

July 2004 (Standards Track)

RFC 4019, “Robust Header Compression (ROHC): Profiles for User 

Datagram Protocol (UDP) Lite,” April 2005 (Standards Track)

RFC 4113, “Management Information Base for User Datagram 
Protocol (UDP),” June 2005 (Standards Track)

RFC 4362, “RObust Header Compression (ROHC): A Link-Layer 

Assisted Profile for IP/UDP/RTP,” January 2006 (Standards Track)

RFC 4727, “Experimental Values in IPv4, IPv6, ICMPv4, ICMPv6, 

UDP and TCP Headers,” November 2006 (Standards Track)

RFC 4815, “Robust Header Compression (ROHC): Corrections and 

Clarifications to RFC 3095,” February 2007 (Standards Track)

RFC 5097, “MIB for the UDP-Lite Protocol,” January 2008 

(Standards Track)

RFC 5225, “RObust Header Compression Version 2 (ROHCv2): 

Profiles for RTP, UDP, IP, ESP and UDP-Lite,” April 2008 

(Standards Track)
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 UDP Packet Header

The Source Port field (16 bits) specifies which port number the data is being written to on 

the sending computer. This field is optional (if not used, fill with zeros).

The Destination Port field (16 bits) specifies which port number the data is being 

read from on the receiving computer.

The Length field (16 bits) is the number of bytes in the datagram, including the UDP 

header and the data. Therefore, the minimum value is 8 (the length of the UDP header). 

The maximum value in theory is 65,536 bytes, but this value is limited by the maximum 

packet size, typically 1508.

The Checksum field (16 bits) is the 16-bit one’s complement sum of the 16-bit words 

in the following items:

 1. A “pseudo header,” which contains the source and destination IP 

addresses, the protocol number, and the UDP length (from the 

IP header)

 2. The UDP header itself

 3. The data, padded with a zero byte if required to make an even 

number of bytes

The Checksum field is optional (if not used, fill with zeros).

The Data field begins immediately after the Checksum field. It is not really part of the 

header, but it is factored into the checksum.

Figure 3-17. UDP packet header
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 DHCPv4: Dynamic Host Configuration Protocol 
for IPv4
One of the network services that is really useful in network configuration is the Dynamic 

Host Configuration Protocol (DHCP121). The version that works with IPv4 is now called 

DHCPv4 (to distinguish it from the one for IPv6, which is called DHCPv6). DHCPv4 

is specified in RFC 2131,122 “Dynamic Host Configuration Protocol,” March 1997. 

Without DHCPv4 running on your network, someone must manually configure all IPv4 

network settings on every computer. This can be very complicated and error-prone. It 

also requires at least some expertise, which many users don’t possess. It is possible to 

accidently configure two computers with the same address or mistype a DNS server’s 

address on the 35th computer you install that day. These kinds of errors can cause 

tricky problems. With a DHCPv4 server, you can configure all the client computers to 

do “autoconfiguration.” When such a computer powers up, it will search for a DHCPv4 

server (or a relay agent, connected to a real DHCPv4 server in another network). When 

it finds one, it will request configuration data (including the default gateway, the IP 

addresses of the DNS servers, the Internet domain name, and other items, including a 

lease on an IPv4 address, which should be unique within your network). This makes it 

easier to change things. If you move a DNS server or make other changes, you need only 

update your DHCPv4 server configuration and terminate all client leases (all nodes will 

request new configuration information).

DHCPv4 is widely used by ISPs, especially ones that have lots more customers 

than valid (globally routable) IPv4 addresses. They can set very short lease times. 

Then when someone disconnects, the address they had been using can be reused by 

another customer. Of course, these days, most people want 7×24 Internet connectivity, 

as opposed to perhaps 1 hour a day or dial-up access. Many ISPs now provide their 

customers with RFC 1918 private addresses, unless for some reason they specifically 

require a globally routable address. Some ISPs charge more for a globally routable 

address and a lot more for multiple globally routable addresses. I have one real 

public IPv4 address for my home network, so I can run email and other services, in 

addition to using one to tunnel IPv6 into my network over IPv4. DHCPv4 can provide 

autoconfiguration with private addresses just as easily as with globally routable 

121 https://en.wikipedia.org/wiki/Dynamic_Host_Configuration_Protocol
122 https://tools.ietf.org/html/rfc2131
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addresses, so they still use DHCPv4 to assign those. Basically, all their users are now 

“hiding” behind a single public address, via NAT. More recently, users are behind two 

layers of NAT – they don’t even have one public IPv4 address anymore. This is done with 

CGNAT (Carrier-Grade NAT123), with one mapping from a public address at the ISP to 

one private address from 100.64/10 at the ISP and another from that private address to 

multiple RFC 1918 private addresses in their network.

DHCPv4 uses broadcast (which doesn’t exist in IPv6) and can only deliver 32-bit 

addresses (for the assigned IP address or things like DNS IP addresses), so it had to be 

completely rewritten for IPv6. The differences will be covered in Chapter 6.

Most client operating systems in use today (especially on personal computers) 

include a DHCPv4 client, including all versions of Windows, FreeBSD, Linux, Solaris, 

Mac OSX, etc. Even smartphones with Wi-Fi include a DHCPv4 client. In practice, 

DHCPv6 may not be widely used, as IPv6 addresses and even discovery of IPv6 

addresses for DNS are more likely to be done via Stateless Address Autoconfiguration 

(SLAAC) than via DHCPv6 (see RFC 6106,124 “IPv6 Router Advertisement Options for 

DNS Configuration”, November 2010).

Most server operating systems (such as Windows Server, FreeBSD, Linux, etc.) 

include a DHCPv4 server. The most common one for UNIX and UNIX-like servers is 

dhcpd from the Internet Systems Corporation (ISC). It is configured by editing some 

complex ASCII text configuration files (with a text editor). This type of configuration has 

not changed appreciably in 50 years (and you thought IPv4 was old). The DHCPv4 server 

included with Windows Server at least has a GUI configuration tool, which is much 

easier to use. Most appliances that provide DHCPv4 service include a GUI web-based 

configuration tool (as a “front end” to dhcpd, in most cases).

When you configure a DHCPv4 server, you typically configure one or more pools of 

addresses to be managed by that server. You can have more than one DHCPv4 server 

in a given network subnet, but the managed address ranges must not overlap. DHCPv4 

clients cannot contact DHCPv4 servers on another subnet (on the other side of a router) 

directly (since DHCPv4 servers are found via broadcast). So you either need to have a 

DHCPv4 server (or at least a DHCPv4 relay agent) in every subnet (“broadcast domain”). 

You can create a “scope” on the server and configure the “stateless” items that it will 

use to autoconfigure clients, including the domain name, the subnet mask, the address 

of the default gateway, the IP addresses of two DNS servers, etc. There are dozens of 

123 https://en.wikipedia.org/wiki/Carrier-grade_NAT
124 https://tools.ietf.org/html/rfc6106
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things you can autoconfigure with DHCPv4. You also specify a range of addresses (e.g., 

192.168.5.100 to 192.168.5.199) as a pool from which to lease addresses. You should not 

manually assign any of these addresses to other nodes. If you do for some reason, you 

can exclude that address from the available pool.

Once such a server is installed and configured, just set up your client computers to 

“Obtain an IP address automatically” and to “Obtain DNS server address automatically.” 

As soon as you specify that or anytime the computer powers up, it will obtain all 

necessary information (including a unique IPv4 node address) from the DHCPv4 server. 

In Windows, you can use the “ipconfig /all” command (in a DOS prompt window) to 

view the obtained settings (look for the interface named Local Area Connection).

By default, addresses are assigned on a “first come, first served” basis. If you want 

a given node to be assigned a specific address each time, you can make an address 

reservation by associating one of the pool addresses with that node’s MAC address. Any 

time that node requests configuration data from the DHCPv4 server, it will be assigned 

the reserved address for that MAC address, rather than a random one from the pool.

 The DHCPv4
The DHCPv4 lives in the Application Layer. It uses port 67 for data from client to server 

and port 68 for data from the server to the client (both over UDP). There are four phases 

in a DHCPv4 network configuration:

 1. IP Discovery

 2. IP Lease Offer

 3. IP Request

 4. IP Lease Acknowledgment

Let’s say our network uses 192.168.0.0/16. That means the subnet mask is 

255.255.0.0. Our DNS servers are at 192.168.0.11 and 192.168.0.12. The DHCPv4 server is 

also running on 192.168.0.11. The default gateway is 192.168.0.1. We have created a pool 

of addresses from 192.168.1.0 to 192.168.1.255.

In the Discover IP phase, the client sends a DHCPDISCOVER request, as follows:

• Source address = 0.0.0.0, source port = 68

• Destination address = 255.255.255.255, destination port = 67
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• DHCP option 50: IP address 192.168.1.100 is requested.

• DHCP option 53: Message is DHCPDISCOVER.

• Request subnet mask, default gateway, domain name, and domain 

name server(s).

In this case, the node is requesting its last known IP address. Assuming it is still 

connected to the same network and the address is not already leased to someone else, 

the server may grant the request. Otherwise, the client will have to negotiate for a new 

address.

In the DHCP Lease Offer phase, the server will reserve an IP address for the client (in 

this case it is accepting the request for the last known address) and send a DHCPOFFER 

message to the client, as follows:

• Source address = 192.168.0.11, source port = 67

• Destination address = 255.255.255.255, destination port = 68

• DHCP option 01: Subnet mask is 255.255.0.0.

• DHCP option 03: Default gateway is 192.168.0.1.

• DHCP option 06: IP addresses of DNS servers are 192.168.0.11 and 

192.168.0.12.

• DHCP option 51: Lease duration is 86400 seconds (1 day).

• DHCP option 53: Message is DHCPOFFER.

• DHCP option 54: IP address of the DHCP server is 192.168.0.11.

In the IP Request phase, the client accepts the offer and sends a DHCPREQUEST 

message as follows:

• Source address = 0.0.0.0, source port = 68

• Destination address = 255.255.255.255, destination port = 67

• DHCP option 50: IP address 192.168.1.100 is requested.

• DHCP option 53: Message is DHCPREQUEST.

• DHCP option 54: IP address of the DHCP server is 192.168.0.11.
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In the IP Acknowledgement phase, the server officially registers the assignment and 

notifies the client of the configuration values:

• Source address = 192.168.0.11, source port = 67

• Destination address = 255.255.255.255, destination port = 68

• DHCP option 01: Subnet mask is 255.255.0.0.

• DHCP option 03: Default gateway is 192.168.0.1.

• DHCP option 06: IP addresses of DNS servers are 192.168.0.11 and 

192.168.0.12.

• DHCP option 51: Lease duration is 86400 seconds (1 day).

• DHCP option 53: Message is DHCPACK.

• DHCP option 54: IP address of the DHCP server is 192.168.0.11.

At this point, the client actually configures those values for its network interface and 

can begin using the network.

 Useful Commands Related to DHCPv4
In Windows, there are some commands available in a DOS prompt box related 

to DHCPv4:

ipconfig /release: Release the assigned IPv4 address and de-

configure network.

ipconfig /renew: Do a new configuration request for IPv4.

ipconfig /all: View all network configuration settings.

This is an example of the output from “ipconfig /all”.
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Figure 3-18. Output of the ipconfig /all command

 IPv4 Network Configuration
Let’s assume our LAN has the following configuration:

Network Address:    192.168.0.0/16 (mask = 255.255.0.0)

Default Gateway:    192.168.0.1

DHCPv4 Address:     192.168.0.11

DNS Server Address: 192.168.0.11, 192.168.0.12

Domain Name:        redwar.org

Furthermore, assume the DHCPv4 server is correctly configured with this 

information and is managing the address range 192.168.1.0–192.168.1.255 (and that 

some leases have already been granted).

Any node connected to a network with IPv4 must have certain items configured, 

including

• IPv4 node address

• Subnet mask (or, equivalently, CIDR subnet mask length)

• IPv4 address of the default gateway

• IPv4 addresses of DNS servers

• Nodename

• DNS domain name
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 Manual Network Configuration
It is possible to perform IPv4 network configuration on a node manually, either by 

editing ASCII configuration files, as in FreeBSD or Linux, or via GUI configuration tools, 

as in Windows. If you have understood the material in this chapter, it should be fairly 

easy for you to configure your node(s). In most cases, if you have ISP service, the ISP will 

give you all the information necessary to configure your node(s).

Let’s configure a FreeBSD 7.2 node manually. Assign it the nodename “us1.redwar.

org” and the IP address 192.168.0.13. The interface we are configuring has the FreeBSD 

name “vr0”.

You need to edit the following files (you will need root privilege to do this):

/etc/rc.conf

...

hostname=”us1.redwar.org”

ifconfig_vr0=”inet 192.168.0.13 netmask 255.255.0.0”

defaultrouter=”192.168.0.1”

...

/etc/resolv.conf

domain      redwar.org

nameserver  192.168.0.11

nameserver  192.168.0.12

If you make these changes and reboot, you can check the configuration as shown:

$ ifconfig vr0

vr0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0 mtu 1500

        options=2808<VLAN_MTU,WOL_UCAST,WOL_MAGIC>

        ether 00:15:f2:2e:b4:1c

        inet 192.168.0.13 netmask 0xffff0000 broadcast 192.168.255.255

        media: Ethernet autoselect (100baseTX <full-duplex>)

        status: active

$ uname –n

us1.redwar.org

$ nslookup

> server
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Default server: 192.168.0.11

Address: 192.168.0.11#53

Default server: 192.168.0.12

Address: 192.168.0.12#53

> exit

$ netstat -rn

Routing tables

Internet:

Destination        Gateway            Flags    Refs      Use  Netif Expire

default            192.168.0.1         UGS         0        5    vr0

...

 Auto Network Configuration Using DHCPv4
It is also possible for a node to be automatically configured if a DHCPv4 server (or 

relay agent) is available somewhere on the LAN (or possibly from the ISP). If you are 

deploying several nodes on a home network, it is likely that there is a DHCPv4 server in 

your home gateway/DSL modem.

Let’s configure a FreeBSD 7.2 node automatically using DHCPv4. Assign it the 

nodename “us1.redwar.org” and any IP address from DHCPv4. The interface we are 

configuring has the FreeBSD name “vr0”.

You need to edit the following file (you will need root privilege to do this):

/etc/rc.conf

...

hostname=”us1.redwar.org”

ifconfig_vr0=”DHCP”

...

If you make these changes and reboot, you can check the configuration as shown:

$ ifconfig vr0

vr0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0 mtu 1500

        options=2808<VLAN_MTU,WOL_UCAST,WOL_MAGIC>

        ether 00:15:f2:2e:b4:1c
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        inet 192.168.1.9 netmask 0xffff0000 broadcast 192.168.255.255

        media: Ethernet autoselect (100baseTX <full-duplex>)

        status: active

$ uname –n

us1.redwar.org

$ nslookup

> server

Default server: 192.168.0.11

Address: 192.168.0.11#53

Default server: 192.168.0.12

Address: 192.168.0.12#53

> exit

$ netstat -rn

Routing tables

Internet:

Destination        Gateway            Flags    Refs      Use  Netif Expire

default            192.168.0.1         UGS         0        5    vr0

Figure 3-19. TCP/IP network configuration – main tab
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Figure 3-20. IPv4 network configuration – TCP/IPv4 Properties dialog

Figure 3-21. TCP/IP network configuration – IPv4 manual configuration dialog
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Figure 3-22. TCP/IP network configuration main tab – select IPv6

Figure 3-23. TCP/IP network configuration – TCP/IPv6 automatic configuration
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Figure 3-25. TCP/IP network configuration – verify configuration

Figure 3-24. TCP/IP network configuration – TCP/IPv6 manual configuration
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Figure 3-26. TCP/IP network configuration – check network configuration details

 Summary
In this chapter, we reviewed the technical aspects of IPv4. First off, some of you might 

not be familiar with the details of this protocol or how it has evolved over the many years 

since 1981, when it was specified.

In particular, we covered how we have “broken the Internet” by introducing NAT and 

private addresses and why it was done. This allowed us to keep using IPv4 well past its 

real shelf life, but at a very high cost (more complex network software design and limits 

on what most uses can do in terms of connections to and from other nodes). We have 

splintered the original IPv4 “monolithic address space” into millions of tiny “private 

Internets” loosely coupled together through NAT gateways.

There are many RFCs that specify how IPv4 works, going back to 1981 (RFCs 791 

and 792).

Since IPv6 is heavily based on IPv4, you need to understand IPv4 in order to 

understand what is new in IPv6.
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Likely, IPv4 will be phased out (at least at the international backbone level) in the 

next few years. Until then, we will have a global Internet that is partly IPv4 and partly 

IPv6. The two can exist in parallel, but it is not really practical to translate between them 

in either direction (NAT64 is very limited to allow translation from IPv6 addresses to 

external IPv4 servers).

If you are like most network engineers and developers today, you only know IPv4. If 

so, you are rapidly becoming obsolete. The future is IPv6. This book will help you make 

the leap from IPv4 to IPv6, so you will still have a job in a few years. Today, when I run 

into a corporate network that is IPv4-only, I feel like I am being asked to ride on a horse 

instead of my much more powerful and fast car (IPv6). The four-octet IPv4 addresses 

now look quaint and primitive to me, like the one-octet NDP addresses from ARPANET 

look to you now. Get used to 128-bit addresses in hexadecimal. The future is here.

A good analogy is when Novell NetWare was being replaced by TCP/IP some years 

ago. Many people were very tied to NetWare, with multiple certifications and extensive 

expertise, but soon there were no jobs for them. All networks were being converted over 

to TCP/IP because that was the native protocol of the Internet. They had to learn TCP/IP 

to be useful. The next generation has arrived.

If you want to have a good dose of reality, check out “Sunset IPv4” – the working 

group of the IETF whose charter was to figure out how to finally put IPv4 to sleep for 

good, like NetWare or OSI. So let us say a fond farewell to IPv4. The king is dead. Long 

live the king.
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CHAPTER 4

The Depletion of the  
IPv4 Address Space
Some people today are aware that the folks in charge of the Internet are running out (or 

have already run out) of public IPv4 addresses. Most of them are not aware that this is 

not the first time we’ve faced this or just how low that pool of addresses is today. The 

majority of Internet users are either completely oblivious to what is going on and think 

that the Internet will go on like it has, forever. If they have heard any rumors about an 

address shortage, they have a blind faith that the people in charge can simply work some 

magic and the problem will go away. Well, they did once, in the mid-1990s (with NAT 

and private addresses), and they have found another trick with Carrier-Grade NAT to 

extend the lifetime of IPv4 even longer. However, each of these stopgap measures has 

caused major new problems. IPv4 is simply at its end of life, and it is time to start using 

its successor, IPv6.

© Lawrence E. Hughes 2022 
L. E. Hughes, Third Generation Internet Revealed, https://doi.org/10.1007/978-1-4842-8603-6_4
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Figure 4-1. RIP, IPv4 public address allocation pool

 OECD IPv6 Report, March 2008
The best study on this done to date (in my opinion) is in the OECD report presented 

at the OECD Ministerial Meeting on the Future of the Internet Economy, in Seoul, 

Korea, June 17–18, 2008. I was a speaker at the concurrent Korean IPv6 Summit. The 

full name of the OECD is Organisation for Economic Co-operation and Development. It 

was established in 1961 and currently has 30 member nations, including most members 

of the EU, plus Australia, Canada, Japan, Korea, Mexico, New Zealand, Turkey, the 

United Kingdom, and the United States. It had a 2009 budget of EUR 320 million. Their 

goals are to

• Support sustainable economic growth.

• Boost employment.

• Raise living standards.

• Maintain financial stability.
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• Assist other countries’ economic development.

• Contribute to growth in world trade.

Unlike the IETF or ISO, the OECD is not specifically concerned with technology. 

They are primarily concerned with the economies of their member countries. However, 

they have determined that the imminent exhaustion of the IPv4 address space will have 

a major impact on most of their goal areas. Because of this, they did a major study, the 

results of which are presented in Ministerial Background Report DSTI/ICCP(2007)20/

FINAL, “Internet Address Space: Economic Considerations in the Management of 

IPv4 and in the Deployment of IPv6.” The report1 is available free to download over 

the Internet. You should actually read the entire report, but I will summarize the most 

important aspects of it in this chapter.

Let me quote one paragraph from the “Main Points” section:

There is now an expectation among some experts that the 

currently used version of the Internet Protocol, IPv4, will run 

out of previously unallocated address space in 2010 or 2011, as 

only 16% of the total IPv4 address space remains unallocated in 

early 2008. The situation is critical for the future of the Internet 

economy because all new users connecting to the Internet, and 

all businesses that require IP addresses for their growth, will be 

affected by the change from the current status of ready availability 

of unallocated IPv4 addresses.

As of early 2010, only 8% of the addresses remained unallocated. The IANA pool was 

officially exhausted in February 2011.2 All five RIRs have all reached “end of normal IPv4 

allocation” since then.

Another key passage from this section follows:

As the pool of unallocated IPv4 addresses dwindles and transition 

to IPv6 gathers momentum, all stakeholders should anticipate 

the impacts of the transition period and plan accordingly. With 

regard to the depletion of the unallocated IPv4 address space, 

the most important message may be that there is no complete 

1 www.oecd.org/internet/ieconomy/40605942.pdf
2 www.computerworld.com/article/2512924/update--icann-assigns-its-last-ipv4- 
addresses.html
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solution and that no option will meet all expectations. While the 

Internet technical community discusses optional mechanisms 

to manage IPv4 address space exhaustion and IPv6 deployment 

and to manage routing table growth pre- and post-exhaustion, 

governments should encourage all stakeholders to support a 

smooth transition to IPv6.

IPv6 adoption is a multi-year, complex integration process that 

impacts all sectors of the economy. In addition, a long period of 

co-existence between IPv4 and IPv6 is projected during which 

maintaining operations and interoperability at the application 

level will be critical. The fact that each player is capable of 

addressing only part of the issue associated with the Internet-wide 

transition to IPv6 underscores the need for awareness raising and 

co-operation.

Basically, there is no good or lasting solution for those wanting to remain with IPv4. 

It is going to take multiple years to make the transition. We are now in 2022, and there are 

still a lot of people and organizations who have not completed their transition to IPv6 

(and some who haven’t even begun it). Such transitions are usually not done well when 

rushed. And once the addresses are gone, that’s it. The IETF assumed that the transition 

would be done by 2010 before IPv4 public addresses ran out. One problem is that the 

best transition mechanism (6in4 tunneling) requires one public IPv4 address at the 

customer site, and today those are very hard to come by. For example, in the Philippines, 

no personal ISP accounts include a public IPv4 address, and even business accounts 

have a very small number (five or maybe just one). The ISPs just don’t have any more to 

allocate. The tunneling schemes that work through NAT are much more problematic and 

unstable.

The OECD report acknowledges that in the early phases of a major technology 

transition such as this, there may be little or no incentive to shift to the new technology. 

However, once a critical mass of users adopt the new technology, there is often a tipping 

point after which adoption grows rapidly until it is widespread. In theory this tipping 

point is reached when the marginal cost, for an ISP or an organization, of implementing 

the next device with IPv4 becomes higher than the cost of deploying the next device 

with IPv6. For an ISP, there are costs associated with deploying IPv4 nodes such as the 
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cost of obtaining the addresses themselves and the costs of designing and deploying 

network infrastructure that uses fewer and fewer public (globally routable) addresses 

(by using NAT). When these become higher than the cost of deploying IPv6, they will 

begin migration in earnest. Reaching this tipping point depends on a number of factors, 

including customer demand, opportunity costs, emerging markets, the introduction of 

new services, government incentives, and regulation.

For mobile telco service providers (especially in the United States), they have already 

passed this tipping point. It was far cheaper for them to migrate to IPv6 than to keep 

IPv4 alive for one more year. Even with private addresses, the largest block (10/8) only 

has 16.7M addresses in it, and many mobile telcos have far more than 16.7M customers. 

So multiple /8 blocks must be deployed and somehow “stitched together” into a single 

network. This is very difficult. Many mobile operators are ditching IPv4 altogether and 

providing only IPv6 service. This is viable due to something called “464XLAT,” (RFC 

68773 – 464XLAT: Combination of Stateful and Stateless Transition,” April 2013). This 

allows legacy smartphone apps that only support IPv4 to still work. 464XLAT has been 

in Android since 4.3 in October 2013. On iPhones, since iOS 10, all apps in the App Store 

must work in an IPv6-only environment. Today many mobile phone service providers 

have migrated to IPv6 – typical companies are at 90+% migrated.

As 5G is rolled out, this will likely be mostly IPv6 based. Apart from the higher 

speed, 5G is supposed to support end-to-end direct connection, which is only possible 

with IPv6.

One of the key requirements for migrating to IPv6 is technical expertise in the 

subject. This is necessary to provide countries and companies with competitive 

advantage in the area of technology products and services and the benefit from 

ICT-enabled innovation. Countries who are early adopters and provide training 

and incentives for their companies to embrace it or even help fund the necessary 

infrastructure (as in China) will have significant competitive advantages in years to come 

over countries that are laggards in this transition. India has taken the lead in this by 

requiring all ISPs to deploy IPv6. They are now at 60% migration nationwide (the highest 

in the world).

Increasing scarcity of IPv4 addresses can raise competitive concerns in terms of 

barriers to new entry and strengthening incumbent positions. There has been much 

discussion over how to manage previously allocated IPv4 addresses once the free pool 

3 https://tools.ietf.org/html/rfc6877
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has been exhausted. A global market for IPv4 addresses has emerged. Desperate ISPs 

and cloud service providers can still buy previously allocated IPv4 addresses for about 

$16 per address (early 2019). Today, you only borrow (lease?) addresses from an ISP for 

so long as you have service with that ISP. If you terminate that service, the addresses 

are reclaimed by the ISP for allocation to other customers. You don’t really own those 

addresses, so you can’t sell them. Even the ISP doesn’t own them. If an ISP goes out of 

business, their address pool probably returns to the RIR they got them from. Some of 

these situations are not currently well defined, but they will be as the IPv4 address space 

nears exhaustion. Notably, the situation on the early class A block allocations is not quite 

so well defined. Those blocks are owned by those early adopter companies.

One of the companies that got a class A block (Nortel), when it closed down, sold 

off 666,000 IPv4 public addresses to Microsoft4 for USD 7.5 million (primarily for use in 

Azure Cloud).

There is also discussion of how existing and increasing use of NAT requires 

developers of network-aware products and applications to build increasingly complex 

central gateways or NAT traversal mechanisms to allow clients (who are in most cases 

both behind NAT gateways) to communicate. This is creating barriers to innovation 

and to the development of new services. It is also causing problems with the overall 

performance and stability of the Internet.

There is a risk of some parts of the world deploying IPv6, while others continue 

running IPv4 with multiple layers of NAT. Such decisions would impact the economic 

opportunities offered by the Internet with severe repercussions in terms of stifled 

creativity and deployment of generally accessible new services. Also, there could be 

serious issues of interoperation between people in the IPv6 world and those left behind 

in the IPv4 world. This could lead to a fragmentation of the Internet.

The five sections of the report cover the following topics:

• Overview of the major initiatives that have taken place in Internet 

addressing to date and the parallel development of institutions that 

manage Internet addressing.

• Summary of proposals under consideration for management of the 

remaining IPv4 addresses.

4 www.networkworld.com/article/2228854/microsoft-pays-nortel--7-5-million-for-ipv4-
addresses.html
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• Overview of the drivers and challenges for transitioning to IPv6 

through a dual-stack (IPv4 + IPv6) environment. It reviews factors 

that influence IPv6 adoption, drawing on available information.

• Economic and public policy considerations and recommendations to 

governments.

• Lessons learned from several IPv6 deployments.

 OECD Follow-Up Report on IPv6, April 2010
In April 2010, the OECD released a follow-up report to the IPv6 report mentioned 

previously. It is called “Internet Addressing: Measuring Deployment of IPv6.”5 They 

still expected IPv4 addresses to run out in 2012. As of March 2010, only 8% of the full 

IPv4 address space was available for allocation at the IANA level. At that time, IPv6 

use was growing faster than IPv4 use, albeit from a still small base. Several large-scale 

deployments were taking place or were in planning. Some of the key findings, all as of 

March 2010, were as follows:

• 5.5% of the networks on the Internet (1,800 networks) could handle 

IPv6 traffic.

• IPv6 networks have grown faster than IPv4-only networks since 

mid-2007.

• Demand for IPv6 address blocks has grown faster than demand for 

IPv4 address blocks.

• One out of five transit networks (i.e., networks that provide 

connections through themselves to other networks) handled IPv6. 

This means that Internet infrastructure players were actively readying 

for IPv6.

5 www.oecd.org/internet/ieconomy/44953210.pdf
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• As of January 2010, over 90% of installed operating systems were IPv6 

capable, and 25% of end users ran an operating system that enabled 

IPv6 by default (e.g., Windows Vista or Mac OS X). This percentage 

has probably increased since the release of Windows 7, but no 

measurement is available.

• As of January 2010, over 1.45% of the top 1000 websites were available 

over IPv6, but as of March 2010 (when Google IPv6 enabled their 

websites), this jumped to 8%.

• Over 4,000 IPv6 prefixes (address blocks) had been allocated. Of 

these 2,500 (60%) showed up as routed on the Internet backbone 

(were actually in use).

• At least 23% of Internet Exchange Points explicitly supported IPv6.

• Seven out of 13 DNS root servers were accessible over IPv6.

• 65% of top-level domains (TLDs) had IPv6 records in the root 

zone file.

• 80% of TLDs had name servers with an IPv6 address.

• 1.5 million domain names (about 1% of the total) had IPv6 DNS 

records.

Operators in the RIPE NCC and APNIC service areas were given a survey in 2009. The 

results showed the following:

• 7% of APNIC respondents claimed to have equal or more IPv6 traffic 

than IPv4 traffic.

• 2% of RIPE respondents claimed to have equal or more IPv6 traffic 

than IPv4 traffic.

• Of those respondents not deploying IPv6, 60% saw cost as a major 

barrier.

• Of those respondents deploying IPv6, 40% considered lack of vendor 

support the main obstacle.
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 OECD Second Follow-Up Report on IPv6, 
November 2014
Since the 2010 book, the OECD has released another report on IPv6: The Economics of 

Transition to Internet Protocol version 6 (IPv6).6

Citation: OECD (2014), "The Economics of Transition to Internet Protocol version 6 

(IPv6)," OECD Digital Economy Papers, No. 244, OECD Publishing. DOI: https://doi.

org/10.1787/5jxt46d07bhc-en7

• As of April 2014, worldwide traffic over IPv6 was roughly 3.5%.

• The adoption of IPv6 has differed from that of other technologies, for 

the following reasons:

• The primary benefit to adopters is access to the larger IP 

address space.

• Since most people deploying IPv6 are implementing dual stack, 

they still must cope with the lack of public addresses and NAT on 

the IPv4 side – many of the benefits will not come until users can 

turn off IPv4.

• Implementation may involve solving new and unexpected 

technical challenges, and there has been a lack of skills for 

implementing IPv6.

• ISPs and vendors have invested heavily in alternative solutions 

such as Carrier-Grade NAT, despite many negative aspects.

• Deployment by mobile service providers has been much stronger 

than by wired service providers, due to certain technical factors, 

which make it less expensive to deploy IPv6 than to keep IPv4 alive in 

that space.

• Not transitioning to IPv6 has a range of economic implications:

6 www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=DSTI/ICCP/
CISP%282014%293/FINAL&docLanguage=En
7 www.oecd-ilibrary.org/science-and-technology/the-economics-of-transition-to- 
internet-protocol-version-6-ipv6_5jxt46d07bhc-en
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• Alternative solutions break some applications and disrupt the 

modularity of the Internet.

• Economic costs of IPv4 depletion are asymmetric, affecting some 

products, services, and providers more than others.

• A market has emerged to trade in unused IPv4 addresses.

• The World IPv6 Launch (June 6, 2006) was effective in promoting 

adoption.

• IPv6 is infrastructure, not a product in its own right.

• The net benefits from adoption are not distributed equally across the 

stakeholders.

• As of April 2014, IANA, APNIC, RIPE, and LACNIC had already 

reached end of normal IPv4 allocation. ARIN was expected to end 

allocation in February 2015 and AfriNIC in June 2020. [ARIN actually 

ended normal allocation in September 2015 but left no buffer in 

stock – other RIRs ended allocation when they reached one “/8” of 

addresses (16.7M).]

• IPv6 connections to Google search website had reached 3.5% [it is 

now at 26.7%, just 5 years later].

• IPv6 adoption is based on the “Probit model,” where (1) the benefits 

of adoption exceed the costs and (2) it is better to adopt now 

compared with any other time.

• To many users, the benefits are uncertain and will occur primarily in 

the future.

• As with many technologies, there is a “network effect,” where as more 

people adopt it, the incentives to adopt increase.

• Adoption of early users can influence adoption by later users. 

Early ISP adopters include Comcast, Verizon Wireless, AT&T, Free, 

Deutsche Telekom, and KDDI. Large content providers include 

Google, Facebook, and Yahoo.
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• Another OECD report in 2013 estimated that a family with two 

teenagers could have as many as 50 devices connected in their home 

by 2022. They further estimated 50 billion devices by 2020–2030. 

These volumes cannot be handled by IPv4.

• Support for IPv6 by network equipment vendors was “excellent,” 

while CPE vendors were not as good.

• Costs of deploying CGN were estimated at US$ 90,000 per 10,000 

users, plus US$ 10,000 per year ongoing.

• Costs of a provider transitioning to IPv6 are lower if stretched over 

several years than if done all at once (replace IPv4-only gear with 

IPv6-compliant gear during normal replacement cycles).

• Mobile providers do not have to consider CPE costs and complexity, 

and 40% of LTE handsets in 2014 supported IPv6 [virtually all do 

now]. The presence of 464XLAT on almost all Android handsets 

makes the migration to IPv6 especially easy for mobile providers.

• In enterprise, current use of NAT and private addresses reduces 

pressure to have more IP addresses, but complicates the transition 

to IPv6.
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Figure 4-3. IPv6 unique autonomous systems, 2003 to end of 2009

Source: ITAC/NRO Contribution to the OECD, Geoff Huston and George Michaelson, 
data from end of year 2009

Figure 4-2. Routed IPv6 refixes, 2003 to end of 2009
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Since 2008, the ratio of routed IPv6 prefixes to IPv4 prefixes had climbed from 0.45% 

to 0.8%, which indicates that the number of routed IPv6 prefixes was increasing more 

rapidly than that of routed IPv4 prefixes. The ratio of IPv6 to IPv4 AS entities actively 

routing went from about 3.2% in 2008 to 5.5% in 2010.

The compound annual growth rate from February 24, 2009, to November 5, 2009, for 

dual-stack AS networks was 52%, for IPv6-only AS networks was 13%, and for IPv4-only 

AS networks was 8%. At year-end 2009, there were 31,582 AS networks using IPv4-only, 

there were 1806 AS networks using dual stack, and there were 59 AS networks using 

IPv6-only.

One trend is that service providers, corporations, public agencies, and end users 

were using IPv6 for advanced and innovative activities on private networks. IPv6 was 

also being used in 6LoWPANs (IPv6 over Low-Power Wireless Personal Area Networks), 

as specified in RFC 4944, “Transmission of IPv6 Packets over IEEE 802.15.4 Networks,” 

September 2007.

 How IPv4 Addresses Were Allocated 
in the Early Days
In the early days, before IANA and the RIRs were created, IPv4 addresses were actually 

allocated manually by a single individual, Jon Postel.8 He never dreamed how large the 

Internet would grow or that it would be a worldwide phenomenon that had a major 

impact on most world economies. He is the one responsible for allocating large chunks 

(“class A” blocks) to a few early adopters (e.g., HP, Apple, and MIT). Unfortunately, 

those allocations are very difficult to undo today, so about one-third of all the addresses 

allocated in the United States belong to fewer than 50 organizations. The IANA now just 

considers those legacy allocations and tried to do the best they could with the address 

space remaining at the time they took over allocation.

 Original “Classful” Allocation Blocks
The first 50% of the full IPv4 address space (0.0.0.0–127.255.255.255) was divided 

up into 128 “class A” blocks (now known as “/8” or “slash-8” blocks). Each of these 

contained 224-2, or some 16.8 million usable addresses. Here is a list of some of the lucky 

8 https://en.wikipedia.org/wiki/Jon_Postel
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organizations that own these blocks today, either from the original allocation or by 

buying other companies that owned them:

General Electric                3.x.x.x

Level 3 Communications          4.x.x.x

U.S. Army Info Systems Center   6.x.x.x

 (formerly DoD, now ARIN)       7.x.x.x

Level 3 Communications          8.x.x.x

IBM                             9.x.x.x

U.S. DoD Intel Info Systems    11.x.x.x

AT&T Worldnet                  12.x.x.x

Xerox Corp.                    13.x.x.x

HP                             15.x.x.x

DEC (now HP)                   16.x.x.x

Apple Computer                 17.x.x.x

Mass. Inst. Of Technology      18.x.x.x

Ford Motor Company             19.x.x.x

Computer Sciences Corp         20.x.x.x

DoD DISA DDN-RVN               21.x.x.x

U.S. DoD DISA                  22.x.x.x

U.K. Ministry of Defense       25.x.x.x

U.S. DoD DISA                  26.x.x.x

U.S. DoD DSI-North             28.x.x.x

U.S. DoD DISA                  29.x.x.x

U.S. DoD DISA                  30.x.x.x

AT&T Global Network Svcs       32.x.x.x

U.S. DoD DLA Sys Auto Ctr      33.x.x.x

Halliburton                    34.x.x.x

InterOp Show                   45.x.x.x

Bell-Northern (now Nortel)     47.x.x.x

Prudential Insurance           48.x.x.x

E.I. DuPont de Nemours         52.x.x.x

Daimler AG                     53.x.x.x

U.S. DoD Network Info Ctr      55.x.x.x

U.S. Postal Service            56.x.x.x
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Another 25% of the full address space (128.0.0.0–191.255.255.255) was divided up 

into 16,384 “class B” blocks (now known as “/16” blocks). Each of these contained 216-2, 

or 65,534 usable addresses.

Another 12.5% of the full address space (192.0.0.0–224.255.255.255) was divided 

up into about 2.1 million “class C” blocks (now known as “/24” blocks). Each of these 

contained 28-2, or 254 usable addresses.

Another 6.25% of the full address space (224.0.0.0–239.255.255.255) was reserved for 

multicast (these are known as class D addresses). There is no way to “recover” any of this 

address space.

The final 6.25% of the full address space (240.0.0.0–255.255.255.255) was reserved 

for future use, experimentation, and limited broadcast. These are known as class E 

addresses. These addresses cannot be “recovered” without modifications to essentially 

every router in the world (most routers block them by default).

The sub-block of class E from 255.0.0.0 to 255.255.255.255 is actually used for 

“limited broadcast” (limited because it will not cross routers). A packet sent to any of 

these addresses will be received by all nodes on your LAN. Of these, normally only 

the address 255.255.255.255 is used. There is no broadcast in IPv6 (although there is a 

multicast address that has much the same effect).

The US Department of Defense has ten “/8” blocks, for about 168 million addresses. 

This is almost 4% of the total IPv4 address space. One entire “/8” block (127.x.x.x) has 

only one address used, which is 127.0.0.1 (the IPv4 “loopback” address, used to address 

your own node). A small block at 169.254.0.0/16 is reserved for IPv4 link-local usage 

(similar to IPv6 link-local addresses). For details, see RFC 5735, “Special Use IPv4 

Addresses,” January 2010.

One “/8” block (10.0.0.0/8), one “/12” block (172.16.0.0/12), and one “/16” block 

(192.168.0.0/16) were reserved for use as “private” addresses by RFC 1918, “Address 

Allocation for Private Internets,” February 1996. These addresses can be used by any 

organization for any internal network but should never be routed onto the Internet 

(although in practice you can sometimes find these addresses on the backbone due to 

misconfigured routers). These would correspond to internal phone “extensions” such as 

101, 102, etc. Every company with a PBX might use that same set of extensions.
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As of June 4, 2010, only 16 of the possible 256 “/8” blocks (about 6.25% of the full 

address space) were still unallocated. Here is a map of the status of all 256 “/8” blocks. 

By February 2011, there weren’t any dots left. All the blocks with dots (unallocated “/8”s) 

in the chart today were allocated to one of the RIRs (ARIN, RIPE, APNIC, LACNIC, or 

AfriNIC).

      +0     +1     +2     +3     +4     +5     +6     +7     +8     +9

000   R      AP     RN     L      L      .      L      L-AR   L      L

010   R      L      L      L      AP     L      L      L      L      L

020   L      L      L      .      AR     L      L      AP     L      L

030   L      RN     L      L      L      L      .      .      L      .

040   L      AF     .      L-AP   L      L      RN     L      L      .

050   AR     L      L      L      L      L      L      L      AP     AP

060   AP     AP     RN     AR     AR     AR     AR     AR     AR     AR

070   AR     AR     AR     AR     AR     AR     AR     RN     RN     RN

080   RN     RN     RN     RN     RN     RN     RN     RN     RN     RN

090   RN     RN     RN     RN     RN     RN     AR     AR     AR     AR

100   .      .      .      .      .      .      .      AR     AR     RN

110   AP     AP     AP     AP     AP     AP     AP     AP     AP     AP

120   AP     AP     AP     AP     AP     AP     AP     R      L-AR   L-AR

130   L-AR   L-AR   L-AR   L-AP   L-AR   L-AR   L-AR   L-AR   L-AR   L-AR

140   L-AR   L-RN   L-AR   L-AR   L-AR   L-RN   L-AR   L-AR   L-AR   L-AR

150   L-AP   L-RN   L-AR   L-AP   L-AF   L-AR   L-AR   L-AR   L-AR   L-AR

160   L-AR   L-AR   L-AR   L-AP   L-AR   L-AR   L-AR   L-AR   L-AR   L-AR

170   L-AR   L-AP   L-AR   AR     AR     AP     RN     LA     RN     .

180   AP     LA     AP     AP     AR     .      LA     LA     L-RN   LA

190   LA     L-LA   L-AR   RN     RN     RN     L-AF   AF     L-AR   AR

200   LA     LA     AP     AP     AR     AR     AR     AR     AR     AR

210   AP     AP     RN     RN     L      L      AR     RN     AP     AP

220   AP     AP     AP     AP     R-MC   R-MC   R-MC   R-MC   R-MC   R-MC

230   R-MC   R-MC   R-MC   R-MC   R-MC   R-MC   R-MC   R-MC   R-MC   R-MC

240   R-FU   R-FU   R-FU   R-FU   R-FU   R-FU   R-FU   R-FU   R-FU   R-FU

250   R-FU   R-FU   R-FU   R-FU   R-FU   R-FU
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Key and Analysis

AR     ARIN allocated              33     72     28.13%     (ARIN total)

L-AR   Legacy, admin by ARIN       39

AP     APNIC allocated             38     44     17.19%     (APNIC total)

L-AP   Legacy, admin by APNIC       6

RN     RIPE NCC allocated          33     37     14.45%     (RIPE total)

L-RN   Legacy, admin by RIPE NCC    4

LA     LACNIC allocated             8      9      3.52%     (LACNIC total)

L-LA   Legacy, admin by LACNIC      1

AF     AfriNIC allocated            2      4      1.56%     (AfriNIC total)

L-AF   Legacy, admin by AfriNIC     2

L      Legacy, early allocation    39     39      15.23%    (Legacy total)

R      Reserved                     3      3       1.17%

R-MC   Reserved, Multicast         16     16       6.25%

R-FU   Reserved, Future Use        16     16       6.25%

.      Unallocated                 16     16       6.25%    (Unallocated)

                                  ---    ---     -------

                                  256    256     100.00%

Almost all the “Legacy, early allocation” blocks are in the United States, so ARIN’s real 

share of the total IPv4 address space is over 40% (for less than 5% of the world’s population).

Of course, today, all remaining /8 blocks at IANA have been allocated, but the 

percentages are not that different from those shown.

 Classless Inter-Domain Routing (CIDR)
The original allocation block sizes (classes A, B, and C) did not fit all organizations. For 

many organizations, even the smallest block (class C) was too big. If we had stuck with 

the original allocation block sizes, we would have run out of addresses around 1997. 

When this was realized, the IETF introduced Classless Inter-Domain Routing as defined 

in RFC 1518, “An Architecture for IP Address Allocation with CIDR,” September 1993, 

and RFC 1519, “Classless Inter-Domain Routing (CIDR): An Address Assignment and 

Aggregation Strategy,” September 1993. CIDR allowed the two parts of an address to be 

split along any of the 30 possible places to divide them, not just at multiples of 8 bits. 

Some useful CIDR allocation block sizes are
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Size  Subnet Mask       Number of usable addresses in block

/30   255.255.255.252   2

/29   255.255.255.248   6

/28   255.255.255.240   14

/27   255.255.255.224   30

/26   255.255.255.192   62

/25   255.255.255.128   126

/24   255.255.255.0     254 (old Class C)

/23   255.254.0.0       510

/22   255.252.0.0       1,022

/21   255.248.0.0       2,046

/20   255.240.0.0       4,094

/19   255.224.0.0       8,190

/18   255.192.0.0       16,382

/17   255.128.0.0       32,766

/16   255.255.0.0       65,534 (old Class B)

/8   255.0.0.0          16,777,214 (old Class A)

CIDR allows a closer fit to actual organization size than the old classful “three-sizes-

fit-all” scheme. However, each allocated block requires an entry in the core routing 

tables. As we allocate smaller and smaller blocks, the number of entries in the core 

routing tables is growing very rapidly. Many things are beginning to go wrong as we get 

closer and closer to an empty barrel.

In the mid-1990s, there were steps taken (NAT and private addresses) to further limit 

the number of public IPv4 addresses being allocated to each organization. NAT was only 

ever envisioned by its creators as a “quick fix” that would buy us a few years to really 

solve the problem. They understood all the problems NAT would cause and were willing 

to live with them for a short time, when the alternative was to run out of IPv4 addresses 

somewhere around 1997. For the real long-term fix, the IETF also began working on 

the next-generation Internet Protocol with a much larger address space. That next-

generation Internet Protocol is complete, mature, and being deployed globally today. It 

is called IPv6.
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 Problems Introduced by Customer Premises 
Equipment NAT (CPE NAT)
Since the mid-1990s, we have been living with problems created by the introduction 

of Network Address Translation doing conventional “hide-mode” (cone) NAT at the 

customer premise (CPE NAT). These include the following:

• Difficulty for internal nodes to accept incoming connections, for 

VoIP (SIP), peer-to-peer (P2P), running your own mail (SMTP), web 

(HTTP/HTTPS), file transfer (FTP/SSH), or other servers.

• Problems with protocols that embed IPv4 addresses in packet 

transmissions (SIP, many games).

• Problems with protocols that detect tampering to IP and/or TCP/

UDP header fields (e.g., IP addresses, port numbers), such as the 

IPsec Authentication header (AH).

• Problems due to advances in web technology (primarily Web 2.0/

AJAX) that use large numbers of connections, each over a different 

port, such as iTunes and Google Maps. This can be as high as 200–300 

ports per application. Since NAT systems share the 65,536 possible 

ports associated with a single “real” IPv4 address among the nodes 

hidden behind each address, each internal user on average can use at 

most 65,536 divided by the number of users behind that address. In 

enterprise networks, this might (until recently) have been thousands 

or tens of thousands of nodes behind one real address. For 1,000 

nodes, on average each user could use no more than 65 ports. For 

10,000 nodes, on average each user could use no more than 6 ports. 

To allow each user up to 200 ports, no more than 300 users should 

be hidden behind each IPv4 address. Currently, the average number 

of ports used per user is actually quite low (less than 10), but this is 

expected to grow rapidly as more users begin using Web 2.0–/AJAX-

type applications. If possible, NAT schemes should use ports on a 

first come, first served basis, rather than allocating 1/n of the possible 

ports to each node.
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• Difficulty tracking abuse to specific users behind a NAT. This requires 

keeping large amounts of information including source IP address, 

destination IP address, port number(s), and accurate timestamps 

for every connection. This may have to be kept for up to 1 year. A 

year’s worth of such data for a single user can be tens of gigabytes 

to terabytes in size. Multiplied by the number of users, this is a 

staggering amount of storage that ISPs are required to keep. Hackers 

love to “hide behind” NAT gateways.

Essentially, private IP addresses behind “hide-mode” NAT are good only for outgoing 

connections using the simplest connectivity paradigms (e.g., client to server, using a 

small total number of ports per user). Note that since the start of accessing the Internet 

from phones, we have had only private addresses. With IPv6 on phones, for the first time, 

we have public addresses on phones. That means you can run a server on your phone 

that will be accessible from anywhere, or your phone can connect directly to any other 

phone in the world (so long as both of you have IPv6 addresses and nothing is blocking 

the ports involved). That is very exciting.

It is possible to allow at most one internal node to accept incoming connections 

on a given port (e.g., port 80 for HTTP) for the gateway external IPv4 address, using 

port forwarding. For example, your NAT gateway can be configured to forward any 

incoming connection to its external IPv4 address on port 25 to the private address of a 

single internal node where an email server is running. The gateway could also forward 

incoming connections to its external IPv4 address on port 80 to the same (or a different) 

internal node’s private address where a web server is running. This limits the entire LAN 

(or that part of it behind a given real IPv4 address) to a single server for any given port 

number (when using port redirection). This still translates the destination IPv4 address 

on the way in and the source IPv4 address on the way out (but port numbers are left 

unchanged). This still causes many of the problems listed previously. One-to-one NAT 

(BINAT) does not have this limitation, but one valid external IPv4 address (in addition to 

the valid external IPv4 address used for hide-mode NAT and port redirection) is required 

for each internal server.

If you tried to map incoming port 80 traffic to two different internal addresses with 

port redirection, your browser would be very confused by receiving responses from two 

different web servers simultaneously. A good firewall or router should flag the attempt to 

do this as an error.
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Some firewalls (or other NAT gateways) in addition to “hide-mode” (cone) NAT 

for outgoing connections, and port forwarding, also support bidirectional NAT (called 

BINAT, symmetric NAT, and “1-to-1” NAT, among other names). This type of NAT 

makes a two-way address translation between a single external IP address and a single 

private internal address (hence “1-to-1”). The full 65,536 possible ports may be used 

on the internal node, but a distinct real IPv4 address is required for each such BINAT 

mapping. This would allow deployment of multiple web servers within a LAN or an easy 

way to provide access to many services on a single node (e.g., a Windows Server–based 

computer). This still translates the destination IP address of packets on the way in and 

the source IP address of packets on the way out (again, port numbers are not affected), 

still causing many of the problems listed previously. In addition, it uses up one real 

address per internal server and requires addressing the “missing ARP” problem (caused 

by the fact that there is no physical node at the external address to respond to ARP 

queries). This can be solved by configuring a static ARP for the external IPv4 address on 

the NAT gateway or various other solutions. Solving the “missing ARP” problem is one 

of the most difficult and least widely understood aspects of managing a NAT gateway (or 

firewall).

There is in fact an external interface on the NAT gateway, with a valid external 

address (say 123.45.67.81), which will reply as usual to an ARP request to its primary 

address (e.g., 123.45.67.81) with the MAC address of the external interface. With BINAT, 

however, you also assign an additional alias address for each BINAT mapping (e.g., 

123.45.67.82, 123.45.67.83, etc.) to the gateway’s external interface. If an ARP is done 

for two of these alias addresses, by default the external interface will not respond to 

them, hence the “missing ARP” (actually, “missing ARP response”). The ARP request is 

not translated to the internal node, and even if it was, the node doing the ARP doesn’t 

want the MAC address of the internal node – it wants the MAC address of the external 

interface of the gateway. To get the external interface to respond with its MAC address 

to ARP requests for an alias address, you must configure a proxy ARP on the external 

interface for that alias address. The commands for configuring alias addresses on the 

external interface, and proxy ARPs for them, vary widely from one OS to another. See the 

labs in Chapter 10 for an example of this with m0n0wall (based on FreeBSD). In some 

cases, another mechanisms may be used to solve the “missing ARP” problem, such as 

configuring a static route for each alias address. This eliminates the need for other nodes 

to do an ARP request.
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There are several NAT traversal protocols (STUN, TURN, SOCKS, NAT-T, etc.) that 

allow incoming connections to internal nodes that have only private addresses (without 

any port forwarding or BINAT support in the NAT gateway). These typically require 

an outside server to assist (this alone should raise security and reliability concerns). 

STUN uses an outside server only to establish the connection, while TURN also routes 

all traversing traffic through an outside gateway. All NAT traversal schemes involve 

encapsulating traffic over UDP, which complicates error detection and recovery and 

intrusion detection, as well as supporting the “connection-oriented” nature of TCP 

traffic. All require extensive modifications to the source code of clients, which is quite 

complex and very specific to the NAT traversal algorithm used. Usually, the external 

servers used are not under control of the network, leading to security issues. One of 

the most popular network applications (Skype) uses standard UDP-encapsulated “hole 

punching” traversal, which causes many security issues. Anyone with access to the 

external server can easily track who you are calling (and who is calling you) and even 

listen in or redirect the call. With IPv6, there is no NAT, hence no need for NAT traversal.

Note that there are many variants of NAT, and a given implementation of NAT 

traversal may work with only one or two of them. Also, many schemes fail if there are two 

or more NAT mappings in series (say your ISP doing a NAT44 mapping to one private 

address and then your CPE router/modem doing a second NAT44 mapping of that 

private address to yet another private address – this is sometimes called NAT444).

Here are RFCs related to NAT traversal:

RFC 1928, “SOCKS Protocol Version 5,” March 1996 

(Standards Track)

RFC 3947, “Negotiation of NAT-Traversal in the IKE,” January 2005 

(Standards Track)

RFC 3948, “UDP Encapsulation of IPsec ESP Packets,” January 2005  

(Standards Track)

RFC 5389, “Session Traversal Utilities for NAT (STUN),” October 2008  

(Standards Track)

RFC 5766, “Traversal Using Relays Around NAT (TURN): Relay 

Extensions to Session Traversal Utilities for NAT (STUN),” March 

2010 (Standards Track, awaiting final approval)
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 Implementing NAT at the Carrier: Carrier-Grade 
NAT (CGN)
As we have progressed from the “end times” for IPv4 to “life after IPv4” (beyond the 

depletion date for IPv4), those who have not already migrated to IPv6 will face even 

greater problems, as ISPs deploy Carrier-Grade NAT9 solutions in their networks, as 

opposed to doing NAT only in the Customer Premises Equipment (CPE NAT). The 

reason for this is to try to make optimal use of an even smaller number of globally 

routable IPv4 addresses than is possible with CPE NAT. Essentially the ISP will have a 

very small pool of real IPv4 addresses (far less than the number of customers). They will 

share single real IPv4 addresses across customers. This will make the problems associated 

with CPE NAT dramatically worse. There is excellent coverage of the issues associated 

with deploying NAT in the carrier in RFC 6269,10 “Issues with IP Address Sharing,” June 

2011 (Informational):

• Dual-Stack Lite, RFC 633311

• Carrier-Grade NAT (CGN), RFCs 688812 and 659813

• NAT64, RFC 614614

• IVI, RFC 621915

• Address+Port (A+P), RFC 6346

Of these, only Dual-Stack Lite makes dual-stack service available to users. It provides 

direct IPv6 service (no NAT, no tunneling). It provides IPv4 service tunneled over IPv6 

(called 4in6 tunneling) with only one level of NAT44 (which takes place at the carrier). 

Customers will get only private IPv4 addresses. It is possible that some ISPs may provide 

a few precious “real” (globally routable) IPv4 addresses to business customers at a 

9 https://en.wikipedia.org/wiki/Carrier-grade_NAT
10 https://tools.ietf.org/html/rfc6269
11 https://tools.ietf.org/html/rfc6333
12 https://tools.ietf.org/html/rfc6888
13 https://tools.ietf.org/html/rfc6598
14 https://tools.ietf.org/html/rfc6146
15 https://tools.ietf.org/html/rfc6219
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significant price premium (all the market will bear, which could easily reach thousands 

of dollars per address per year). All the NAT schemes extend the address space by adding 

port information. They differ in the way they manage the port value.

With CPE NAT, a given public IPv4 address covers only one legal entity (a home, a 

company, etc.). With Carrier-Grade NAT, multiple legal entities will be behind most real 

IPv4 addresses, which will vastly complicate the legal issues (such as tracking down a 

source of network abuse or being able to prove who really did something).

You will see the terms NAT444 and NAT464 in discussions of carrier-based NAT. The 

existing NAT that is widely deployed now is called NAT44 (NAT from IPv4 to IPv4). There 

is also NAT46 (NAT from IPv4 to IPv6) and NAT64 (NAT from IPv6 to IPv4).

NAT44416 essentially leaves the CPE NAT44 (the existing one-layer NAT that is widely 

deployed today) intact at the customer premise, while the carrier deploys a second layer 

of NAT44 before it ever reaches the customer (using the new reserved block 100.64/10). 

It is really just two NAT44 mechanisms in series. The CPE NAT44 will map the private 

addresses supplied from the carrier NAT44 onto yet another set of internal private 

addresses. The transport from carrier to customer is also over IPv4. The difference from 

existing systems is that today the CPE NAT usually has one real IPv4 address, which 

it shares among multiple internal nodes. In NAT444 systems, there won’t be even one 

real IPv4 address at the customer premise. It will be quite difficult (and probably very 

expensive) to host servers with public IPv4 addresses (e.g., web, mail, VoIP) at customer 

sites – most will have to be hosted at a colocation facility.

For an analogy, imagine deploying nested telephone PBXes. There would be an 

outer PBX, with a real telephone number, and behind that other PBXes with internal 

extensions from the outer PBX. Behind each internal PBX, you would have sets of 

internal phones. To call an internal phone, you would dial the real phone number of 

the outer PBX and have to do something to select an internal PBX (dial the internal 

PBX’s extension number?). Then once connected to the internal PBX, you would need 

to interact with it to select an internal phone (e.g., dial the first three characters of the 

phone owner’s name). This is the kind of complexity that IPv4 applications will now have 

to cope with. It will be much simpler to just convert them directly to IPv6.

16 https://chrisgrundemann.com/index.php/2011/nat444-cgn-lsn-breaks/
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Figure 4-4. How NAT444 works

NAT464 is similar but involves doing one layer of NAT46 (from IPv4 to IPv6) at the 

carrier, followed by a second layer of NAT64 (from IPv6 to IPv4) at the customer premise. 

This allows the transport from carrier to customer to be over IPv6, which is a good thing, 

but involves upgrading or replacing all Customer Premises Equipment to ones that are 

NAT64 compliant (few are today). Also, address translation between IP families (IPv4 to 

IPv6 and IPv6 to IPv4) has even more problems than address translation within a single 

IP family (only IPv4 to IPv4 – there is no IPv6-to-IPv6 NAT!).
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Figure 4-5. How NAT464 works

In either case (NAT444 or NAT464), there are some protocols that will work across 

one layer of NAT, but fail when there is more than one layer of NAT. Both NAT444 and 

NAT464 will introduce these kinds of issues, since both involve at least two layers of 

NAT. Some home or small business users may unintentionally introduce even more 

layers of NAT due to lack of understanding, for example, by deploying a firewall/NAT box 

behind a modem/NAT gateway.

The following problems are made worse by Carrier-Grade NAT compared even with 

CPE NAT. Some affect only the end user, some affect third parties (e.g., law enforcement), 

and many affect both:

• The number of ports available per node will be even less, so Web 

2.0/AJAX applications such as iTunes and Google Maps will fail in 

unpredictable ways, especially with schemes that divide the available 

ports into equally sized port ranges per customer.

• Incoming port negotiations may fail – for example, Universal Plug 

and Play (UPnP).

• Incoming connections to well-known ports will not work (e.g., SMTP, 

HTTP, SIP, etc.).
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• Reverse DNS pretty much breaks down completely.

• Inbound ICMP will fail in most cases.

• Security issues are even worse than with CPE NAT.

• Packet fragmentation requires special handling.

• There are more single points of failure and decreased network 

stability.

• Port randomization is affected (especially in schemes that restrict 

ports to ranges).

• Penalty boxes no longer work.

• Spam blacklisting will affect many other nodes that use the same 

address.

• Geolocation services may not be reliable or particularly specific.

• Load balancing algorithms are impacted.

• Authentication mechanisms are impacted.

• IPv6 transition mechanisms will be affected (Dual-Stack Lite is the 

exception here).

• Frequent keep-alives will reduce battery life in mobile nodes.

Applications that had to be modified to support NAT traversal to work through 

NAT44 will have to be modified once again, with even more complicated schemes, to 

traverse multiple layers of NAT. Application Layer gateway (ALG) workarounds now have 

to be implemented at the carrier, not just at the customer premise. ALGs that have to 

deal with port-range restrictions will have an even harder job.

Blocking incoming access to services based on IPv4 addresses will likely affect many 

“innocent bystanders” that happen to share the same real IPv4 address. One obvious 

example is spam blacklists. A less obvious example is that some secure devices restrict 

access by source IP address (only this node can connect to my firewall). Now, many other 

nodes, even in different organizations, will be sharing that same IP address legitimately, 

so may be able to access such nodes.
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With reverse DNS, you publish the nodename associated with a given IP address. 

With CPE NAT this affects many nodes, but this will be completely meaningless for 

nodes behind carrier-based NAT. There is no way to publish thousands of nodenames 

for a single IP address, nor is there any way for someone asking for the reverse lookup to 

interpret the response correctly.

IPv6 transition mechanisms such as 6to4 will not work at all behind carrier-based 

NAT, but Teredo might. Likewise, IPv4 multicast and Mobile IPv4 will have to be 

modified extensively for carrier-based NAT.

 Summary
In this chapter we covered the inevitable depletion of public IPv4 addresses. First, IANA 

ran out of addresses to allocate to RIRs in 2011. Over the next few years, all five RIRs have 

reached end of normal allocation. Even companies, telcos, and ISPs are now pretty much 

out of public IPv4 addresses.

They have tried to continue operation of IPv4 via various schemes, but those are 

causing even more problems now.

IPv4 is at end of life. It’s time for everyone to migrate to IPv6.

Chapter 4 the DepLetION OF the IpV4 aDDreSS SpaCe



147

CHAPTER 5

IPv6 Deployment Progress
This chapter presents the progress to date in the deployment of IPv6. There are many 

sources of information on this. We are now in the rapid adoption phase (finally).

Cisco’s 6lab site1

This widget shows a summary of the deployment percentages in the top five 

countries (all already above 50%). The “Internet core” shows readiness of the Internet 

backbones for IPv6. The “Global content” shows how much of the popular content is 

available over IPv6 (almost always over both IPv4 and IPv6 at this time – there is very 

little content available over just IPv6). The “Users” indicates what percentage of users 

can access IPv6 content.

1 https://6lab.cisco.com/stats/

Figure 5-1. Global IPv6 adoption

© Lawrence E. Hughes 2022 
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There are many world maps on the 6lab site with frequently updated information 

about each country.

If you hover over a country, it will show a number of items about IPv6 deployment in 

that country. For example, on April 1, 2019, the United States shows

IPv6 deployment: 50.2%

Prefixes: 33.69%

Transit AS: 67.47%

Content: 56.66%

Users: 34.9%

The “Prefixes” value is from measurements done by APNIC and Eric Vyncke. It shows 

the percentage of “allocated” prefixes that are “live” (actually have traffic going to them 

or at least have entries in the BGP routing tables). Typically, a lot of organizations have 

made the first step of obtaining a block of addresses from their RIR (Regional Internet 

Registry), but only some of those have gone live at this time.

Figure 5-2. Deployment by country, Cisco
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The “Transit AS” value has to do with autonomous systems used only for “transit” – 

information being source and destination ASs. This indicates the readiness of the 

Internet core.

The “Content” value has to do with how many of the popular (“Alexa 500”) websites 

are available over IPv6.

The “Users” value is the percentage of users that connect to Google’s search page 

over IPv6. Note that language and national blocking of google.com (e.g., in China) affect 

this number.

The overall deployment value is a weighted combination of the above values.

Here are some per-country stats (“IPv6 deployment”) from the Cisco site as of March 

17, 2019. Cisco is measuring very different things from Google, including infrastructure, 

and is not as influenced by language:

Country IPv6 %

Belgium 63.7

germany 59.07

Uruguay 55.26

greece 53.93

malaysia 52.81

Finland 51.13

vietnam 50.85

United states 50.36

Japan 49.13

thailand 49.02

India 49.01

Brazil 48.66

United Kingdom 48.25

France 47.95

estonia 47.42

portugal 46.89

Canada 46.40
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Figure 5-3. IPv4 exhaustion counter, toward the end of IPv4 available in RIRs

Country IPv6 %

mexico 45.85

hungary 44.14

norway 42.80

Ireland 40.42

peru 39.52

australia 38.96

singapore 38.68

saudi arabia 38.31

Czech republic 37.30

sweden 36.81

romania 33.78

So How Did IPv4 Depletion Go at RIRs?
The following widget on the IPv6 Forum website tells the story.
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• IANA ran out of IPv4 allocable (public) addresses on February 3, 

2011. After that, they could not provide any more IPv4 blocks to the 

RIRs. It didn’t take long for the RIRs to go through their remaining 

inventory.

• APNIC (AsiaPac + Japan) was the first RIR to reach the “end of normal 

allocation,” on April 15, 2011.

• RIPE NCC (EU and Middle East) was next on September 14, 2012.

• LACNIC (Latin America) stopped normal allocation on June 10, 2014.

• ARIN (North America except for Mexico) ran completely out on 

September 24, 2015.

• AfriNIC (African continent) stopped normal allocation on January 

13, 2020.

Apart from ARIN, the RIRs decided to stop allocating IPv4 addresses when they 

reached their final /8 (16.7 million) addresses. After that they could only be given out 

in small blocks (e.g., 1024 addresses), for special purposes (such as migration to IPv6). 

ARIN chose to keep doing allocation until the barrel was completely empty.

Some ISPs, telcos, and cloud providers tried to get as many IPv4 addresses as they 

could, but many of those have now run out. They can buy a few on the IP address 

market, but even those will run out at some point, and even now the price of public IPv4 

addresses continues to rise.
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 Google Statistics

Google tracks the number of connections to its search engine over both IPv4 and 

IPv6. The preceding chart shows the growth of IPv6 as a percentage of total usage. As 

of May 1, 2022, connections over IPv6 represent about 40% of all connections, globally. 

Note that the actual percentage is likely higher, due to distortion caused by Happy 

Eyeballs.2 This is a modification to all recent browsers that will attempt to connect 

IPv4 or IPv6, depending on which one connected in the shortest time. This can result 

in a situation where both the user and the website both support IPv6, but they also 

both support IPv4, and for whatever reason, connection over IPv4 was faster. You can 

see the current version of this chart at www.google.com/intl/en/ipv6/statistics.

html#tab=ipv6-adoption.3

For full details on Happy Eyeballs, see RFC 8305,4 “Happy Eyeballs Version 2: Better 

Connectivity Using Concurrency,” December 2017.

2 https://en.wikipedia.org/wiki/Happy_Eyeballs
3 www.google.com/intl/en/ipv6/statistics.html#tab=ipv6-adoption
4 https://tools.ietf.org/html/rfc8305

Figure 5-4. Percentage of connections to google.com globally over IPv6
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You can see the incredible increase in deployment globally from when The Second 

Internet book was written. At that time, the Google stats showed .25% adoption. In the 

intervening years, adoption has increased by over 100 times, even with Happy Eyeballs.

The reason the line is wide vertically is actually quite interesting. It seems that usage 

is highest on weekends and drops on weekdays. This is because more people have IPv6 

at home than they do at work.

Google also breaks down their statistics per country. You can see the current version 

of this information at www.google.com/intl/en/ipv6/statistics.html#tab=per-

country-ipv6- adoption.5

Here are a few selected countries from the Google per-country stats as of March 

17, 2019:

Country IPv6 %

Belgium 53.17

germany 41.72

greece 35.99

United states 35.24

malaysia 34.13

Uruguay 34.07

India 32.59

vietnam 32.19

Japan 29.66

switzerland 28.94

Brazil 27.68

taiwan 25.97

France 24.62

estonia 24.35

Finland 23.80

mexico 22.92

5 www.google.com/intl/en/ipv6/statistics.html#tab=per-country-ipv6-adoption

Chapter 5  Ipv6 Deployment progress

http://www.google.com/intl/en/ipv6/statistics.html#tab=per-country-ipv6-adoption
http://www.google.com/intl/en/ipv6/statistics.html#tab=per-country-ipv6-adoption
http://www.google.com/intl/en/ipv6/statistics.html


154

Country IPv6 %

Canada 22.77

United Kingdom 22.71

hungary 20.44

portugal 20.06

ecuador 19.79

thailand 18.82

Ireland 18.70

trinidad and 

tobago

17.65

new Zealand 17.11

netherlands 16.75

peru 16.62

australia 15.37

romania 12.95

norway 12.27

puerto rico 12.26

Bolivia 11.90

Czechia 10.87

slovenia 10.46

guatemala 9.51

saudi arabia 8.97

Note that these values are based on actual measurements but are heavily influenced 

by English-speaking ability (the Google site is in English) and per-country restrictions 

(China blocks Google). Most of the other countries are below 1%.

Chapter 5  Ipv6 Deployment progress



155

Another good source of statistics on IPv6 adoption from actual measurements can be 

found at www.vyncke.org/ipv6status/.6 This site breaks it down by websites, email, and 

DNS (from Alexa).

 Predictions for Future Years
Cisco had a chart to predict future IPv6 deployment based on past data from Google. It 

predicts that we will reach 100% by 2028. That is just 6 years from now. Perhaps I will do 

another update to this book in 2028 and see what really happened.

6 www.vyncke.org/ipv6status/

Figure 5-5. Predicted end of migration to IPv6
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 Summary
IPv6 deployment is proceeding well globally. Most developed countries are already 

over 50% of all traffic going over IPv6. The adoption curve for IPv6 from Google (for 

percentage of connections to google.com over IPv6) is a strong indication of how this is 

progressing. That is a classic adoption curve.
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CHAPTER 6

IPv6 Core Protocols
This chapter introduces the new concepts and technical specifics of IPv6, the foundation 

of the Third Internet. Since IPv6 is based heavily on IPv4, the approach will be to 

describe the differences between the two. This will help those who already are familiar 

with IPv4 to make the leap to IPv6. The subchapter headings are intentionally similar to 

those in Chapter 3, to allow you to compare the old and the new, topic by topic. Again, 

there is no intent to be comprehensive. There is a lot of content available on all aspects 

of IPv6 listed in the bibliography and/or available online. The ultimate references are the 

RFCs, so this chapter includes hyperlinks to the relevant ones, for those who want to drill 

deeper on specific topics.

In other chapters we will discuss topics such as advanced aspects of IPv6 (IPsec, 

IKEv2), the new things that IPv6 makes possible, who is involved in making it happen, 

and how we get from the Second Internet to the Third Internet (migration). This chapter 

covers the core protocols of IPv6.

 Network Hardware
Essentially the same network hardware that was used to deploy IPv4 networks is being 

used to deploy the IPv6 networks, with some notable exceptions, primarily hardware 

that implements things at the Internet Layer or above, such as smart (“layer 3”) switches, 

routers, and firewalls. Also, DNS and DHCP servers must be updated or replaced with 

ones that support IPv6 (more typically both IPv4 and IPv6, or “dual stack”). As IPv6 is 

deployed, Virtual Private Networks (VPNs) will likely move away from “SSL/VPN”1 to 

IPsec-based VPNs, which are the only IETF-approved technology for VPNs. There are no 

RFCs for SSL/VPN because it is not considered to be a viable approach. Unfortunately, 

IPsec is incompatible with NAT, which is now endemic in the Second Internet. VoIP and 

1 https://openvpn.net/faq/why-ssl-vpn/
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IPTV appliances will probably be upgraded to (or replaced with) IPv6-based systems. 

Any device with TCP/IP hardware acceleration (such as high-end routers) will probably 

need to be redesigned or replaced. Simply upgrading the firmware will not be sufficient 

on such products (there are hardware dependencies on IPv4). There are some routers 

that only have hardware acceleration for the IPv4 stack (IPv6 is done entirely with 

software), which has led some people to think there are performance issues with IPv6. 

Already there are hardware acceleration chips that support both IPv4 and IPv6 and are 

available and being used in new product designs.

The hardware of most computing nodes does not need to change, especially client 

and server computers. Replacement or upgrade of the operating system and applications 

is all that is needed. The good news is that almost all operating systems and many 

network applications that run on client computers are already fully compliant with IPv6, 

and those are widely deployed. Those that aren’t yet compliant can be upgraded or 

configured to support it with very reasonable effort and cost. Many server applications 

(especially open source ones) are already compliant as well. Virtually everything 

Microsoft makes fully (except Azure Cloud VMs, Skype, and Teams) supports IPv6 today. 

For client computers, Windows Vista and Windows 7 had fairly complete support. 

Later versions of Windows (8.1, 10, and 11) have very complete support. Windows XP 

had some support but was missing some key features (like GUI configuration of IPv6 

addresses and DNS queries over IPv6). For server computers, Windows Server 2008 and 

Exchange Server 2007 (and most other server software since 2007) have full support for 

IPv6. Most open source operating systems (Linux, FreeBSD, OpenBSD, and NetBSD) 

have had full support for IPv6 for many years. Most open source network applications 

(Apache, Nagios, Postfix, Dovecot, etc.) also have full support (although in some cases, 

documentation may be hard to find).

NICs (Network Interface Connectors) do not need to change unless they have IPv4-

specific hardware acceleration, and even those will typically run IPv6 with no problem, 

but the IPv6 part won’t be accelerated (it will run at “software” performance levels, in 

terms of packets or bytes processed per second). There are already many chips available 

to build hardware-accelerated NICs that fully support both IPv4 and IPv6, so soon, even 

NICs with hardware acceleration will be no problem. They will accelerate IPv4 and/

or IPv6 traffic. For the most part, NICs work at the Link Layer and hence are IP version 

agnostic (except for hardware acceleration).

Existing Wi-Fi NICs are also IP version agnostic (they work at the Link Layer), and 

every Wi-Fi NIC that I’ve tried has worked with IPv6 with no upgrades or workarounds 

required. Wi-Fi routers are another matter, because they include higher layer 
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functionality such as IPv4 routing, often including IPv4 NAT and a DHCPv4 server. Even 

here, there is a simple workaround. Most Wi-Fi access points have a “WAN” connector, 

which is the input to the NAT gateway, and one or more “LAN” connectors that are on 

the client side of the NAT gateway. The LAN connectors are intended to plug in wired 

client nodes, which are peers to the wireless client nodes (both wired and wireless client 

nodes obtain configuration information and translated IP addresses from the DHCPv4 

server and NAT gateway built into the Wi-Fi access point). Of course, the existing IPv4 

routing, IPv4 NAT, and DHCPv4 in such devices are not compatible with IPv6. There are 

dual-stack Wi-Fi access points available now from companies like D-Link, but some of 

the products available today do not have routing, firewall, or DHCP support for IPv6. Any 

device listed on the IPv6-ready list of certified products2 fully supports IPv6.

However, if you plug the cable from your ISP DSL modem (or from an existing Ethernet 

network) into one of the LAN connectors on your Wi-Fi access point, instead of into the 

WAN connector as you are supposed to, you can simply ignore the IPv4-specific parts of 

the Wi-Fi access point. You are now using the router in “bridge mode.” The actual Wi-Fi 

transmitter part is IP agnostic, and if there are both IPv4 and IPv6 on the feed you connect, 

they will both be broadcast on wireless, and all existing nodes with Wi-Fi NICs will receive 

it (assuming each OS supports IPv6 and you have configured it). Of course, if you want 

your Wi-Fi nodes to obtain IPv4 addresses automatically, you must have a DHCPv4 server 

somewhere in your network (properly configured). Your Wi-Fi access point is no longer 

performing this function. Likewise, if you want Wi-Fi clients to obtain IPv6 addresses 

through stateless autoconfiguration, there must be a Router Advertisement Daemon in 

your network (just as for wired IPv6). If your wireless node has a DHCPv6 client and you 

have a DHCPv6 server in your network, stateful autoconfiguration will work over Wi-Fi 

as well. Of course, you can manually configure IPv6 addresses for Wi-Fi nodes just as you 

can with wired nodes. No NAT is required (or needed) for IPv6. For IPv4, no NAT will be 

performed in the Wi-Fi access point, so if you need it, it must be performed at the outside 

gateway (e.g., a wired DSL modem from your ISP). Your wireless nodes will be peers to 

your wired nodes. All of them (wired and wireless) will get IPv4 addresses from the same 

DHCPv4 pool (if you use DHCP), and all will be in the same subnet. Normally if you 

connected a Wi-Fi gateway with NAT inside an existing NATted network, your wireless 

nodes would be behind two levels of NAT, which can cause some problems. One level of 

NAT is bad enough – two levels are even worse.

2 www.ipv6ready.org/db/index.php/public
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You will also find that some consumer devices that support Wi-Fi already have 

support for IPv6, such as Android and iOS. It’s kinda cool to deploy dual-stack Wi-Fi and 

show people the dancing turtle at www.kame.net3 on your phone.

With some of today’s phones, however, the only thing that works over IPv6 today 

(if anything) is Wi-Fi Internet access, not the voice traffic or “dataplan” service. Some 

mobile phone service providers are including IPv6 today (most in the United States 

are). In theory you could add a dual-stack softphone (VoIP client) and do voice 

communications over IPv6, but only via the Wi-Fi connection through a Wi-Fi access 

point connected to the main Internet, not over your wireless telephone carrier’s Internet 

service via WAP, GPRS, EDGE, HSDPA, or whatever else they provide. Someday even 

these services will be dual stack (probably primarily LTE).

3 www.kame.net/

Figure 6-1. The dancing kame
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There are now dual-stack Wi-Fi access points that fully support routing for IPv4 and 

IPv6, NAT for IPv4, and a Router Advertisement Daemon to enable IPv6 stateless auto-

configuration. D-Link in Taiwan has several that fully support IPv6, as do other vendors.

Network cables are totally IP version agnostic. You will not need to rewire your 

network just for IPv6.

All conventional (“layer 2”) hubs and switches are IP version agnostic, although 

“layer 3” features of some switches (such as web management, SNMP, and VLANs) 

must be upgraded to support IPv6. In most cases, this will be possible simply with new 

downloaded firmware. No hardware changes are needed (assuming there is sufficient 

RAM and ROM to handle the more complex firmware). Contact your switch vendor 

and demand that they add support for IPv6. There are already a few layer 3 switches on 

the market that support IPv6. I have an SMC 8848M 48-port gigabit managed switch 

in my home network that has quite a bit of IPv6 support, including web management 

over IPv6, IPv6-based VLANs, SNMP over IPv6, etc. Unfortunately, traffic statistics do 

not break out IPv4 and IPv6 traffic; just the total is reported. D-Link also has a dual-

stack smart switch series. They are already IPv6 ready certified. One example is their 

DGS-3627 XSTACK managed 24-port gigabit stackable L3 switch.

Many enterprise-grade routers and firewalls already support IPv6, although in 

some cases you must pay extra for the IPv6 functionality. Cisco routers used to require 

“advanced IP services” for IOS (at additional cost), before IPv6 worked. For example, the 

Cisco 2851 router ($6495) included only the base IOS (no IPv6 support). The Advanced 

IP Services Feature Pack for it was an additional $1700 (all prices list). When buying or 

considering using Cisco routers for use in IPv6 networks, make sure they already include 

advanced IP services or include the additional cost of the feature pack. More recent 

Cisco routers include IPv6 support for free in the base IOS.

Home network gateways that support IPv6 are further behind, but coming soon, 

especially from Asian vendors, such as D-Link. A typical one will have all the features of 

existing IPv4-based gateways, plus 6in4 tunneling (to tunnel in IPv6 from a virtual ISP), 

a Router Advertisement Daemon (to enable stateless auto-configuration), and firewall 

rules for IPv6 traffic. They should also be able to accept direct (in addition to tunneled) 

IPv6 service, for when dual-stack ISP service becomes more widely available. Their DNS 

relay should support DNS over both IPv4 and IPv6. More advanced gateways might 

include a DHCPv6 server.

Note that some DSL or cable modems also include IPv4 firewall functionality. Of 

course, this will not allow you to control IPv6 traffic. Therefore, if you are connecting 

your LAN to the IPv6 Internet, there must be IPv6 firewalling somewhere, possibly in 
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a 6in4 tunnel endpoint that is routing IPv6 traffic into your LAN. A dual-stack gateway 

firewall may include routing to accept incoming “direct” IPv6 service and/or a 6in4 

endpoint to accept incoming “tunneled” IPv6 service, together with both IPv4 and 

IPv6 filtering rules, and a Router Advertisement Daemon to support stateless auto-

configuration for the internal nodes that support IPv6.

Some IP phones in use today support IPv6, such as those from Snom in Germany and 

Moimstone in Korea. Cisco supports IPv6 on a number of their recent phones, including the 

7906G, 7911G, 7931G, 7941G/GE, 7942G, 7945G, 7961G/GE, 7962G, 7965G, 79770G, 7971G/

GE, and 7975G. Most of the older Cisco IP phones currently in use do not support IPv6, and 

their firmware cannot be upgraded for various reasons (e.g., insufficient RAM or ROM).

When looking for hardware products that already support IPv6, an excellent source 

of information is the IPv6-ready approved products list. If possible, choose products 

that have passed the phase 2 (gold-level) testing. This ensures full compliance with 

all relevant RFCs and interoperability with many other products. Phase 2 testing also 

ensures compliance with all items denoted SHOULD in the relevant RFCs (a much more 

comprehensive set of functionalities). These lists are updated and maintained by the 

IPv6 Ready Logo Committee of the IPv6 Forum. They can be found at the IPv6-ready list 

of certified products.4

 RFCs: A Whole Raft of New Standards for IPv6
There are many new RFCs that define the protocols, addressing and routing schemes, as 

well as migration issues for IPv6. I will cover the most important of those in this chapter.

You can trace the beginnings and evolution of IPv6 in some early RFCs. In 1990, 

when the IETF first realized that a successor to IPv4 was going to be needed (and soon), 

the fun began. One key RFC related to this is RFC 1752,5 “The Recommendation for the 

IP Next Generation Protocol,” January 1995. Prior to this, people referred to the successor 

protocol as IPng (IP next generation), but in this RFC the term IPv6 was used. RFC 1752 

says that the IETF started its effort to select a successor in late 1990 and that several 

parallel efforts were started. Among these proposals were “CNAT,” “IP Encaps,” “Nimrod,” 

“Simple CLNP,” the “P Internet Protocol,” the “Simple Internet Protocol,” and “TP/IX.” 

None of these ever made it past the Internet Draft stage.

4 www.ipv6ready.org/db/index.php/public
5 https://tools.ietf.org/html/rfc1752
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By late 1993, an IPng Working Group was formed, and the various proposals still 

around were reviewed. These included CATNIP, TUBA, and SIPP. Relevant RFCs (now of 

only historical interest) are

RFC 1347, “TCP and UDP with Bigger Addresses (TUBA),” June 

1992 (Informational)

RFC 1526, “Assignment of System Identifiers for TUBA/CLNP 

Hosts,” September 1993 (Informational)

RFC 1561, “Use of ISO CLNP in TUBA Environments,” December 

1993 (Experimental)

RFC 1707, “CATNIP: Common Architecture for the Internet,” 

October 1994 (Informational)

RFC 1710, “Simple Internet Protocol Plus White Paper,” October 

1994 (Informational)

The CLNP referred to in several of these was the “Connectionless-mode Network 

Layer Protocol,” defined in ISO/IEC 8473, which did not make it into the final IPv6 

specification. By 1995 a consensus had emerged, with the best features of all the 

contenders. The consensus was summarized in RFC 1752. Before the end of the year 

(barely), the first real IPv6 specifications were published:

RFC 1883, “Internet Protocol, Version 6 (IPv6) Specification,” 

December 1995, obsoleted by RFC 2460 and then by RFC 8200

RFC 1884, “IP Version 6 Addressing Architecture,” December 1995, 

obsoleted by RFC 2373, then by RFC 3513, and then by RFC 4291

RFC 1885, “Internet Control Message Protocol (ICMPv6) for the 

Internet Protocol Version 6 (IPv6) Specification,” December 1995, 

obsoleted by RFC 2463 and then by RFC 4443

RFC 1886, “DNS Extensions to Support IP Version 6,” December 

1995, obsoleted by RFC 3596

RFC 1887, “An Architecture for IPv6 Unicast Address Allocation,” 

December 1995
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Four of these have been replaced (multiple times in some cases) since then, and 

there are quite a few new ones since 1995, but this is where it really started. Yes, IPv6 is 

27 years old in 2022 and has finally grown up.

 IPv6
The software that is making the Third Internet (and virtually all Local Area Networks) 

possible will be around for quite some time. Like its predecessor, IPv4, it is a suite 

(family) of protocols. Once again, the core protocols are TCPv6 (Transmission Control 

Protocol version 6) and IPv6 (Internet Protocol version 6). TCPv6 has changes from 

TCPv4, but only a few, due to the larger addresses that require more storage and the odd 

method of calculating the checksum defined in TCPv4 (this involves a “pseudo header” 

that includes the source and destination addresses from the IP header, which of course 

are different in IPv4 and IPv6).

There is no new RFC specifically about TCPv6, but there are several RFCs that 

include details about the new features.

UDP has only very minor changes to work over IPv6, primarily to provide more 

storage for IPv6 addresses. The UDP packet header checksum also includes the IP 

addresses, once again using the new pseudo header.

The following standards are relevant to IPv6 in general.

RFCs specific to IPv4-IPv6 transition can be found here.

RFCs specific to IPv6 and DNS can be found here.

RFC 1809, “Using the Flow Label Field in IPv6,” June 1995 

(Informational)

RFC 1881, “IPv6 Address Allocation Management,” December 
1995 (Informational)

RFC 1887, “An Architecture for IPv6 Unicast Address 
Allocation,” December 1995 (Informational)

RFC 2428, “FTP Extensions for IPv6 and NATs,” September 1998 

(Standards Track)

RFC 2474, “Definition of the Differentiated Service Field 
(DS Field) in the IPv4 and IPv6 Headers,” December 1998 
(Standards Track)
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RFC 2526, “Reserved IPv6 Subnet Anycast Addresses,” March 1999 

(Standards Track)

RFC 2675, “IPv6 Jumbograms,” August 1999 (Standards Track)

RFC 2711, “IPv6 Router Alert Option,” October 1999 

(Standards Track)

RFC 2894, “Router Renumbering for IPv6,” August 2000 

(Standards Track)

RFC 3111, “Service Location Protocol Modifications for IPv6,” May 

2001 (Standards Track)

RFC 3122, “Extensions to IPv6 Neighbor Discovery for Inverse 

Discovery Specification,” June 2001 (Standards Track)

RFC 3175, “Aggregation of RSVP for IPv4 and IPv6 Reservations,” 

September 2001 (Standards Track)

RFC 3178, “IPv6 Multihoming Support at Site Exit Routers,” 

October 2001 (Informational)

RFC 3306, “Unicast-Prefix-based IPv6 Multicast Addresses,” 
August 2002 (Standards Track)

RFC 3314, “Recommendations for IPv6 in Third Generation 

Partnership Project (3GPP) Standards,” September 2002 

(Informational)

RFC 3363, “Representing Internet Protocol version 6 (IPv6) 
Addresses in the Domain Name System,” August 2002 
(Informational)

RFC 3364, “Tradeoffs in Domain Name System (DNS) Support for 

Internet Protocol version 6 (IPv6),” August 2002 (Informational)

RFC 3531, “A Flexible Method for Managing the Assignment of Bits 

of an IPv6 Address Block,” April 2003 (Informational)

RFC 3574, “Transition Scenarios for 3GPP Networks,” August 2003 

(Informational)

Chapter 6  Ipv6 Core protoCols

https://tools.ietf.org/html/rfc2526
https://tools.ietf.org/html/rfc2675
https://tools.ietf.org/html/rfc2711
https://tools.ietf.org/html/rfc2894
https://tools.ietf.org/html/rfc3111
https://tools.ietf.org/html/rfc3122
https://tools.ietf.org/html/rfc3175
https://tools.ietf.org/html/rfc3178
https://tools.ietf.org/html/rfc3306
https://tools.ietf.org/html/rfc3314
https://tools.ietf.org/html/rfc3363
https://tools.ietf.org/html/rfc3364
https://tools.ietf.org/html/rfc3531
https://tools.ietf.org/html/rfc3574


166

RFC 3582, “Goals for IPv6 Site-Multihoming Architectures,” 

August 2003 (Informational)

RFC 3587, “IPv6 Global Unicast Address Format,” August 2003 
(Informational)

RFC 3595, “Textual Conventions for the IPv6 Flow Label,” 

September 2003 (Standards Track)

RFC 3701, “6bone (IPv6 Testing Address Allocation) Phaseout,” 

March 2004 (Standards Track)

RFC 3750, “Unmanaged Networks IPv6 Transition Scenarios,” 

April 2004 (Informational)

RFC 3756, “IPv6 Neighbor Discovery (ND) Trust Models and 

Threats,” May 2004 (Informational)

RFC 3769, “Requirements for IPv6 Prefix Delegation,” June 2004 

(Informational)

RFC 3849, “IPv6 Address Prefix Reserved for Documentation,” July 

2004 (Informational)

RFC 3879, “Deprecating Site Local Addresses,” September 2004 

(Standards Track)

RFC 3974, “SMTP Operational Experience in Mixed IPv4/v6 

Environments,” January 2005 (Informational)

RFC 4007, “IPv6 Scoped Address Architecture,” March 2005 
(Informational)

RFC 4029, “Scenarios and Analysis for Introducing IPv6 into ISP 

Networks,” March 2005 (Informational)

RFC 4057, “IPv6 Enterprise Network Scenarios,” June 2005 

(Informational)

RFC 4074, “Common Misbehavior Against DNS Queries for IPv6 

Addresses,” May 2005 (Informational)

RFC 4135, “Goals of Detecting Network Attachment in IPv6,” May 

2005 (Informational)
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RFC 4147, “Proposed Changes to the Format of the IANA IPv6 

Registry,” August 2005 (Informational)

RFC 4159, “Depreciation of ip6.in,” August 2005 (Best Current 

Practice)

RFC 4177, “Architectural Approaches to Multihoming for IPv6,” 

September 2005 (Informational)

RFC 4192, “Procedures for Renumbering an IPv6 Network Without 

a Flag Day,” September 2005 (Informational)

RFC 4193, “Unique Local IPv6 Unicast Addresses,” October 
2005 (Standards Track)

RFC 4215, “Analysis of IPv6 Transition in Third Generation 

Partnership Project (3GPP) Networks,” October 2005 

(Informational)

RFC 4218, “Threats Relating to IPv6 Multihoming Solutions,” 

October 2005 (Informational)

RFC 4291, “IP Version 6 Addressing Architecture,” 
February 2006

RFC 4294, “IPv6 Node Requirements,” April 2006 (Informational)

RFC 4311, “IPv6 Host-to-Router Load Sharing,” November 2005 

(Standards Track)

RFC 4339, “IPv6 Host Configuration of DNS Server Information 

Approaches,” February 2006 (Informational)

RFC 4380, “Teredo: Tunneling IPv6 over UDP through Network 

Address Translations (NATs),” February 2006 (Standards Track)

RFC 4429, “Optimistic Duplicate Address Detection (DAD) for 

IPv6,” April 2006 (Standards Track)

RFC 4443, “Internet Control Message Protocol (ICMPv6) for 
the Internet Protocol Version 6 (IPv6) Specification,” April 
2006 (Standards Track)
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RFC 4472, “Operational Considerations and Issues with IPv6 

DNS,” April 2006 (Informational)

RFC 4554, “Use of VLANs for IPv4-IPv6 Coexistence in Enterprise 

Networks,” June 2006 (Informational)

RFC 4659, “BGP-MPLS IP Virtual Private Network (VPN) 

Extensions for IPv6 VPN,” September 2006 (Standards Track)

RFC 4692, “Considerations on the IPv6 Host Density Metric,” 

October 2006 (Informational)

RFC 4727, “Experimental Values in IPv4, IPv6, ICMPv4, ICMPv6, 

UDP and TCP Headers,” November 2006 (Standards Track)

RFC 4779, “ISP IPv6 Deployment Scenarios in Broadband Access 

Networks,” January 2007 (Informational)

RFC 4818, “RADIUS Delegated-IPv6-Prefix Attribute,” April 2007 

(Standards Track)

RFC 4852, “IPv6 Enterprise Network Analysis – IP Layer 3 Focus,” 

April 2007 (Informational)

RFC 4861, “Neighbor Discovery for IP version 6 (IPv6),” 
September 2007 (Standards Track)

RFC 4862, “IPv6 Stateless Address Autoconfiguration,” 
September 2007 (Standards Track)

RFC 4864, “Local Network Protection for IPv6,” May 2007 

(Informational)

RFC 4890, “Recommendations for Filtering ICMPv6 Messages in 

Firewalls,” May 2007 (Informational)

RFC 4919, “IPv6 over Low-Power Wireless Personal Area Networks 

(6LoWPANs): Overview, Assumptions, Problem Statement and 

Goals,” August 2007 (Informational)

RFC 4941, “Privacy Extensions for Stateless Address 
Autoconfiguration in IPv6,” September 2007 (Standards Track)
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RFC 4943, “IPv6 Neighbor Discovery On-Link Assumption 

Considered Harmful,” September 2007 (Informational)

RFC 4968, “Analysis of IPv6 Link Models for 802.16 Based 

Networks,” August 2007 (Informational)

RFC 5095, “Deprecation of Type 0 Routing Headers in IPv6,” 

December 2007 (Standards Track)

RFC 5172, “Negotiation for IPv6 Datagram Compression Using 

IPv6 Control Protocol,” March 2008 (Standards Track)

RFC 5175, “IPv6 Router Advertisement Flags Option,” March 2008 

(Standards Track)

RFC 5181, “IPv6 Deployment Scenarios in 802.16 Networks,” May 

2008 (Informational)

RFC 5350, “IANA Considerations for the IPv4 and IPv6 Router 

Alert Options,” September 2008 (Standards Track)

RFC 5375, “IPv6 Unicast Address Assignment Considerations,” 

December 2008 (Informational)

RFC 5453, “Reserved IPv6 Interface Identifiers,” February 2009 

(Standards Track)

RFC 5533, “Shim6: Level 3 Multihoming Shim Protocol for IPv6,” 

June 2009 (Standards Track)

RFC 5534, “Failure Detection and Locator Pair Exploration 

Protocol for IPv6 Multihoming,” June 2009 (Standards Track)

RFC 5549, “Advertising IPv4 Network Layer Reachability 

Information with an IPv6 Next Hop,” May 2009 (Standards Track)

RFC 5570, “Common Architecture Label IPv6 Security Option 

(CALIPSO),” July 2009 (Informational)

RFC 5619, “Softwire Security Analysis and Requirements,” August 

2009 (Standards Track)

RFC 5701, “IP Address Specific BGP Extended Community 

Attribute,” November 2009 (Standards Track)

Chapter 6  Ipv6 Core protoCols

https://tools.ietf.org/html/rfc4943
https://tools.ietf.org/html/rfc4968
https://tools.ietf.org/html/rfc5095
https://tools.ietf.org/html/rfc5172
https://tools.ietf.org/html/rfc5175
https://tools.ietf.org/html/rfc5181
https://tools.ietf.org/html/rfc5350
https://tools.ietf.org/html/rfc5375
https://tools.ietf.org/html/rfc5453
https://tools.ietf.org/html/rfc5533
https://tools.ietf.org/html/rfc5534
https://tools.ietf.org/html/rfc5549
https://tools.ietf.org/html/rfc5570
https://tools.ietf.org/html/rfc5619
https://tools.ietf.org/html/rfc5701


170

RFC 5722, “Handling of Overlapping IPv6 Fragments,” December 

2009 (Standards Track)

RFC 5739, “IPv6 Configuration in Internet Key Exchange Protocol 

version 2 (IKEv2),” February 2010 (Experimental)

RFC 5798, “Virtual Router Redundancy Protocol (VRRP) Version 3 

for IPv4 and IPv6,” March 2010 (Standards Track)

RFC 5855, “Nameservers for IPv4 and IPv6 Reverse Zones,” May 

2010 (Best Current Practices)

RFC 5871, “IANA Allocation Guidelines for the IPv6 Routing 

Header,” May 2010 (Proposed Standard)

RFC 5881, “Bidirectional Forwarding Detection (BFD) for IPv4 and 

IPv6 (Single Hop),” June 2010 (Proposed Standard)

RFC 5905, “Network Time Protocol Version 4: Protocol and 

Algorithms Specification,” June 2010 (Standards Track)

RFC 5908, “Network Time Protocol (NTP) Server Option for 

DHCPv6,” June 2010 (Proposed Standard)

RFC 5942, “IPv6 Subnet Model: The Relationship Between Links 

and Subnet Prefixes,” July 2010 (Proposed Standard)

RFC 5952, “A Recommendation for IPv6 Address Text 

Representation,” August 2010 (Proposed Standard)

RFC 5963, “IPv6 Deployment in Internet Exchange Points (IXPs),” 

August 2010 (Informational)

RFC 5970, “DHCPv6 Options for Network Boot,” September 2010 

(Proposed Standard)

RFC 6036, “Emerging Service Provider Scenarios for IPv6 

Deployment,” October 2010 (Informational)

RFC 6059, “Simple Procedures for Detecting Network Attachment 

in IPv6,” November 2010 (Proposed Standard)

RFC 6085, “Address Mapping of IPv6 Multicast Packets on 

Ethernet,” January 2011 (Standards Track)

Chapter 6  Ipv6 Core protoCols

https://tools.ietf.org/html/rfc5722
https://tools.ietf.org/html/rfc5739
https://tools.ietf.org/html/rfc5798
https://tools.ietf.org/html/rfc5855
https://tools.ietf.org/html/rfc5871
https://tools.ietf.org/html/rfc5881
https://tools.ietf.org/html/rfc5905
https://tools.ietf.org/html/rfc5908
https://tools.ietf.org/html/rfc5942
https://tools.ietf.org/html/rfc5952
https://tools.ietf.org/html/rfc5963
https://tools.ietf.org/html/rfc5970
https://tools.ietf.org/html/rfc6036
https://tools.ietf.org/html/rfc6059
https://tools.ietf.org/html/rfc6085


171

RFC 6088, “Traffic Selectors for Flow Exchange Bindings,” January 

2011 (Proposed Standard)

RFC 6092, “Recommended Simple Security Capabilities in 

Customer Premises Equipment (CPE) for Providing Residential 

Internet Service,” January 2011 (Informational)

RFC 6119, “IPv6 Traffic Engineering in IS-IS,” February 2011 

(Proposed Standard)

RFC 6144, “Framework for IPv4/IPv6 Translation,” April 2011 

(Informational)

RFC 6156, “Traversal Using Relays Around NAT (TURN) 

Extensions for IPv6,” April 2011 (Proposed Standard)

RFC 6157, “IPv6 Transition in the Session Initiation Protocol 

(SIP),” April 2011 (Proposed Standard)

RFC 6164, “Using 127-Bit IPv6 Prefixes on Inter-Router Links,” 

April 2011 (Standards Track)

RFC 6177, “IPv6 Address Assignments to End Sites,” March 2011

RFC 6204, “Basic Requirements for IPv6 Customer Edge Routers,” 

April 2011 (Informational)

RFC 6214, “Adaptation of RFC 1149 for IPv6,” April 1, 2011 

(Informational)

RFC 6221, “Lightweight DHCPv6 Relay Agent,” May 2011 

(Proposed Standard)

RFC 6250, “Evolution of the IP Model”, May 2011 (Informational)

RFC 6264, “An Incremental Carrier-Grade NAT (CGN) for IPv6 

Transition,” June 2011 (Informational)

RFC 6294, “Survey of Proposed Use Cases for the IPv6 Flow Label,” 

June 2011 (Informational)

RFC 6343, “Advisory Guidelines for 6to4 Deployment,” August 

2011 (Informational)
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RFC 6384, “An FTP Application Layer Gateway (ALG) for IPv6-to-

IPv4 Translation,” October 2011 (Proposed Standard)

RFC 6437, “IPv6 Flow Label Specification,” November 2011 
(Standards Track)

RFC 6438, “Using the IPv6 Flow Label for Equal Cost Multipath 
Routing and Link Aggregation in Tunnels,” November 2011

RFC 6459, “IPv6 in 3rd Generation Partnership Project (3GPP) 

Evolved Packet System (EPS),” January 2012 (Informational)

RFC 6540, “IPv6 Support Required for All IP-Capable Nodes,” April 

2012 (Best Current Practice)

RFC 6556, “Testing Eyeball Happiness,” April 2012 (Informational)

RFC 6564, “A Uniform Format for IPv6 Extension Headers,” April 

2012 (Proposed Standard)

RFC 6568, “Design and Application Spaces for IPv6 over Low-

Power Wireless Personal Area Networks (6LoWPANs),” April 2012 

(Informational)

RFC 6606, “Problem Statement and Requirements for IPv6 over 

Low-Power Wireless Personal Area Network (6LoWPAN) Routing,” 

May 2012 (Informational)

RFC 6619, “Scalable Operation of Address Translators with Per-

Interface Bindings,” June 2012 (Proposed Standard)

RFC 6724, “Default Address Selection for Internet Protocol Version 

6 (IPv6),” September 2012 (Standards Track)

RFC 6890, “Special-Purpose IP Address Registries,” April 2013 

(Best Current Practice)

RFC 7066, “IPv6 for Third Generation Partnership Project (3GPP) 

Cellular Hosts,” November 2013 (Informational)

RFC 7098, “Using the IPv6 Flow Label for Load Balancing in 
Server Farms,” January 2014
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RFC 7707, “Network Reconnaissance in IPv6 Networks,” March 

2016 (Informational)

RFC 8106, “IPv6 Router Advertisement Options for DNS 
Configuration,” March 2017 (Standards Track)

RFC 8200, “Internet Protocol, Version 6 (IPv6) Specification,” 
July 2017 (Standards Track)

RFC 8201, “Path MTU Discovery for IP version 6,” July 2017 
(Standards Track)

RFC 8504, “IPv6 Node Requirements,” January 2019 (Best 
Current Practices)

 Four-Layer IPv6 Architectural Model

The major changes from the IPv4 model are as follows:

• Application Layer: DHCPv4 replaced with DHCPv6

• Transport Layer: TCPv4 replaced with TCPv6, UDPv4 replaced 

with UDPv6

• Internet Layer: IPv4 replaced with IPv6, ICMPv4 replaced with 

ICMPv6 (which includes ND)

• Link Layer: Removed ARP, OSPFv2 replaced with OSPFv3

Figure 6-2. Four-layer IPv6 model
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In the following discussion, traffic really flows both down from the Application Layer 

to the Link Layer (then out the wire) and from the wire up through the Link Layer to the 

Application Layer. For clarity, only the downward path is described in the following. 

When traffic goes up through the layers, each layer strips off one header and hands off 

the remaining bytes to the layer above.

The Application Layer implements the protocols most people are familiar with (e.g., 

HTTP). The software routines for these are typically contained in application programs 

such as browsers or web servers that make system calls to subroutines (or “functions” 

in C terminology) in the “socket API” (an API is an Application Program Interface, 

or a collection of related subroutines, typically supplied with the operating system 

or programming language). The application code creates outgoing data streams and 

then calls routines in the API to actually send the data via TCP (Transmission Control 

Protocol) or UDP (User Datagram Protocol). Output to the Transport Layer is [DATA] 

using IP addresses.

The Transport Layer implements TCP (the Transmission Control Protocol) and 

UDP (the User Datagram Protocol). These routines are internal to the socket API. They 

add a TCP or UDP packet header to the data passed down from the Application Layer 

and then pass the data down to the Internet Layer for further processing. Output to the 

Internet Layer is [TCP HDR [DATA]], using IP addresses.

The Internet Layer implements IPv6 (the Internet Protocol) and various other 

related protocols such as ICMPv6 (which includes the “ping” function among other 

things). The IP routine takes the data passed down from the Transport Layer routines, 

adds an IPv6 packet header onto it, and then passes the now complete IPv6 packet down 

to routines in the Link Layer. Output to the Link layer is [IPv6 HDR [TCP HDR [DATA]]] 

using IP addresses. ND (Neighbor Discovery) is actually a part of ICMPv6. It helps locate 

the Link Layer address of other nodes on the link in addition to other functionality.

The Link Layer contains routines that actually read and write packets (as fed 

down to it by routines in the Internet Layer) onto the network wire, in compliance with 

Ethernet or other standards. Output to wire is Ethernet frame using MAC addresses (or 

the equivalent if other network hardware is used, such as Wi-Fi), which includes the 

entire IPv6 packet.
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 Link Layer Issues with IPv6
The following standards are relevant to the Link Layer in IPv6 (primarily the binding 

mechanisms from IPv6 to the Link Layer):

RFC 2464, “Transmission of IPv6 Packets over Ethernet Networks,” 

December 1998 (Standards Track)

RFC 2467, “Transmission of IPv6 Packets over FDDI Networks,” 

December 1998 (Standards Track)

RFC 2470, “Transmission of IPv6 Packets over Token Ring 

Networks,” December 1998 (Standards Track)

RFC 2491, “IPv6 over Non-Broadcast Multiple Access (NBMA) 

Networks,” January 1999 (Standards Track)

RFC 2492, “IPv6 over ATM Networks,” January 1999 

(Standards Track)

RFC 2497, “Transmission of IPv6 Packets over ARCnet Networks,” 

January 1999 (Standards Track)

RFC 2590, “Transmission of IPv6 Packets over Frame Relay 

Networks Specification,” May 1999 (Standards Track)

RFC 3146, “Transmission of IPv6 Packets over IEEE 1394 

Networks,” October 2001 (Standards Track)

RFC 4338, “Transmission of IPv6, IPv4 and Address Resolution 

Protocol (ARP) Packets over Fibre Channel,” January 2006 

(Standards Track)

RFC 4392, “IP over InfiniBand (IPoIB) Architecture,” April 2006 

(Informational)

RFC 4944, “Transmission of IPv6 Packets over IEEE 802.15.4 

Networks,” September 2007 (Standards Track)

RFC 5072, “IP Version 6 over PPP,” September 2007 

(Standards Track)

RFC 5121, “Transmission of IPv6 via the IPv6 Convergence Sublayer 

over IEEE 802.16 Networks,” February 2008 (Standards Track)
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 IPv6: The Internet Protocol, Version 6
IPv6 is the foundation of the Third Internet and accounts for many of its distinguishing 

characteristics, such as its 128-bit address size, its addressing model, and its packet 

header structure and routing. IPv6 is currently defined in RFC 8200,6 “Internet Protocol, 

Version 6 (IPv6) Specification,” July 2017, but there are several RFCs that extend the 

definition.

 IPv6 Packet Header Structure
So what are these packet headers mentioned previously? In IPv6 packets, there is an IPv6 

packet header, then zero or more packet header extensions, then a TCP or UDP header, 

and finally the packet data. Each header and header extension is a structured collection 

of data, including things such as the IPv6 address of the sending node and the IPv6 

address of the destination node. Why are we getting down to this level of detail? Because 

some of the big changes from IPv4 to IPv6 have to do with the new and improved IP 

packet header architecture in IPv6. In this chapter, we’ll cover the IPv6 packet header. 

Here it is.

6 www.rfc-editor.org/rfc/rfc8200.txt

Figure 6-3. IPv6 packet header
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The IP Version field (4 bits) contains the value 6 (imagine that!), which in binary is 

“0110.” This field allows IPv4 and IPv6 traffic to be mixed in a single network.

The Traffic Class field (8 bits) is available for use by originating nodes and/or 

forwarding routers to identify and distinguish between different classes or priorities of 

IPv6 packets, in a manner virtually identical to that of IPv4 “Type of Service.”

The Flow Label field (20 bits) is something new in IPv6. It can be used to tag up 

to 220 (1,048,576) distinct traffic flows, for purposes such as fine-grained bandwidth 

management (QoS). Its use is still experimental. Hosts or routers that do not support 

this function should set it to zero when originating a packet or ignore it when receiving 

a packet. The semantics and usage of this field are covered in RFC 8200. Further 

information is found in RFCs 3595, 6294, 6437, 6438, and 7098. Even today, very few 

routers actually act on the contents of this field. Until they do, it will be of limited value.

The Payload Length field (16 bits) is the length of the IPv6 packet payload in bytes, 

not counting the standard packet header (as it is in IPv4 Total Length), but counting 

the size of any extension headers, which don’t exist in IPv4. You can think of packet 

extension headers as being the first part of the Data field (payload) of the IPv6 packet.

The Next Header field (8 bits) indicates the type of header immediately following the 

standard IPv6 packet header. It uses the same values as the IPv4 Protocol field, as defined 

in RFC 1700, “Assigned Numbers,” October 1994. If this value contains the code for TCP, 

then the TCP header and packet payload (data) begins immediately after the IPv6 packet 

header. Otherwise, one or more IPv6 extension headers will be found before the TCP 

header and data begins. Since each extension header has another Next Header field (and 

a Header Length field), this constitutes a linked list of headers before the final extension 

header, which is followed by the data. UDP packets can also have extension headers.

The Hop Limit field (8 bits) is to prevent packets from being shuttled around 

indefinitely on a network. Every time a packet crosses a switch or router, the hop 

count is decremented by one. If it reaches zero, the packet is dropped. Typically, if this 

happens, an ICMPv6 message (“Time Exceeded”) is returned to the packet sender. This 

mechanism is how the traceroute command works.

The Source IP Address field (128 bits) contains the IPv6 address of the packet sender.

The Destination IP Address field (128 bits) contains the IPv6 address of the packet 

recipient.
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Note the following fields from the Ipv4 packet header have been eliminated in 
the Ipv6 packet header: Header Length, Identification (Fragment ID), Fragmentation 
Flags, Fragment Offset, Header Checksum, and Options. the value in the Payload 
Length field no longer includes the length of the standard packet header. the 
Flow Label field has no corresponding field in the Ipv4 packet header. some 
of the missing fields (e.g., fragmentation information) have been pushed into 
extension packet headers. For example, in Ipv6 only fragmented packets have the 
fragmentation header extension. Unfragmented packets do not have to carry the 
unnecessary overhead. In Ipv4, all packets have the fragmentation fields in their 
header, whether they are fragmented or not.

IPv6 Packet Fragmentation and Path MTU Discovery
The fields related to fragmentation are now found in the Fragment extension header, 

which exists only in fragmented packets (no need to clutter up unfragmented packets, as 

in IPv4). In IPv6, only the originating node can fragment packets (no intervening node 

is supposed to do this). The originating node uses MTU Path Discovery to determine 

the “width” of the proposed path (the maximum packet size that it can handle). MTU 

stands for Maximum Transmitted Unit (maximum packet length). Any packets larger 

than that size must be fragmented before transmission by the originating node and 

reassembled upon receipt by the destination node. There is a default packet size that any 

IPv6 node must be able to handle (1280 bytes). MTU Path Discovery allows the sender to 

determine if larger (more efficient) packets can be used. The originating node assumes 

the path MTU is the MTU of the first hop in the path. A trial packet of this size is sent 

out. If any link is unable to handle it, an ICMPv6 Packet Too Big message is returned. 

The originating node iteratively tries smaller packet sizes until it gets no complaints 

from any node and then uses the largest MTU that was acceptable along the entire path. 

This process takes place automatically in the Internet Layer. There is no corresponding 

mechanism in IPv4.

Extension Headers (New in IPv6)
After the main header, there can be zero or more extension headers, before the 

payload (actual packet data). This approach makes IPv6 highly extensible, for new 

functionality in years to come. Several extension headers are already defined, and 

doubtless more will be defined over time.
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The first byte of each extension header contains a Next Header field, identical to the 

same named field in the main IPv6 packet header (using codes from RFC 1700). The 

second byte of each extension header contains a Header Extension Length field, which 

specifies the length of this header, in 8-byte units, not including the first 8 bytes. Thus, 

every extension header is at least 8 bytes long and is a multiple of 8 bytes in length. The 

following header (or data, if no more extension headers) will begin immediately after 

the end of this extension header. This effectively defines a linked list (a data structure 

familiar to all programmers). Here are some typical packet header sequences to illustrate 

how each chains to the next.

The basic extension headers are defined in RFC 8200,7 “Internet Protocol, Version 6 

(IPv6) Specification,” January 2017. These include the following:

• Options extension header

• Hop-by-Hop Options extension header

• Routing extension header

• Fragment extension header

• Destination extension header

7 www.rfc-editor.org/rfc/rfc8200.txt

Figure 6-4. Typical IPv6 packet headers with extensions

Chapter 6  Ipv6 Core protoCols

https://www.rfc-editor.org/rfc/rfc8200.txt
http://www.rfc-editor.org/rfc/rfc8200.txt


180

Two extension headers are used for IPsec (IP Layer security). The IPsec 

Authentication extension header (IPsec AH) is defined in RFC 2402, “IP Authentication 

Header,” November 1998. The Encapsulating Security Payload header (IPsec ESP) is 

defined in RFC 2406, “IP Encapsulating Security Payload (ESP),” November 1998.

When multiple extension headers are used in a single packet, the following order 

should be followed:

• IPv6 basic header

• Hop-by-Hop Options header

• Destination Options header (for options to be processed by more 

than just the final recipient)

• Routing header

• Fragment header

• Authentication header

• Encapsulating Security Payload header

• Destination Options header (for options to be processed only by the 

final recipient)

• Upper Layer header (TCP, UDP, or SCTP)

Hop-by-Hop Options header: Used to carry optional information that must be 

examined by every node along a packet’s delivery path. This option is indicated by a Next 

Header value of 0.

Routing header: Used by an IPv6 source node to list one or more intermediate nodes 

to be “visited on the way” to a packet’s destination. This is similar to IPv4’s Loose Source 

and Record Route option. The Routing header is identified by a Next Header value of 43.

Fragment header: Used by an IPv6 source to send a packet larger than would fit in 

the path MTU to its destination. In IPv6, packet fragmentation is performed only by the 

source node, which must use MTU discovery to determine the maximum packet size 

along the proposed path. The Fragment header is identified by a Next Header value of 44.

Destination Options header: Used to carry optional information that needs to be 

examined only by a packet’s destination node(s). The Destination Options header is 

identified by a Next Header value of 60.

For the specific details on each of the above header extension packets, see RFC 8200. 

The Authentication header and ESP packet headers will be described later, under IPsec.

Chapter 6  Ipv6 Core protoCols



181

 IPv6 Addressing Model
In IPv6, addresses are 128 bits in length. They are simply numbers from 0 to about 340 

undecillion (340 trillion, trillion, trillion). In exponential notation, that would be 3.40 

e+38 (think of it as a 38-digit phone number, where an IPv4 address is a 9-digit phone 

number). Regardless of how you write it, that’s a really big number. For the convenience 

of humans, these numbers are typically represented in what I call coloned hex notation 

(as opposed to the dotted decimal notation used with IPv4). This splits the 128-bit 

addresses into eight 16-bit fields, and each of which is represented with a hexadecimal 

(base 16) number from 0 to ffff (you can use upper- or lowercase for the hexadecimal 

digits A–F, but it is common practice in IPv6 to use lowercase). These hexadecimal 

numbers cover all possible 16-bit binary patterns from 0000 0000 0000 0000 to 1111 1111 

1111 1111. The hexadecimal numbers are separated by colons (“:”). Leading zeros can be 

eliminated in each field. At most one run of zeros can be replaced by the double colon, 

“::”. The following are all valid IPv6 addresses written in coloned hex notation:

2001:df8:5403:3000:b5ea:976d:679f:30f5   An EUI-64 unicast address

2001:df8:5403:3000::1e                   Manually assigned unicast

fe80::b5ea:976d:679f:30f5                Link-local EUI-64 address

ff02::1                                  Multicast address

::1                                      Loopback address for IPv6

::                                       The unspecified address

Some people are aware that you can use IPv4 addresses instead of nodenames in 

web URIs, for example: http://123.45.67.89/main.html. You can also use IPv6 addresses, 

but because colons demark other things in URIs (such as nonstandard port number), 

you cannot use IPv6 addresses “as is”; enclose them in square brackets ([]). For example, 

http://[2001:df8:5403:3000::d]/nagios is a valid URI that includes an IPv6 numeric 

address.

In certain cases, the size of the subnet is specified after the address, similar to 

CIDR. This is especially common when representing prefixes, for example:

2001:df8:5403::/48        An organization’s 48 bit network prefix

2001:df8:5403:3000::/52   A /52 block routed into a branch office

2001:df8:5403:3000::/64   The 64 bit prefix for one branch subnet
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When an RIR (e.g., APNIC) allocates a “/32” block of addresses to an ISP, they assign 

the first 32 bits of those addresses, based on the next available “/32” block from the 

unallocated pool at that time. A “/32” block contains 65,536 “/48” blocks to allocate to 

customers. If the ISP allocates all those, then the RIR will give them a new “/32” block, 

each address of which will have a completely different first 32 bits from the addresses 

in the previous “/32” block given to the ISP. The leftmost, or most significant, 32 bits 

of every address in a given “/32” block will all be the same. All addresses from smaller 

blocks (like a “/48” block or “/64” block) carved out of that “/32” block by the ISP (for 

allocation to customers) will have the same first 32 bits. For example, many of NTT 

America’s IPv6 allocations include addresses that start with “2001:418::/32”. No other ISP 

in the world will ever be allocated a “/32” block with those particular first 32 bits. Up to 

65,536 of NTT America’s customers might get “/48” blocks whose addresses start with 

those 32 bits.

When an ISP allocates a “/48” block for a customer from their “/32” block, the next 

16 bits (following the first 32 bits) are chosen by that ISP, so that the first 48 bits will be 

unique to that customer in the entire world. The first 48 bits of every address in a “/48” 

block given to an end-user organization will all be the same but will be different from 

the first 48 bits of the addresses in any other “/48” block in the world. You can think of 

this 48-bit sequence as the organization prefix. All addresses in our “/48” block from HE 

happens to start with “2001:470:ed3a::/48”. No other customer of HE has ed3a in the third 

16-bit field of their addresses. When a customer deploys subnets, they choose a further 

16-bit value (unique within their organization) for each subnet, which, together with the 

organization’s 48-bit prefix, creates a globally unique 64-bit prefix for a working subnet. 

This can be used to manually configure 128-bit addresses for nodes on that subnet, or 

they can be configured on the Router Advertisement Daemon that supplies prefixes to 

nodes in that subnet for Stateless Address Autoconfiguration. If using stateful DHCPv6, 

the administrator can also create pools of addresses for assignment, where each 128-bit 

address in a pool has that same 64-bit subnet prefix.

 IPv6 Packet Transmission Types
In IPv4, there were several packet transmission types (unicast, anycast, and multicast). 

IPv4 multicast uses class D addresses, while all other addresses are unicast (or reserved). 

There is no real concept of scope in IPv4 (the part of the network in which a given 

address is valid and unique). IPv4 “private addresses” are a step in this direction, but 
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IPv6 defines real scope rules for certain kinds of addresses. These concepts are defined 

in RFC 4291, “IP Version 6 Addressing Architecture,” February 2006. Note: In Windows, 

“ping” is used for both IPv4 and IPv6. In Linux and BSD, the “ping” command is used 

just for IPv4 – in IPv6, the command is “ping6.” In the following, I use just the generic 

“ping,” but be aware that for IPv6 on some platforms, “ping6” would actually be used.

 IPv6 Address Scopes
The scope of an address specifies in what part of the network it is valid and unique. The 

defined scopes in IPv6 are as follows:

Node Local: Valid only within the local node (e.g., loopback 

address).

Link Local: Valid only within a single network link (subnet). All 

such addresses start with the 10 bits “1111 1110 10” followed by 

54 bits of 0 (fe80::/64). When specified in commands, you usually 

must follow a link-local address with “%” and the interface ID of 

the link it is connected to. In FreeBSD, this might be something 

like “fxp0”, so to ping a link-local address, you might use 

the command

ping fe80::3c79:b2ca:90ce:5d59%fxp0

In Windows, interface IDs are numbers, so a ping command there 

might look like

ping fe80::3c79:b2ca:90ce:5d59%11

Site Local: Valid only within a “site.” They start with the 10 bits 

“1111 1110 11” (fec0::/10). These were intended to be like IPv4 

RFC 1918 “private addresses,” but are no longer used as of RFC 

3878, “Deprecating Site Local Addresses,” September 2004.

Global: Valid anywhere on the IPv6 Internet. Global unicast 

addresses are in the 2000::/3 block. When you specify global 

addresses, there is no need to append the interface ID, so a ping 

command for such an address might look like

ping 2001:df8:5403:3000::c
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 IPv6 Address Types
A unicast address specifies a single network interface (destination address). Currently, 

all global unicast addresses are in the 2000::/3 block. There are also link-local unicast 

addresses, in the fe80::/10 block. The global unicast address type is defined in RFC 

3587, “IPv6 Global Unicast Address Format,” August 2003. This RFC deprecates (makes 

historic) the “Top-Level Aggregator” and “Next-Level Aggregator” (TLA/NLA) scheme 

previously defined for global unicast addresses and formalizes the 48-bit organization 

prefix, 16-bit subnet number, and 64-bit interface identifier concept used today:

    | 3 |     45 bits         |  16 bits  |       64 bits              |

    +---+---------------------+-----------+----------------------------+

    |001|global routing prefix| subnet ID |       interface ID         |

    +---+---------------------+-----------+----------------------------+

There are two special unicast addresses:

:: (all bits zero): The unspecified address must never be assigned 

to any node.

::1 (127 zeros followed by a 1): The loopback address for IPv6 

(corresponds to 127.0.0.1 in IPv4).

When the site-local scope was deprecated, a new address type called unique local 

unicast was defined in RFC 4193, “Unique Local IPv6 Unicast Addresses,” October 2005. 

These addresses are in the fc00:/7 block. The first 7 bits are “1111 110”. The eighth bit is 

called “L”. If L = 1, the address is locally assigned (L = 0 is reserved for future use). The 

next 40 bits are a global ID that ensures the global uniqueness of the overall address. It is 

generated pseudo-randomly and must not be sequential. The next 16 bits are a subnet 

ID, and the final 64 bits are an interface ID (just like in global unicast addresses). Perhaps 

someday there will be a way to reserve specific global IDs from a central authority (to 

prevent anyone else from using one you have chosen), but no such mechanism exists 

today. These addresses have much the same semantics as the IPv4 private addresses:

      | 7 bits |1|  40 bits   |  16 bits  |          64 bits           |

      +--------+-+------------+-----------+----------------------------+

      | Prefix |L| Global ID  | Subnet ID |        Interface ID        |

      +--------+-+------------+-----------+----------------------------+
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An anycast address can specify any of a group of addresses (usually on different 

nodes). A packet sent to an anycast address will be delivered to exactly one of those 

interfaces, typically the “nearest” one (in the network sense, not geographic sense). 

Anycast addresses look just like unicast addresses and differ only in being injected into 

the routing protocol at multiple locations in the network.

A multicast address specifies multiple network destinations (multiple nodes can be 

configured with the same multicast address). A packet sent to a multicast address will be 

delivered to all nodes that have been assigned that address. Multicast addresses all have 

the special prefix ff00::/8 (the first 8 bits of multicast addresses are all ones). After the 

first 8 bits, there are 4 bits of flags (0,0,0,T). If T=0, the address is a “well-known” address 

assigned by IANA. If T=1, then the address is a non-permanently assigned (“transient”) 

address. The scope is specified in the next 4 bits, followed by 112 bits of group ID:

   |   8    |  4 |  4 |                  112 bits                   |

   +------ -+----+----+---------------------------------------------+

   |11111111|flgs|scop|                  group ID                   |

   +--------+----+----+---------------------------------------------+

There are several multicast scopes defined by the four scope bits. All other 

combinations are unassigned:

0   reserved

1   interface-local scope

2   link-local scope

3   reserved

4   admin-local scope

5   site-local scope

8   organization-local scope

E   global scope

F   reserved

The following multicast groups are “well known” (T=0):

1   node

2   router

5   OSPF IGP router

6   OSPF IGP Designated router

9   RIP router

Chapter 6  Ipv6 Core protoCols



186

a   EIGRP router

b   mobile agent

d   PIM router

16  MLDv2 capable router

fb  DNS server

101 NTP server

108 NIS+ server

1:2 DHCPv6 relay agent or server

1:3 DHCPv6 server (but not relay agent)

As there are 112 bits for group ID, there are 2112 (about 5.19 e+33) possible multicast 

groups. That is enough for the entire world, for quite some time to come. You can think 

of a multicast group as similar to a TV channel number. As examples, the following 

multicast addresses are all valid (and are all “well known”):

ff02::1     All nodes on the local link

ff05::1     All nodes in the organization

ff02::2     All routers on the local link

ff05::2     All routers in the site

ff02::fb     All DNS servers on the local link

ff08::fb     All DNS servers in the organization

ff02::1:2    All DHCPv6 relay agents or servers on local link

             (note, DHCPv6 relay agents can only be reached

             via link local addresses, so wider scope

              addresses for relay agents don’t make sense)

ff02::1:3     All DHCPv6 servers on the local link

ff05::1:3     All DHCPv6 servers in the site

With the scopes larger than the organization, multicast addresses must be 

specifically configured on nodes (you have to “subscribe to that channel”). If you ping 

the multicast address ff0e::1, you are not going to get a response from every node on 

earth, unless you can first talk everyone into adding that address to their nodes. Even 

then, various routers along the way would probably block that packet. An organization’s 

routers enforce the scope rules so that link-local multicast addresses will not cross any 

routers, organization-local multicast addresses will not cross the organization’s border 
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router, but global multicast addresses will cross any router (in the real world, this is 

actually managed by the MLD, the Multicast Listener Discovery protocol, and PIM, the 

Protocol Independent Multicast protocol).

A solicited node multicast address is a special multicast address (addressed 

to all nodes on the local link) created from a global unicast address by appending 

the least significant (rightmost) 24 bits of the unicast address to the special prefix 

ff02:0:0:0:1:ff::/104. For the global unicast address

2001:df8:5403:3000:3c79:b2ca:90ce:5d59

the solicited node multicast address is:

ff02::1:ffce:5d59

These addresses are used by ND (the Neighbor Discovery protocol) in the process of 

mapping IPv6 addresses to Link Layer (MAC) addresses.

There is no broadcast address in IPv6, but a multicast to all nodes on the local link 

multicast group ff02::1 will have pretty much the same result.

Perhaps someday there will be a central authority to coordinate use (and allow 

reservation) of multicast group IDs. No such authority currently exists. Once IPv6 

multicast broadcasters start making their programming available over large regions (or 

even worldwide), such coordination will be necessary and corresponds to the FCC’s 

management of broadcast frequencies that prevent stations from interfering with each 

other. Because the number of potential group IDs is so large (2112 or about 5.19 e+33), 

for now, choosing them randomly is sufficient. The probability of any two randomly 

generated group IDs being the same is quite low, even with millions of people using this 

scheme. You might think of these group IDs as being in some sense channel numbers as 

found today on TVs. I can envision a search engine that would allow you to find multicast 

channels associated with programming that caters to specific tastes, such as Bollywood 

music videos over IPTV.

Special Case: IPv4-Compatible IPv6 Addresses (Now Deprecated)
The entire 4.3 billion addresses of IPv4 were mapped into the IPv6 address space, 

not just once, but twice – once as IPv4-compatible IPv6 addresses (::w.x.y.z) and a second 

time as IPv4-mapped IPv6 addresses (::ffff:w.x.y.z).

The addresses in the first special block all start with 96 bits of 0, followed by a 32-bit 

IPv4 address (which can be specified in dotted decimal). When you send traffic to an 

IPv4-compatible IPv6 address, it is sent as an IPv6 packet, but encapsulated with an IPv4 
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header, with the Protocol field of the IPv4 packet header set to 41 to indicate that the 

payload is an IPv6 packet. The IPv4 header allows the traffic to travel across an IPv4-only 

infrastructure. Upon receipt, the packet payload (the IPv6 packet) is passed to IPv6. This 

is called automatic IPv6 tunneling over IPv4 networks (defined in RFC 2893, “Transition 

Mechanisms for IPv6 Hosts and Routers,” August 2000).

IPv4-compatible IPv6 addresses were deprecated in RFC 4291, “IP Version 6 

Addressing Architecture,” February 2006. No current transition mechanism uses them. 

New implementations are not required to support these addresses. Note however that 

two special addresses that are widely used actually fall into this range, the “unspecified” 

address (all zeros, or “::”) and the loopback address (“::1”).

Special Case: IPv4-Mapped IPv6 Addresses (Still Valid)
The addresses in the second special block of addresses all start with 80 bits of 0 

(0:0:0:0:0), followed by 16 bits of 1 (ffff) and then a 32-bit IPv4 address (which can be, 

but does not have to be, specified in dotted decimal). When such an address is used on a 

dual-stack node that supports IPv4-mapped IPv6 addresses, it causes an IPv4 packet to 

be sent using the last 32 bits of the IPv4-mapped IPv6 address, as the IPv4 address. As an 

example, on a Windows 7 node configured with dual stack, you can ping an IPv4 node as 

usual with the command

C:\Users\lhughes>ping 10.1.0.14

Pinging 10.1.0.14 with 32 bytes of data:

Reply from 10.1.0.14: bytes=32 time<1ms TTL=64

Reply from 10.1.0.14: bytes=32 time<1ms TTL=64

Reply from 10.1.0.14: bytes=32 time<1ms TTL=64

Reply from 10.1.0.14: bytes=32 time<1ms TTL=64

You could ping the same IPv4, by using an IPv4-mapped IPv6 address, as follows. 

The ping command would first view the address as a valid IPv6 address and create an 

IPv6 socket as usual. The IPv6 socket would look at the IPv6 address, realize it is an IPv4-

mapped IPv6 address, and then hand the operation over to the IPv4 stack to handle, 

using the low 32 bits of the IPv4-mapped IPv6 address. Normal IPv4 packets would be 

sent from the IPv6 socket, indistinguishable from the IPv4 packets sent in the preceding 

example:
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C:\Users\lhughes>ping ::ffff:10.1.0.14

Pinging 10.1.0.14 with 32 bytes of data:

Reply from 10.1.0.14: bytes=32 time<1ms TTL=64

Reply from 10.1.0.14: bytes=32 time<1ms TTL=64

Reply from 10.1.0.14: bytes=32 time<1ms TTL=64

Reply from 10.1.0.14: bytes=32 time<1ms TTL=64

In general, you can do any I/O operation to an IPv4 node using IPv4 packets, from an 

IPv6 socket, by using these IPv4-mapped addresses (on nodes where this is supported). 

Some operating systems (e.g., OpenBSD) don’t support this kind of “cross-stack” 

operation at all. On some operating systems (Linux, NetBSD, FreeBSD), this mode is 

disabled by default, but in FreeBSD can be enabled by including the following line in /

etc/rc.conf:

...

IPv6_IPv4mapping="YES"

...

In general, it is best to avoid use of these addresses since support varies from 

operating system to operating system, behavior is implementation dependent, and there 

are potential vulnerabilities if it is enabled. It was originally intended as a transition 

mechanism, but it caused more problems than it solved, so it is better left unused and, 

ideally, disabled.

Simple IPv6 Address Assignment Scheme (for Manually Assigned Addresses)
The following is not part of any standard, IETF or otherwise. It is a best-practices 

recommendation, which may help you in migration to IPv6.

Many administrators have adopted a simple scheme for assigning IPv6 addresses 

manually to nodes, based on existing IPv4 address conventions or actual addresses. 

It could be argued that it can lead to confusion (by humans) between decimal and 

hexadecimal. It uses the same numeric digits that are currently used in your IPv4 

scheme, to create what are really hexadecimal fields. It is possible to use the numeric 

digits (0–9) to create up to three hex digits in each of the four 16-bit groups in the IPv6 

interface identifier. The resulting address may look strange in binary, but this scheme 

will make it easier for you to keep track of your IPv6 nodes and is especially useful in 

dual-stack networks, where you can use what appears to be the “same” address (not 

counting the prefix) on a given node, in both IPv4 and IPv6.
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As an example, say our 48-bit organization prefix is 2001:df8:5403::/48. Let’s also say 

we have four subnets (independent links) for IPv4, so we would also have four subnets 

for IPv6. Let’s arbitrarily assign the IPv6 subnet numbers as 3000, 3100, 3200, and 3300 

(all hex) for these subnets. Choose any values you want for subnet numbers (when 

setting up your network architecture) – you have 65,536 (from 0000 to ffff ) to play with. 

The following IPv4 addresses from these subnets could be assigned the corresponding 

IPv6 addresses:

IPv4 Subnet               IPv4 Address     Corresponding IPv6 Address

123.45.67.00/24           123.45.67.1      2001:df8:5403:3000:123:45:67:1

192.168.0.0/16            192.168.5.13     2001:df8:5403:3100:192:168:5:13

172.16.0.0/12             172.31.25.32     2001:df8:5403:3200:172:31:25:32

10.0.0.0/8                10.30.1.43       2001:df8:5403:3300:10:30:1:43

Alternatively, It is also possible to use just the interface identifier part of the IPv4 

address (“node number within subnet”) as the IPv6 interface identifier, in which case, 

the preceding addresses would be

Subnet                    IPv4 Address     Corresponding IPv6 Address

123.45.67.00/24           123.45.67.1      2001:df8:5403:3000::1

192.168.0.0/16            192.168.5.13     2001:df8:5403:3100::5:13

172.16.0.0/12             172.31.25.32     2001:df8:5403:3200::15:25:32

10.0.0.0/8                10.30.1.43       2001:df8:5403:3300::30:1:43

The mapping for the 172.31.25.32 address may confuse you – this is because a /12 

subnet mask length divides the second 8-bit field right in the middle (4 bits of it are 

the network address, and 4 bits are the interface identifier). This is why using dotted 

decimal for IPv4 was a bad idea and hexadecimal is used in IPv6. This can get even more 

confusing with very odd subnet lengths, like /19. The following should clear things up:

172      31        25        32           Full address, dotted decimal

A    C    1    F    1    9    2    0      Full address, hex

1010 1100 0001 1111 0001 1001 0010 0000   Full address, binary

               F    1    9     2    0     Interface identifier, hex

               15        25        32      Interface identifier, 

dotted decimal
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Using only the IPv4 interface identifier is less likely to produce addresses that collide 

with automatically generated addresses but requires a good understanding of IPv4 

subnetting (see the preceding discussion). Use whichever scheme makes the most sense 

to you but try to be consistent.

The Simple IPv6 Address Assignment Scheme can also be used to manually assign 

link-local addresses. In this case, there is no IPv6 subnet number, because each address 

is valid only within a subnet. The following link-local addresses could be assigned to the 

preceding nodes:

Subnet                    IPv4 Address     Corresponding IPv6 Address

123.45.67.00/24           123.45.67.1      fe80::123:45:67:1

192.168.0.0/16            192.168.5.13     fe80::192:168:5:13

172.16.0.0/12             172.31.25.32     fe80::172:31:25:32

10.0.0.0/8                10.30.1.43       fe80::10:30:1:43

As with global unicast addresses, you could use just the interface identifier part of 

each IPv4 address, which would result in the following manually assigned IPv6 link-local 

addresses:

Subnet                    IPv4 Address     Corresponding IPv6 Address

123.45.67.00/24           123.45.67.1      fe80::1

192.168.0.0/16            192.168.5.13     fe80::5:13

172.16.0.0/12             172.31.25.32     fe80::15:25:32

10.0.0.0/8                10.30.1.43       fe80::30:1:43

Note that the addresses 123.45.67.1/24 and 192.168.0.1/16 would both produce 

fe80::1 as the equivalent IPv6 address, but this would not produce a conflict since they 

are in different subnets, and link-local addresses are valid only within a single subnet.

Obviously, no addresses generated with Stateless Address Autoconfiguration will 

use this convention, although you should be careful to make sure there are no conflicts 

between addresses you create and automatically generated addresses. Duplicate 

Address Detection during automated address creation should detect such conflicts. On 

the other hand, you can easily create DHCPv6 address pools that will be consistent with 

these schemes.

Warning: There is a perfectly valid (but not often used) textual representation 

of IPv6 addresses that would allow you to use the exact same bits as a 32-bit IPv4 

interface identifier and even specify those 32 bits in dotted decimal. However, it 
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mixes hexadecimal and decimal numbers, plus colons and dots in a single address 

representation, which to me is extremely confusing and inelegant. It represents the 

first 96 bits of an address in coloned hex notation and the last 32 bits of that address in 

dotted decimal notation. When you use this mixed notation, you must always specify all 

four dotted decimal fields, and they must be the least significant 32 bits. It is possible 

that some software applications will not accept this representation. Also, many things 

that report addresses (e.g., ipconfig) have no way to display some addresses in mixed 

notation and others in regular coloned hex notation, so they just display all addresses 

in coloned hex notation. This can lead to confusion. As examples of addresses with this 

mixed notation, the preceding IPv4 addresses would have corresponding IPv6 addresses 

that look like this:

IPv4 Address     IPv6 Address in "Mixed" Notation 

    Same Address in Coloned Hex

123.45.67.1      2001:df8:5403:3000::123.45.67.1  

    2001:df8:5403:3000::7b2d:4301

192.168.5.13     2001:df8:5403:3100::192.168.5.13 

    2001:df8:5403:3000::c0a8:50d

172.16.25.3      2001:df8:5403:3200::172.16.25.3  

    2001:df8:5403:3000::ac10:1903

10.30.1.43       2001:df8:5403:3300::10.30.1.43   

    2001:df8:5403:3000::a1e:12b

I recommend that you avoid use of this mixed notation altogether. If you use the 

Simple IPv6 Address Assignment scheme, be very careful to use colons (not dots) 

between all fields, as software that understands the mixed address syntax will interpret 

addresses with dots in the last four groups as perfectly valid “mixed” notation. This will 

result in some odd problems. The mixed notation was really intended for use with IPv4-

mapped IPv6 addresses, but it works anywhere. You should never create addresses using 

it, but you need to know about it in case you see addresses written in it by someone else.

Multiple IPv6 Subnet Numbers on a Single Network Link
A single network link can actually have addresses with more than one 16-bit subnet 

number at any given time. For example, the prefix 2001:df8:5403:1600::/64 may be used 

with stateless autoconfiguration, while the prefix 2001:df8:5403:1601::/64 could be used 

with stateful autoconfiguration using DHCPv6 on the same network link. You could also 

have manually assigned addresses using a third prefix (e.g., 2001:df8:5403:1602::/64) 
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on the same network link. Addresses with different subnet numbers, but the same 

interface identifier, are not in conflict. Normally, you only broadcast one 64-bit prefix 

with Router Advertisement messages onto a given network link, so all addresses created 

with stateless autoconfiguration in a given subnet will have only that one 64-bit prefix. 

It is possible in some implementations to advertise many prefixes on each network link. 

If multiple prefixes are advertised, there will still be only one default gateway, which is 

the link-local address of the gateway that is sending Router Advertisement messages. 

Another alternative is to define a subnet size greater than /64 on a single network link 

that includes all the desired subnet numbers. With a “/60” subnet, you can actually have 

16 sequential /64 subnet numbers in a single network link (the first subnet number has 

to be an integral multiple of 16). This is called supernetting. Do this only if you really 

understand what you are doing.

Multiple IPv6 Addresses on a Single Node
Unlike with IPv4, it is completely normal for IPv6 nodes to have multiple valid 

addresses. They don’t even all have to have the same subnet number (if you are running 

multiple subnet numbers on a single link). A single node could have addresses with each 

of the preceding 64-bit prefixes (or even multiple manually assigned addresses) at any 

given time. It could also have various multicast addresses. One of the unicast addresses 

(chosen at random) will be used as the source address of packets sent by that node, but 

incoming packets addressed to any of the addresses owned by the node will be accepted.

A host is required to recognize any of the following addresses as referring to itself. 

Any node has most of these by default without anyone having to assign them. The default 

link-local address is created with Stateless Address Autoconfiguration even if there are 

no Router Advertisement messages. Solicited node multicast addresses are created and 

assigned automatically when unicast or anycast addresses are assigned:

• The loopback address (::1): Always present.

• The all-nodes multicast addresses (ff01::1, ff02::1, etc.): Only the 

“on node” and “on link” scoped multicast addresses are created 

automatically – ones with larger scope must be specifically assigned 

to each node that you wish to accept such addresses.

• The automatically generated link-local unicast address.

• Any additional unicast and anycast addresses that have been 

assigned to any of the node’s interfaces, manually or automatically.
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• The solicited node multicast address for each of its unicast 

and anycast addresses (created automatically for you when the 

corresponding unicast or anycast address is assigned).

• Multicast addresses for all other groups to which the node has 

subscribed.

A router (gateway) is required to recognize all addresses that a host is required to 

recognize, plus the following special addresses for routers, as identifying itself:

• The subnet-router anycast address for all interfaces for which it is 

configured to act as a router

• All other anycast addresses with which the router has been 

configured

• The all-routers multicast addresses (ff01::2, ff02::2, ff05::2)

 Automatically Generated Interface Identifiers Based 
on EUI-64
By default, every IPv6 interface will create a unique link-local address (fe80::w:x:y:z). If 

there is a Router Advertisement Daemon configured and running on the link, the node 

will also automatically create a global unicast address by using the 64-bit subnet prefix 

from the Router Advertisement message. It either can generate the interface identifier 

(low 64 bits) from the node’s MAC address (using EUI-64) or can use a random 64-bit 

value. This is described in RFC 4291, “IP Version 6 Addressing Architecture,” and RFC 

2464, “Transmission of IPv6 Packets over Ethernet Networks.”

An EUI-64 address is created by taking the first 24 bits of a MAC address (the 

Organizationally Unique Identifier part of the MAC address), setting the seventh bit of 

this to 1 (counting rightward from the most significant bit), appending the 16-bit value 

FFFE, and then appending the last 24 bits of the MAC address (the device identifier). 

Hence, the 48-bit MAC address

00-18-8B-78-DA-1A

produces an EUI-64 identifier of

0218:8BFF:FE78:DA1A
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This is a reversible mapping, so given an EUI-64 identifier, it is trivial to determine 

the MAC address of the node (discard the FFFE in the middle 16 bits and invert the 

seventh bit of the remaining 48-bit value). Note: The seventh bit in the first byte of all 

valid Organizationally Unique Identifiers, hence of all MAC addresses, will always be 0.

One of the security advantages of IPv6 is supposed to be that the number of possible 

addresses in a subnet (264) is so large that it is impractical to scan all of them to discover all 

the nodes on a subnet (this is called mapping a subnet). If EUI-64 interface identifiers are 

used, there are so few of these (in comparison with the total possible number of interface 

identifiers) that it is possible to scan for them (especially with the knowledge of which 

Organizationally Unique Identifiers are actually in use, which is not difficult to determine).

 Randomized Interface Identifiers
There are several privacy concerns related to using addresses with EUI-64 interface 

identifiers. One is the ability for a hacker to create a map of all nodes on the subnets 

via scanning. It would also be possible to identify any person’s traffic at any point 

through which the traffic flows, if you know the MAC address of their network interface. 

You could certainly associate various traffic flows that all have the same MAC address 

as coming from a single node. In IPv4, MAC addresses never leave your LAN. With 

EUI-64-based IPv6 unicast addresses, MAC addresses can go anywhere in the world. 

Fortunately, there is a way to generate a random interface identifier instead of using the 

EUI-64 identifier. This is defined in RFC 4941,8 “Privacy Extensions for Stateless Address 

Autoconfiguration in IPv6,” September 2007. The randomized identifier even changes 

automatically over time. I may have had that address yesterday, but today I’ve got a 

completely different one! Interface identifier randomization is enabled by default in 

Windows 7, but it can be enabled or disabled with the following commands:

netsh interface IPv6 set global randomizeidentifiers=enabled

netsh interface IPv6 set global randomizeidentifiers=disabled

The reason you might want to disable randomization is that some servers will only 

accept a connection from nodes for which they can perform a reverse DNS lookup. 

This often will fail with randomized identifiers. Note that use of randomized interface 

identifiers can make it very difficult to determine to whom specific traffic in a log 

belongs, unless a record is kept of randomized interface identifiers used by each node.

8 https://tools.ietf.org/html/rfc4941
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When a randomized address changes, the old address is kept around for some time, 

but marked as deprecated, which means your node will not use it for further outgoing 

connections. It will accept incoming replies addressed to a deprecated address until 

that address becomes invalid, which it eventually will be. Since you aren’t making 

new outgoing connections with it, replies to it will cease fairly quickly. Addresses with 

randomized interface identifiers are used primarily for outgoing connections (and 

replies thereto). A node that can accept incoming connections from anyone should have 

(possibly in addition to other addresses) a static (unchanging) unicast address, which 

is published in DNS. This would be used by other nodes that want to connect to it. A 

node that only ever makes outgoing connections need not have such a static address 

assigned to it, and there is no need to publish its name and IPv6 address in DNS (at least 

not in your external DNS). Remember in IPv6, it is much more likely that other nodes 

will be connecting to your node (for VoIP, VPNs, P2P, etc.). The age of NAT (and one-way 

connectivity) is over.

 IPv6 Address Allocation
The standard allocation block to be given to organizations is a “/48,” which is 65,536 

subnets, each of which is a “/64” block consisting of 264 or about 18 billion, billion 

addresses (about 4 billion times the total number of addresses in the Second Internet). 

Some ISPs may choose to allocate only a single “/64” block to individuals or home users, 

who have no need for multiple subnets. It is not practical to allocate only a single IPv6 

address (a “/128” block) to a user, due to the fact that nodes often create new addresses. 

One “/48” block will supply 65,536 individuals or homes with “/64” blocks. Perhaps 

I’m a bit unusual, but I already have two subnets in my home today (one dual stack, 

one IPv6-only). Who knows, I might have a bunch someday! My company has a “/48” 

(2001:df8:5403::/48), which we divided into 16 “/52” sub-blocks, each of which has 4096 

subnets. I have one of these “/52” sub-blocks (subnets 3000–3fff ) routed to my house. 

That should just about take care of me for some time to come. A single “/64” block 

should work for most home users.

ISPs are allocated really big “/32” blocks of addresses, which are enough to allocate 

“/48” blocks for up to 65,536 customers. Should they use up an entire “/32” block, there 

are plenty more “/32” blocks where that one came from (about 536 million of them just 

in the 2000::/3 block marked for allocation). The RIRs (ARIN, RIPE, APNIC, LACNIC, 

and AfriNIC) will be happy to give an ISP all they can use. If you assume there are 7 
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billion people alive, there are over 5000 “/48” blocks for every human alive, just out 

of the 2000::/3 range currently marked for allocation. It is extremely unlikely that any 

single human will ever be able to use any appreciable percentage of their “fair share” of 

addresses, let alone have the IANA run out. The folks in Taiwan say they want to connect 

3 billion devices to the Internet in the next couple of years. This would take three-fourths 

of the entire Second Internet’s address space but could be handled with a tiny fraction 

(less than 1 billionth) of a single “/64” block with IPv6, should they want to have them all 

in one block for some bizarre reason. It will be quite a while before anyone worries about 

IPv6 address space exhaustion (famous last words?).

The People’s Republic of China believes that they were cheated out of sufficient 

IPv4 addresses to participate fully in the Second Internet. By the time China started 

deploying IPv4, if they had taken all the remaining addresses, over 90% of the people 

there would not have gotten one. The Second Internet recently passed an interesting 

threshold. There are now more Chinese-speaking users on it than English-speaking 

users. If you recall the chart of allocated addresses earlier in this book, the United States 

has over 43% (28% ARIN + 15% legacy, both of which are mostly US users) of the total 

IPv4 address space for less than 5% of the world’s population. In comparison, APNIC, 

which includes China, India, and several other populous countries (all together about 

50% of the world’s population), has only 16% of the IPv4 address space. When the IPv4 

addresses were all gone in September 2011, APNIC would probably still have less than 

20% of the IPv4 address space (about .28 addresses per person), while the United States 

would probably have about 45% (about 6.4 addresses per person). However, note that 

about one-third of that 45% are held by fewer than 50 organizations (like MIT, Apple, HP, 

etc.). The distribution of addresses in the Second Internet was (and remains) anything 

but equitable. It’s really pretty much impossible to do anything about that now. We’re 

doing it right on the Third Internet. The Second Internet was really an American thing 

that they shared (to some extent) with the rest of the world. The Third Internet is the 

first truly global Internet. Every country can have as many public addresses as they can 

conceivably use.

Should We Reserve Some IPv6 Addresses for Developing Nations?
There has been talk from the ITU (International Telecommunication Union) about 

reserving some IPv6 address space for developing nations to make absolutely certain that 

nobody ever gets left out again, as has happened in the Second Internet. There are so 

many IPv6 addresses that there is essentially no chance of this ever happening. The ITU 

might as well try to reserve a few trillion grains of sand (maybe a dump truck’s worth) to 
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make sure that every country can be assured of getting their fair share of grains of sand. 

The total number of IPv6 addresses is on the same general scale as the number of grains 

of sand on earth.

Note that block 2000::/3 (which you can also think of as blocks 2000::/16 through 

3fff::/16) is currently the only part of the overall space marked for unicast address 

allocation. This is only one-eighth of the total IPv6 address space. Even so, this is still 

2125, or about 4.15 e+37, addresses. You can also view this as 245 (about 35.2 trillion) “/48” 

blocks or just over 5000 “/48” blocks per human alive in 2010 (using the worldwide 

population as 7 billion). Should we ever use this up, there are still at least 5.5 times that 

much space currently not used for anything (from 4000::/16 to efff::/16) that we could 

repurpose for additional allocation.

I personally don’t think there is any reason to reserve a special block of addresses for 

anyone, including developing nations. Unlike with IPv4, there are plenty of addresses for 

everyone this time around.

The People’s Republic of China (and every other country) will have plenty of 

addresses in the Third Internet, and this is one reason they are investing so heavily in it. 

India is now determined to deploy IPv6 nationwide and had quite a bit deployed by the 

end of 2010. By some measure they were at 60% deployment in 2019. The inequitable 

distribution of addresses in the Second Internet may also account for some of the lack 

of urgency to migrate to the Third Internet in the United States. Unfortunately, it is not 

simply a matter of still having enough IPv4 addresses. Imagine if the United States stayed 

with Standard-Definition NTSC TV, while the entire rest of the world went with globally 

standard High-Definition TV. The United States would not be able to export their 

programming to anyone else nor import programming from the rest of the world. If they 

choose to stay with IPv4, they will be isolating themselves in some very serious ways. It’s 

not completely ridiculous to think that the United States might decide not to deploy the 

Third Internet. Look what happened with the metric system. If IPv4 is “riding horses” 

and IPv6 is “driving cars,” you don’t need to wait until the last horse dies before you get 

a car. The “cars” (IPv6) are ready and widely available today. Those who adopt cars first 

will leave those still riding horses way behind. I’d suggest you migrate to IPv6 as soon as 

possible. Countries that master it and start creating products and applications based on 

it will have a giant head start in the twenty-first century over those who wait until the last 

possible minute.
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How Is the Entire IPv6 Address Space Divided Up?
Here are the official allocations of the IPv6 address space as of May 13, 2008 (from 

IANA), along with the RFCs that allocated the blocks listed:

IPv6 Prefix           Allocation              Reference      Note

-----------           ----------              ---------      ----

0000::/8              Reserved by IETF        [RFC4291]      [1] [5]

0100::/8              Reserved by IETF        [RFC4291]

0200::/7              Reserved by IETF        [RFC4048]      [2]

0400::/6              Reserved by IETF        [RFC4291]

0800::/5              Reserved by IETF        [RFC4291]

1000::/4              Reserved by IETF        [RFC4291]

2000::/3              Global Unicast          [RFC4291]      [3]

4000::/3              Reserved by IETF        [RFC4291]

6000::/3              Reserved by IETF        [RFC4291]

8000::/3              Reserved by IETF        [RFC4291]

A000::/3              Reserved by IETF        [RFC4291]

C000::/3              Reserved by IETF        [RFC4291]

E000::/4              Reserved by IETF        [RFC4291]

F000::/5              Reserved by IETF        [RFC4291]

F800::/6              Reserved by IETF        [RFC4291]

FC00::/7              Unique Local Unicast    [RFC4193]

FE00::/9              Reserved by IETF        [RFC4291]

FE80::/10             Link Local Unicast      [RFC4291]

FEC0::/10             Reserved by IETF        [RFC3879]      [4]

FF00::/8              Multicast               [RFC4291]

Notes:

[0]  The IPv6 address management function was formally delegated to

     IANA in December 1995 [RFC1881].

[1]  The "unspecified address", the "loopback address", and the IPv6

     Addresses with Embedded IPv4 Addresses are assigned out of the

     0000::/8 address block.

[2]  0200::/7 was previously defined as an OSI NSAP-mapped prefix set

     [RFC4548]. This definition has been deprecated as of December

     2004 [RFC4048].
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[3]  The IPv6 Unicast space encompasses the entire IPv6 address range

     with the exception of FF00::/8. [RFC4291] IANA unicast address

     assignments are currently limited to the IPv6 unicast address

     range of 2000::/3. IANA assignments from this block are registered

     in the IANA registry: iana-IPv6-unicast-address-assignments.

[4]  FEC0::/10 was previously defined as a Site-Local scoped address

     prefix. This definition has been deprecated as of September 2004

     [RFC3879].

[5]  0000::/96 was previously defined as the "IPv4-compatible IPv6

     address" prefix.  This definition has been deprecated by [RFC4291].

The referenced RFCs are

RFC 1881, “IPv6 Address Allocation Management,” 

December 1995

RFC 3879, “Deprecating Site Local Addresses,” September 2004 

(affects FEC0::/10)

RFC 4048, “RFC 1888 Is Obsolete,” April 2005 (dropping mapping 

of OSI addresses)

RFC 4193, “Unique Local IPv6 Unicast Addresses,” October 2005

RFC 4291, “IP Version 6 Addressing Architecture,” February 2006

The 6bone was an early worldwide IPv6 testbed. It used addresses from 3ffe::/16 (as 

per RFC 2471,9 “IPv6 Testing Address Allocation,” December 1998). These have since 

been returned to the overall allocation pool as per RFC 3701,10 “6bone (IPv6 Testing 

Address Allocation) Phase-Out,” March 2004, once the 6bone had served its purpose and 

was shut down. Interestingly, some addresses from this block still show up on the IPv6 

backbone. Among other places, they are still used in IPv6-ready tests, so if an IPv6-ready 

test network is connected to the main Internet, those addresses could be accidentally 

routed. Even though they are just more IPv6 unicast addresses now, I would recommend 

against using them in production systems, just in case. It’s not like there aren’t plenty of 

other IPv6 unicast addresses to use.

9 https://tools.ietf.org/html/rfc2471 ‘
10 https://tools.ietf.org/html/rfc3701
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As of January 2010, the RIRs have the following number of IPv6 prefixes that actually 

have traffic on the backbone:

RIPE      1998

ARIN      1207

APNIC     852

LACNIC    267

AfriNIC   82

Here are the top ten countries plus a few from Asia (from SixXS, January 24, 2010) 

ranked by the number of IPv6 prefixes allocated. ‘V’ means visible (actual traffic 

detected), ‘A’ means allocated (obtained from an ISP or RIR), and ‘VP’ is the percentage 

of all allocated blocks that are visible (total for the world would be 100%):

Rank Country             V       A       VP

 1   United States     422    1143    9.30%

 2   Germany           179     324    3.24%

 3   United Kingdom    100     225    2.20%

 4    Netherlands      102     176    2.25%

 5    Japan             93     176    2.05%

 6    Australia         41     152    0.90%

 7    Russia            54     117    1.19%

 8    France            49     111    1.08%

 9    Brazil            29     106    0.64%

10    Switzerland       56     102    1.23%

19    Korea             15      58    0.33%

20    China             21      54    0.46%

24    India              7      36    0.15%

31    Taiwan            19      33    0.42%

33    Vietnam            4      28    0.09%

34    Philippines        8      27    0.18%

35    Thailand          12      27    0.26%

Note that this data does not reflect the actual number of addresses or the volume 

of traffic, just the number of distinct 48-bit prefixes, which is a rough indication of the 

number of organizations investigating IPv6. Much of this in the United States is probably 
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research or academic. As percentages of the gigantic total number of “/48” blocks 

available for allocation, all these are essentially zero (pretty much all the 2000::/3 IPv6 

address space is still available for allocation). This tiny percentage is more an indication 

of the colossal size of the IPv6 address space than of any lack of interest or activity.

Here is a graph of the percentage of traffic that is IPv6, for the world and the five RIRs, 

as of late 2018. You can see how much things changed since 2010.

Classless Inter-Domain Routing (CIDR)
There is no reason to implement CIDR for IPv6. It was done in IPv4 only to extend the 

lifetime of the IPv4 address space long enough for IPv6 to be fully developed, which has 

now happened. There is no need to extend the lifetime of the IPv6 address space. If IPv6 

had been ready and we had migrated to it in the mid-1990s, we would never have had 

to suffer through the complexities brought about by CIDR and NAT. The reason we are 

having to deal with these issues today is that we have already stayed with IPv4 far too long. 

Imagine trying to do serious work today with an 8-bit processor and 64K bytes of RAM.

Figure 6-5. IPv6 deployment by region
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Network Ports
Network ports work exactly the same way under IPv6 as they do in IPv4. There are 

still 65,536 of them associated with every IPv6 address. They could have gone to 32-bit 

port numbers (yielding 4.3 billion ports for each address), but this would have required 

even more changes in packet headers and other places, so this was not done. 65,536 is 

plenty for almost any need, especially since you can assign any number of global unicast 

addresses to a single interface (each of which has 65,536 ports). The same well-known 

port numbers are used in IPv6 as in IPv4. The only difference is that you will never see 

port numbers on IPv6 addresses being shifted by a NAPT gateway, since there is no NAT 

for IPv6 to IPv6. Note that a given port being used over IPv4 does not prevent it from 

being used by the same or even a different application, over IPv6 (and vice versa).

 Subnetting in IPv6
There is no CIDR in IPv6 (although the CIDR “slash notation” is still used). As a result, 

subnetting is much simpler in IPv6. All subnets are “/64.” The only exception is if you do 

supernetting (e.g., a “/60” subnet) to allow multiple “/64” blocks to be used on a single 

network link. This will likely only be done in large, advanced corporate networks, so 

most network engineers will never see anything but “/64” subnets.

The only reason for doing this might be to use different “/64” subnets for specific 

purposes, such as 1000 for SLAAC, 1001 for DHCPv6-assigned addresses, and 1002 

for manually assigned addresses. If you use EUI-64 interface identifiers for SLAAC, it 

is not difficult to partition a single “/64” so there will be no overlap between SLAAC, 

DHCPv6, and manual assignments. If you use random interface identifiers, they may 

fall anywhere in a “/64” address space. However, the probability of one colliding with an 

address assigned manually or via DHCPv6 stateful mode is incredibly low, and Duplicate 

Address Detection should prevent the odd collision. Having at least two “/64” subnets 

in a single network (one for SLAAC, one for manually and DHCPv6-assigned addresses) 

removes all possibility of an address collision.

Each subnet needs to be at least a “/64,” since EUI-64 can generate “node within 

subnet” values that are 64 bits long. Randomized interface identifiers are also 64 bits in 

length. But a “/64” subnet is already larger than any organization could conceivably use 

(18 billion, billion addresses). There are so many “/64” blocks in a single “/48” (65,536) 

that we can use them even for subnets between a border router and a firewall, which 

have only two addresses. There is never an excuse to use any subnet smaller than a “/64,” 

although I have seen some old-school IPv4-trained administrators allocate “/124” IPv6 
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subnets for the link between a border gateway and firewall case (in IPv4, tiny subnets 

like /30 would be used in such a case). Old habits die hard. After living with increasing 

scarcity with IPv4 addresses, it is hard for some of us to realize that there are PLENTY of 

addresses this time around.

 Link Layer Addresses
The software in the Application Layer, the Transport Layer, and the Internet Layer of the 

IPv6 stack think in terms of IP addresses. But the Link Layer (and the hardware) thinks 

in terms of MAC addresses. In IPv6 the mapping from IPv6 address to Link Layer (MAC) 

address is done with the Neighbor Discovery protocol. Note that in this book, I often use 

the terms Link Layer address and MAC address interchangeably.

NOTE a link layer address is a “MaC address” only for ethernet-based network 
hardware (and a few others), so when I use the term MaC address, think “physical 
layer address for the actual network hardware in use.” the term link layer 
address is more accurate (a MaC address is just a special case of Link Layer 
address), but it is easy to confuse it with the similar-sounding term link-local 
address. Just realize that if the actual network in use is not ethernet, there may 
be some other name for the physical layer addresses that Ip addresses have to be 
mapped onto, and it may not look anything like the 48-bit MaC address.

IPv6 addresses are not actually used at the lowest layer of the IPv6 network stack (the 

Link Layer). The 48-bit MAC addresses covered in Chapter 3 still exist and are used the 

same way at the Link Layer (at least for Ethernet networks).

 Neighbor Discovery (ND) Protocol
There is no ARP (Address Resolution Protocol) in IPv6. The new ND (Neighbor 

Discovery) protocol, which is defined in RFC 4861,11 “Neighbor Discovery for IP version 

6 (IPv6),” September 2007, accomplishes the same thing and many other functions as 

well, including the following:

11 https://tools.ietf.org/html/rfc4861
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• Router discovery: A host can locate router(s) residing on any link to 

which it is attached.

• Prefix discovery: A host can discover the correct 64-bit prefix for any 

link to which it is attached.

• Parameter discovery: A host can determine the correct IPv6 

parameters, for any link to which it is attached, such as MTU.

• Stateless Address Autoconfiguration (SLAAC): A host can 

automatically obtain a link-local address and, if a Router 

Advertisement Daemon exists, also a global unicast address.

• Address resolution: Mapping IPv6 addresses to MAC addresses (as the 

replacement for ARP).

• Next-hop determination: Hosts can determine the next-hop router for 

a given destination address.

• Neighbor Unreachability Detection (NUD): Determine that a given 

neighbor is no longer reachable on any attached link (there is no 

corresponding IPv4 functionality).

• Duplicate Address Detection (DAD): Hosts can determine if a 

proposed address is already in use.

• Redirect: A router can inform a host about a better (or working) first hop.

There are five ICMPv6 messages that ND uses to accomplish these things:

• Router Solicitation: Request a Router Advertisement message.

• Router Advertisement: Router advertises the 64-bit prefix and 

parameters for a link, usually sent by a Router Advertisement 

Daemon living in a gateway router or firewall. The Router 

Advertisement Daemon can send different information into each 

attached link, if there are multiple links. This also tells nodes whether 

or not there is a DHCPv6 server available.

• Neighbor Solicitation: Any node can say “Howdy, neighbor” to 

another node to see if it responds.

• Neighbor Advertisement: Response to a “Howdy, neighbor” message 

from someone else.
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• Redirect: A router can inform any node that there is a better first hop 

available than one it has just tried (“there’s a bridge out along that 

road; try going down this road”), based on its discovered knowledge 

of the surrounding network.

By the way, some people use “NDP” as the initialism for the Neighbor Discovery 

protocol (see Wikipedia). If you read the RFCs, the creators of the protocol use just “ND,” 

so we will use that convention in this book. The initialisms of some protocols include 

the “P” (for Protocol) (e.g., TCP), while others don’t (like MLD). I follow the conventions 

used in the RFCs.

IPv6 Router Advertisement messages carry link-layer (MAC) addresses, so no 

additional packet exchange is required to resolve the router’s Link Layer address. They 

also carry prefixes, so no separate mechanism is needed to configure a netmask.

By using link-local addresses to uniquely identify routers, hosts can maintain router 

associations. This capability is necessary for Router Advertisements and for redirects. 

Hosts need to maintain router associations if the site switches to a new global prefix.

ND is immune to spoofing attacks that originate from off-link nodes. In IPv4, off-link 

nodes can send ICMPv4 Redirect messages and IPv4 Router Advertisement messages.

In the following, DAD refers to Duplicate Address Detection, which is one of the 

functions performed by ND. Addresses may be in any one of the following states at any 

given time:

• TENTATIVE: Generated, but not yet determined by DAD to be  

unique – attempts to bind() to the address fail with EADDRNOTAVAIL,  

as if the address doesn’t exist (this can cause race conditions)

• DUPLICATED: Generated and determined by DAD to be duplicated 

(hence unusable)

• PREFERRED: Generated and determined by DAD to be unique 

(hence valid)

• DEPRECATED: A preferred address that has passed its preferred 

lifetime (still valid, and incoming packets addressed to it will be 

accepted, but no further outgoing packets will be sent using it)

• INVALID: A deprecated address that has passed its valid lifetime 

(may no longer be used for sending or receiving packets)

Here are the details of the various functions that ND can perform.
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 Router Discovery
At any time (but typically at power on), any node can determine the link-local address of 

the router(s) on the local link.

Step 1: The node sends a Router Solicitation message to the “all 

routers on link” multicast group (ff02::2). If the node’s link-local 

address has already been created, then that will be used as the 

source address; else, the unspecified address (“::”) will be used as 

the source address.

Step 2: All routers on the link will respond with Router 

Advertisement messages, usually to the “all nodes on link” multicast 

group (ff02::1), but if the source address of the Router Solicitation 

message was a link-local address, the router can choose to send the 

Router Advertisement message directly to that address. The source 

address of each received Router Advertisement message is added to 

a default gateway table (from which the preferred link-local default 

gateway will be chosen). The Prefix Information option in all the 

responses should be the same, so the subnet prefix from the last 

received Router Advertisement message will be used.

IPv6 router discovery corresponds roughly to IPv4 router discovery (which was 

defined in RFC 1256, “ICMP Router Discovery Messages,” September 1991), but in 

IPv6 it is a part of the base protocol. There is no need for hosts to snoop the routing 

protocols to discover a router. IPv4 router discovery contains a preference field, 

which is not needed in IPv6 router discovery because of Neighbor Unreachability 

Detection. IPv4 Router Advertisements and Solicitations (ICMP type 9) work only 

with multicast-capable IPv4 routers and are not commonly used. All IPv6 nodes 

support multicast, and Router Advertisements are a fundamental part of almost 

every nontrivial network.
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 Address Resolution (Mapping IPv6 Addresses 
to MAC Addresses)
Say Alice (one IPv6 node) is trying to send a packet to Bob (another IPv6 node). Address 

resolution is done as follows:

Step 1: Alice checks her Neighbor Cache (similar to the ARP table 

in IPv4) to see if it already has an entry with Bob’s IPv6 address. 

If it does, then Alice sends the packet immediately to Bob using 

Bob’s MAC address from her Neighbor Cache, and she is finished. 

If Alice’s Neighbor Cache doesn’t have an entry for Bob’s IPv6 

address, the process continues.

Step 2: Alice adds a new Neighbor Cache entry for Bob, in the 

INCOMPLETE state. Alice then sends a Neighbor Solicitation 

message to Bob, using Bob’s solicited node multicast address as 

the destination address. Any of the addresses assigned to Alice’s 

interface can be used as the source address of this packet, but if 

possible, it should match the source address of the original packet 

Alice wanted to send. Alice includes her MAC address as the 

Source Link Layer Address option in this packet. This ensures Bob 

will have Alice’s MAC address when it’s time for him to reply.

Step 3: Bob receives the Neighbor Solicitation message and 

responds with a Neighbor Advertisement message, sent to Alice’s 

MAC address.

Step 4: Alice receives the Neighbor Advertisement message from 

Bob and then updates Bob’s entry in her Neighbor Cache.

Step 5: Alice can now send the original packet she wanted to send 

to Bob using his MAC address.

 Prefix Discovery
At any time, a node can discover the default network prefix. A Router Advertisement 

message can contain up to three “options”:
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• The Source Link Layer Address (the sending router’s MAC address.

• The MTU (the maximum packet size supported on this link)

• The Prefix Information (the preferred address prefix for this subnet).

When a router sends an unsolicited Router Advertisement message, it includes 

all three options. In a solicited Router Advertisement message, at least the Prefix 

Information and MTU options will be included, so in either case, the node will obtain 

the preferred prefix for the link.

Step 1: The node wanting to discover the subnet prefix sends a 

Router Solicitation message, using its own link-local address 

as the source and the “all routers in local link” multicast group 

(ff02::02) as the destination address.

Step 2: All routers on the local link respond with Router 

Advertisement messages, with their own link-local address as 

source and the “all nodes on local link” multicast group (ff02::1) 

as the destination. The Router Advertisement message includes 

at least the subnet prefix option. This prefix is extracted from 

the prefix option and stored as the subnet prefix. All routers will 

respond with the same prefix, but the last Router Advertisement 

message received will have the subnet prefix that is used.

 Duplicate Address Detection (DAD)
DAD is used to determine if a proposed (tentative) address is a duplicate of any address 

on the local link. Both hosts and routers perform DAD on all unicast and anycast 

addresses regardless of how they are obtained (Stateless Address Autoconfiguration, 

DHCPv6, or even manual assignment). DAD is accomplished using Neighbor 

Solicitation and Neighbor Advertisement messages.

Step 1: The node owning the tentative address sends a number 

of Neighbor Solicitation messages using the unspecified address 

(::) as the source address, the solicited node multicast address as 

the destination address, and the TENTATIVE address as the target 

address.
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Step 2: If any node on the link is already using the TENTATIVE 

address, it will respond by sending a Neighbor Advertisement to 

the “all nodes on local link” multicast group (ff02::1). If no such 

response is seen during a short interval (configurable), then the 

TENTATIVE address is considered to be unique.

 Stateless Address Autoconfiguration (SLAAC)
This is one of the most important new aspects of IPv6. It is specified in RFC 4682,12 “IPv6 

Stateless Address Autoconfiguration,” September 2007. It is primarily used to allow 

IPv6-capable hosts (as opposed to routers) to automatically obtain address information 

(link-local and global unicast node addresses and link-local default gateway). Routers 

use it to generate and validate their link-local addresses (but not their global addresses, 

which must be statically configured). The process makes strong use of link-local and 

multicast addresses, and all network communication is done with ICMPv6 messages that 

are part of ND. If a source of Router Advertisement messages (e.g., a router or firewall) 

is available, then at least one global unicast IPv6 address will also be generated. The 

acronym for Stateless Address Autoconfiguration is “SLAAC.”

12 https://tools.ietf.org/html/rfc4862

Figure 6-6. SLAAC operation, M=0, O=0
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There are four steps involved in Stateless Address Autoconfiguration:

Step 1: The node creates a 64-bit interface identifier. This can 

be created using the MAC address and the EUI-64 algorithm 

or can be a randomly generated value (“randomized interface 

identifier”).

Step 2: The host creates a TENTATIVE link-local address. This is 

done by appending the chosen interface identifier to the prefix 

fe80://10. DAD is performed to determine if the link-local address 

is unique. If so, that address goes to the PREFERRED state, its 

lifetime starts counting, and the process continues. If the address 

is duplicated, the address goes to the DUPLICATED state, the 

interface is disabled, and the SLAAC process fails without having 

generated any addresses.

Step 3: The host sends a Router Solicitation message to the “all 

routers on link” multicast group (ff02::2). If the node’s link-local 

address has already been created, then that will be used as the 

source address; else, the unspecified address (“::”) will be used 

as the source address. All routers on the link will respond with 

Router Advertisement messages, usually to the “all nodes on link” 

multicast group (ff02::1), but if the source address of the Router 

Solicitation message was a link-local address, the router can 

choose to send the Router Advertisement message via unicast 

to just that address. The source address of each received Router 

Advertisement message is added to a default gateway table (from 

which the preferred link-local default gateway will be chosen). 

The Prefix Information option in all of the responses should 

be the same, so the subnet prefix from the last received Router 

Advertisement message will be used.

If no router responds to the Router Solicitation message within a 

certain time, then the SLAAC process terminates, having created 

a valid link-local node address, but no link-local default gateway 

and no global unicast address.
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Step 4: If we reach this step, a valid Router Advertisement 

was received with a subnet prefix, so the host combines the 

discovered subnet prefix with the created interface identifier, to 

create a TENTATIVE global unicast address for the node. DAD 

is performed on the tentative global unicast address, and if the 

address is unique, it goes to the PREFERRED state, and its lifetime 

starts counting. If not, the address goes to the DUPLICATED state, 

the interface is disabled, and the SLAAC process terminates, again 

having created a valid link-local address and a link-local default 

gateway address (but no global unicast address).

Anytime a link-local or global address lifetime expires (enters the INVALID state), 

address regeneration is done. If using randomized interface identifiers, a different 

random interface identifier is created for each address regeneration. If using EUI-64 

interface identifiers, the regeneration process basically just confirms that the addresses 

are still valid – they don’t actually change. If something has changed since the last 

validation (e.g., gateway down, link broken, etc.), the SLAAC process may fail, and the 

address is marked INVALID.

 Next-Hop Determination
When one node needs to send a packet to another node, the sending node must 

determine whether the destination address is on-link or off-link. To be considered on-

link, the address must match at least one of the following criteria:

• The prefix of the address must match one of the prefixes assigned to 

the link.

• The address is the target of a Redirect message sent by a router.

• The address is the target address of a Neighbor Advertisement 

message.

• The address is the source address of any Neighbor Discovery message 

received by the node.

If the address is on-link, then the next-hop address is the same as the destination 

address. If the address is off-link, then the next-hop address is selected from the default 

router list.
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 Neighbor Unreachability Detection (NUD)
Each entry in the Neighbor Cache contains the IP address, the link-layer (MAC) address, 

and the reachability status for that node. There are five possible values for that status, 

and the state transition rules are as follows:

INCOMPLETE: Cache entry is newly created, and address 

resolution is in progress. Any transmitted packets are queued. 

When the address resolution completes, the link-layer address 

is added into the Neighbor Cache, and the state changes to 

REACHABLE.

REACHABLE: Any queued packets are immediately sent. Any 

newly transmitted packets are sent normally. If more than a 

certain time passes without any traffic to or from the address, the 

state changes to STALE.

STALE: The reachability of the node is UNKNOWN. The address 

remains in this state until traffic to that node is generated. At that 

point, the traffic is queued, and the state changes to DELAY.

DELAY: The address remains in the DELAY state for a short 

period. The status is still UNKNOWN. Once the delay expires, the 

probe packet is sent, and the state changes to PROBE.

PROBE: A probe packet has been sent to determine reachability 

(after the delay), but the result has not yet been obtained. The 

status is still UNKNOWN. When the result is seen, REACHABILITY 

is confirmed, and the state changes to REACHABLE. If a certain 

amount of time elapses without any response, then the node is 

considered unreachable, any queued traffic is discarded, and an 

error is generated to the sender.

Note that there is nothing comparable to Neighbor Unreachability Detection in IPv4. 

IPv6 NUD improves packet delivery in the presence of failing routers and over partially 

failing or partitioned links. It improves delivery to nodes that change their link-layer 

(MAC) addresses. For example, mobile nodes can move off-link without losing any 

connectivity due to stale ARP caches. NUD detects dead routers and dead switches that 

block access to working routers.
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 Redirect
A router can send a Redirect message to a packet sender, if there is a better first-hop 

router or if the destination is an on-link neighbor. In the first case, the Target Address 

field contains the link-local address of the better first-hop router. In the second case, 

the Target Address field contains a copy of the destination address. The Destination 

Address field contains the address of the ultimate packet destination. The router uses its 

knowledge of the larger environment to generate this information. You might think of 

a Redirect message as saying something like “There is a bridge out down that road – try 

going down this road, instead.”

IPv6 redirects contain the link-layer (MAC) address of the new first hop, which 

eliminates the need for an additional packet exchange to resolve the IP address. Unlike 

with IPv4 redirects, the recipient of an IPv6 redirect assumes that the new next hop is on-

link. The IPv6 redirect is useful on non-broadcast and shared media links. On such links, 

nodes should not check for all prefixes for on-link destinations.

Viewing the Neighbor Cache

To view the Neighbor Cache in Windows 7 or later:

 1. Start a command prompt (cmd) and enter the following 

commands in it.

 2. Enter the command netsh –c “interface ipv6”.

 3. At the netsh prompt, enter the command show interface.

 4. In the resulting list, find the interface index for “Local Area 

Connection” (say it is 11).

 5. At the netsh prompt, enter the command show neighbors 11 (or 

whatever interface index).

 6. You should see global unicast addresses, link-local addresses, and 

a lot of multicast addresses:

C:\>netsh -c "interface IPv6"

netsh interface IPv6>show interface
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Idx     Met         MTU          State                Name

---  ----------  ----------  ------------  ---------------------------

  1          50  4294967295  connected     Loopback Pseudo-Interface 1

 12          50        1280  disconnected  isatap.infoweapons.com

 13          50        1280  connected     Local Area Connection* 11

 11          10        1500  connected     Local Area Connection

netsh interface IPv6>show neighbors 11

Interface 11: Local Area Connection

Internet Address                              Physical Address   Type

--------------------------------------------  -----------------  ----------

2001:df8:5403:2410::fff2                      00-15-17-30-b8-ec   Reachable 

(Router)

2001:df8:5403:2410::10:11                     00-e0-81-48-62-7a  Stale

fe80::215:17ff:fe30:b8ec                      00-15-17-30-b8-ec   Reachable 

(Router)

fe80::230:48ff:fe61:d6be                      00-30-48-61-d6-be  Stale

ff02::2                                       33-33-00-00-00-02  Permanent

ff02::c                                       33-33-00-00-00-0c  Permanent

ff02::16                                      33-33-00-00-00-16  Permanent

ff02::1:2                                     33-33-00-01-00-02  Permanent

ff02::1:3                                     33-33-00-01-00-03  Permanent

ff02::1:ff00:69                               33-33-ff-00-00-69  Permanent

ff02::1:ff00:fff2                             33-33-ff-00-ff-f2  Permanent

ff02::1:ff03:186                              33-33-ff-03-01-86  Permanent

ff02::1:ff10:11                               33-33-ff-10-00-11  Permanent

ff02::1:ff10:14                               33-33-ff-10-00-14  Permanent

ff02::1:ff10:26                               33-33-ff-10-00-26  Permanent

ff02::1:ff13:f5                               33-33-ff-13-00-f5  Permanent

ff02::1:ff2b:6589                             33-33-ff-2b-65-89  Permanent

ff02::1:ff30:b8ec                             33-33-ff-30-b8-ec  Permanent

ff02::1:ff3f:58e5                             33-33-ff-3f-58-e5  Permanent

ff02::1:ff61:d6be                             33-33-ff-61-d6-be  Permanent

ff02::1:ff62:62                               33-33-ff-62-00-62  Permanent

ff02::1:ffc6:ed59                             33-33-ff-c6-ed-59  Permanent

ff02::1:ffce:5d59                             33-33-ff-ce-5d-59  Permanent

ff05::1:3                                     33-33-00-01-00-03  Permanent
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 SEcure Network Discovery (SEND)
Note that there are some potentially exploitable vulnerabilities in ND. ARP in IPv4 has 

several well-known and easily exploited vulnerabilities, used in many hacking attacks. 

For details of these, search for “ARP Vulnerabilities Black Hat.” You should find an 

excellent PowerPoint presentation that was presented by Mike Beekey at a Black Hat 

Briefing security conference. It shows exactly how ARP is vulnerable and how this is 

exploited by hackers. ARP does not exist in IPv6, so its vulnerabilities do not affect IPv6 

networks. However, ND (which replaces ARP) has some new vulnerabilities that do not 

affect IPv4 networks.

A secure version of ND is defined in RFC 3971,13 “SEcure Neighbor Discovery 

(SEND),” March 2005. This is still a Proposed Standard. SEND uses cryptographically 

generated addresses, which are defined in RFC 2972,14 “Cryptographically Generated 

Addresses (CGA),”, March 2005 (this is also a Proposed Standard and has already been 

updated by RFCs 4581 and 4982). SEND does not depend on IPsec. It is still very much in 

experimental status even in 2019.

Note that SEND only digitally signs ND packets; it does not encrypt them.

 Types of IPv6 Packet Transmission
Unicast, anycast, multicast, and broadcast have already been covered in section 5.3.2.2, 

because in IPv6, this is considered to be part of the addressing model.

 IPv6 Broadcast
Most things that you would use broadcast for in IPv4, you would use some form of 

multicast, with a more restricted scope, in IPv6. A multicast transmission to the address 

ff01::2 would go to the same nodes (all nodes on local link) as an IPv4 broadcast. 

However, there are other scopes, such as site, organization, and global for multicast, 

that (unlike IPv4 broadcast) will cross routers, but other than “all nodes in local link,” 

multicast to the wider scopes requires that all recipients intentionally add the necessary 

multicast address to their node.

13 https://tools.ietf.org/html/rfc3971
14 https://tools.ietf.org/html/rfc2972
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 IPv6 Multicast
The basic multicast address type has been covered, but there is a lot more to a full 

multicast system, as you saw in the section “IPv4 Multicast.” For an in-depth discussion 

of all aspects of IPv6 multicast, I recommend Chapter 6, “Providing IPv6 Multicast 

Services,” from the book Deploying IPv6 Networks,15 by Ciprian Popoviciu, Eric Levy-

Abegnoli, and Patrick Grossetete, Cisco Press, 2006.

Multicast exists in IPv4, but there are some serious problems with it, which are 

resolved in IPv6.

Not all IPv4 routers support multicast. In general, it is difficult to deploy except in a 

“walled garden,” such as the customers of a single ISP like Comcast. In IPv6, support for 

multicast is mandatory – all compliant routers support it, and it works across ISPs, even 

worldwide.

The Internet Group Management Protocol (IGMP) is not part of IPv4, and not all 

IPv4 routers include it. In IPv6, the Multicast Listener Discovery (MLD) protocol is 

standardized and is actually just a subset of the ICMPv6 messages. Because of this, all 

IPv6-compliant routers include it.

Multicast in IPv4 was an afterthought, grafted on long after the original protocol 

was designed. In IPv6, multicast was incorporated from the beginning and is present 

in all address scopes. Multicast link-local addresses are used extensively in SLAAC and 

other places.

For IPTV applications, IPv6 networks will be the first time that really global Internet 

TV services can be deployed and work reliably. This is as exciting as when Ted Turner 

first relayed the signal from his small UHF TV station via a satellite. That breakthrough 

resulted in WTBS, CNN, CNN Headline News, TNT, Cartoon Network, and, indirectly, 

the entire multibillion-dollar satellite/cable television network industry.

There are many other areas in which working, scalable multicast can be used to 

improve applications. You could build chat, VoIP, or even video conferencing clients that 

could build fully meshed networks, with each new participant subscribing to all existing 

clients’ multicast “channels” and all existing clients subscribing to the new participant’s 

multicast “channel.” Even if the initial participant left, all remaining participants would 

15 www.amazon.com/Deploying-IPv6-Networks-Author-Popoviciu/dp/B010BALRUK/ref=sr_1_1?
keywords=deploying+ipv6+networks&qid=1554605574&s=gateway&sr=8-1
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still have a fully functional mesh network. This also eliminates the need for any central 

exchange point (other than perhaps a search or directory facility to help in setting up the 

conference and allowing participants to locate each other).

The following standards are relevant to multicast in IPv6:

RFC 2375, “IPv6 Multicast Address Assignments,” July 1998 

(Informational)

RFC 2710, “Multicast Listener Discovery (MLD) for IPv6,” October 

1999 (Standards Track)

RFC 3306, “Unicast-Prefix-based IPv6 Multicast Addresses,” 

August 2002 (Standards Track)

RFC 3307, “Allocation Guidelines for IPv6 Multicast Addresses,” 
August 2002 (Standards Track)

RFC 3590, “Source Address Selection for the Multicast Listener 

Discover (MLD) Protocol,” September 2003 (Standards Track)

RFC 3810, “Multicast Listener Discovery Version 2 (MLDv2) for 
IPv6,” June 2004 (Standards Track)

RFC 3956, “Embedding the Rendezvous Point (RP) Address in an 

IPv6 Multicast Address,” November 2004 (Standards Track)

RFC 4489, “A Method for Generating Link-Scoped IPv6 Multicast 

Addresses,” April 2006 (Standards Track)

RFC 4607, “Source-Specific Multicast for IP,” August 2006 

(Standards Track)

Multicast Listener Discovery (MLD) Protocol
MLD is used by IPv6 routers to discover the presence of multicast listeners (nodes 

that wish to receive multicast packets) and the specific multicast addresses to which 

they want to subscribe. MLD (defined in RFC 2710) is commonly referred to as MLDv1. 

It is the IPv6 equivalent to IPv4’s IGMPv2 (defined in RFC 2236). MLDv1 and IGMPv2 

multicast protocols are used to set up any-source multicast (ASM), which allows multiple 

sources in a group (*,G) or “channel.” This is also known as traditional multicast. 

MLDv2 extends the definition of MLDv1 by adding support for “source filtering.” 

It includes all the functionality of MLDv1, so there is no need to deploy both on a 

given node. This allows a node to indicate interest only in packets from specific source 
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addresses (INCLUDE mode) or in packets from all multicast addresses except for specific 

source addresses (EXCLUDE mode). MLDv2 is the IPv6 equivalent of IPv4’s IGMPv3. 

MLDv2 and IGMPv3 multicast protocols are used to set up source-specific multicast 

(SSM), which allows a specific source (S) in a group (G) to deliver packets to all members 

that join (S,G) known as a “channel.” This is described in RFC 4604,16 “Using Internet 

Group Management Protocol Version 3 (IGMPv3) and Multicast Listener Discovery 

Protocol Version 2 (MLDv2) for Source-Specific Multicast,” and in RFC 4607,17 “Source-

Specific Multicast (SSM) for IP.”

There is another RFC that defines MLD proxying: RFC 4605,18 “Internet Group 

Management Protocol (IGMP)/Multicast Listener Discovery (MLD)-Based Multicast 

Forwarding (“IGMP/MLD Proxying”).” A proxy would exist on a forwarding gateway that 

links together multiple subnets and relay messages across that gateway between an MLD 

Querier on one subnet and MLD listeners on a different subnet.

MLDv1 and MLDv2 are sub-protocols of ICMPv6. All MLDv2 messages are just 

additional ICMPv6 messages. All IPv6-compliant devices should include support for 

MLD. MLD messages must be sent with a link-local IPv6 source address, a Hop Limit of 

1, and an IPv6 Router Alert Option in the Hop-by-Hop Options extension packet header. 

When used in Neighbor Discovery protocol’s Stateless Address Autoconfiguration, 

the source address can be the unspecified address (::). IGMP is not a sub-protocol of 

ICMPv4. It does not use ICMPv4 messages, but an entirely new protocol. IGMP is not 

mandatory on all IPv4 routers.

MLD can co-exist with IGMPv3 in a dual-stack network, as MLD (v1 or v2) will 

only involve IPv6 messages and IGMP (v1, v2, or v3) will only involve IPv4 messages. 

However, in general, multicast will work far better on IPv6 than on IPv4.

With MLD, there is a “router role” (performed by at most one router in a subnet) and a 

“listener role” (performed by any number of listener nodes in that subnet) in the protocol.

For the router role, only one router on a subnet can be the Querier at any given time. 

If there is more than one router on a subnet, there is an election mechanism that selects 

one of them to be the Querier. Should that router fail at some point, all other routers on 

that subnet have been listening in and maintaining state, so another election will select 

one of the surviving routers on that subnet to become the Querier. Only the Querier 

sends periodic or triggered Query messages on its subnet.

16 https://tools.ietf.org/html/rfc4604
17 https://tools.ietf.org/html/rfc4607
18 https://tools.ietf.org/html/rfc4605
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There are three types of MLDv2 Query messages sent by the Querier to the “all nodes 

on local link” multicast address (ff02::1). They should be sent with a valid IPv6 link-

local source address. Any Query message received with the source address being the 

unspecified address (::), or any other address that is not a valid IPv6 link-local address, 

should be silently discarded.

• General queries

• Multicast address–specific queries

• Multicast address– and source-specific queries

There are two types of reports sent by listeners to the Querier, to a special multicast 

address (ff02::16) to which all MLDv2-compliant multicast routers listen. If a single 

Report message is not large enough to hold all of the state information, multiple Report 

messages can be sent.

• Current State Report (sent in response to a query)

• State Change Report (sent unsolicited in response to some change on 

the listener)

General queries are sent from the Querier to all listeners on the subnet periodically 

to learn multicast address listener information, to build and refresh state inside all 

multicast routers on the subnet. Even though only the Querier sends out periodic 

queries, all routers listen to the responses and update their state.

When a listener node gets a General Query message, it responds by sending a 

Current State Report, with its per-interface state information. It is also possible for a 

listener node to immediately report a state change (such as someone “unsubscribing” to 

a multicast channel) through an unsolicited State Change Report. Current State Reports 

are sent only once (if one is lost, it will probably be received in response to the next 

periodic query). State Change Reports are sent multiple times for robustness (to increase 

the probability of all routers getting the message).

When the Querier gets a State Change Report from a listener, it sends a multicast 

address–specific query to see if there are still any other listeners to that multicast address. 

If not, the Querier will delete that multicast address from its multicast address listener 

state table, which stops relaying the corresponding traffic. If there are source-specific 

listeners, the Querier will send a multicast address– and source-specific query instead.
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There must be a service interface (API routines) available, which allows an 

application to cause a State Change Report to be sent to the Querier. A sample API is 

documented in RFC 3678,19 “Socket Interface Extensions for Multicast Source Filters,” 

January 2004. The full API includes the ability to JOIN or LEAVE a multicast group 

(“subscribe to a multicast channel”) and to BLOCK and UNBLOCK specific source 

addresses, as well as to set and retrieve source filter sets.

For details on the syntax of the various MLDv2 messages, see RFC 3810.20

Protocol Independent Multicast (PIM) for IPv6
PIM is a multicast protocol, which deals with router-to-router communications. 

IPv6 PIM is similar to IPv4 PIM, has the same variants (Dense Mode, Sparse Mode, 

and Bidirectional Mode), and is defined in the same RFCs (in the sections relevant 

to IPv6). The IPv6 implementation uses the Neighbor Discovery protocol, Multicast 

Listener Discovery protocol, Path MTU Discovery, and IPv6 multicast, rather than the 

corresponding IPv4 mechanisms. As with TCP, the PIM message checksum factors in the 

source and destination IP addresses, so the pseudo header used in the calculation of the 

checksum (which includes IPv6 addresses) is different from the one used in IPv4. The 

following items are IP version specific in all variants:

Item IPv4 IPv6

source-specific multicast 232.0.0.0/8 ff3x:/32

Wildcard Group set 224.0.0.0/3 ff00::/8

all-pIM-roUters group 224.0.0.13 ff02::d

PIM for IPv6 does not include routing, but provides multicast forwarding by using 

static IPv6 routes or routing tables created by IPv6 unicast routing protocols, such as 

RIPng, OSPFv3, IS-ISv6, or BGP4+.

PIM Dense Mode is defined in RFC 3973,21 “Protocol Independent Multicast – Dense 

Mode (PIM-DM),” January 2005 (for both IPv4 and IPv6). This uses dense multicast 

routing, which builds shortest-path trees by flooding multicast traffic domain-wide and 

then pruning branches where no receivers are present. It does not scale well.

19 https://tools.ietf.org/html/rfc3678
20 https://tools.ietf.org/html/rfc3810
21 https://tools.ietf.org/html/rfc3973
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PIM Sparse Mode is defined in RFC 4601,22 “Protocol Independent Multicast – Sparse 

Mode (PIM-SM): Protocol Specification (Revised),” August 2006 (for both IPv4 and IPv6). 

As in IPv4, PIM-SM builds unidirectional shared trees routed at a rendezvous point 

per group and can create shortest-path trees per source. It scales fairly well for wide-

area use.

Bidirectional PIM is defined in RFC 5015,23 “Bidirectional Protocol Independent 

Multicast (BIDIR-PIM),” October 2007 (for both IPv4 and IPv6). It builds shared 

bidirectional trees. It never builds a shortest-path tree, so there may be longer end-to-

end delays, but it scales very well.

There is one new standard specific to IPv6 PIM, RFC 3956,24 “Embedding the 

rendezvous point (RP) Address in an IPv6 Multicast Address,” November 2004. This 

defines an address allocation policy in which the address of the Rendezvous Point 

(RP) is encoded in an IPv6 multicast group address. For PIM-SM, this can be seen as a 

specification of a group-to-RP mapping mechanism. This supports easy deployment of 

scalable inter-domain multicast and simplifies configuration as well.

Example 1: An ISP manages 2001:db8::/32 and wants an RP for the 

network and all its customers, on an existing subnet, for example, 

2001:db8:beef:feed::/64. The group address would be something 

like ff7x:y40:2001:db8:beef:feed::/96, and the RP address would be 

2001:db8:beef:feed::y (y can be any value from 1 to F, but not 0).

Example 2: An organization wants to have its own PIM-

SM domain. It should pick multicast addresses such as 

ff7x:y30:2001:db8:beef::/80. The RP address would be 

2001:db8:beef::y (y can be any value from 1 to F, but not 0).

22 https://tools.ietf.org/html/rfc4601
23 https://tools.ietf.org/html/rfc5015
24 https://tools.ietf.org/html/rfc3956
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 ICMPv6: Internet Control Message Protocol for IPv6
ICMPv6 is a key protocol in the Internet Layer that complements version 6 of the 

Internet Protocol (IPv6). It was originally defined in RFC 1885 (December 1995) and 

then enhanced in RFC 2463 (December 1998). It is currently defined in RFC 4443,25 

“Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version 6 (IPv6) 

Specification,” March 2006.

There are many more ICMPv6 messages defined than there are ICMPv4 messages 

(in fact, Neighbor Discovery and Multicast Listener Discovery protocols are just subsets 

of the ICMPv6 messages). ICMPv6 messages have a much greater range of functionality 

than ICMPv4 messages. Even if you block all ICMPv4 messages (common practice by 

some IPv4 network administrators), normal network operation will usually occur. This is 

not true with ICMPv6. ICMPv6 messages are used in normal operation of IPv6.

There are two classes of ICMPv6 messages:

• Error messages, with message type ranging from 0 to 127

• Informational messages, with message type ranging from 128 to 255

ICMPv6 Error Messages

1 Destination Unreachable (ICMPv6, RFC 4443)

2 Packet Too Big (ICMPv6, RFC 4443)

3 Time Exceeded (ICMPv6, RFC 4443)

4 Parameter Problem (ICMPv6, RFC 4443)

ICMPv6 Informational Messages

128 Echo Request (ICMPv6, RFC 4443)

129 Echo Reply (ICMPv6, RFC 4443)

130 Multicast Listener Query message (MLDv2, RFC 3810)

131 Multicast Listener Report (MLDv1, RFC 2710)

132 Multicast Listener Done (MLDv1, RFC 2710)

133 Router Solicitation message (ND, RFC 2461)

25 https://tools.ietf.org/html/rfc4443
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134 Router Advertisement message (ND, RFC 2461)

135 Neighbor Solicitation message (ND, RFC 2461)

136 Neighbor Advertisement message (ND, RFC 2461)

137 Redirect message (ND, RFC 2461)

138 Router Renumbering (RR, RFC 2894)

139 ICMP Node Information Query (NIQ, RFC 4620)

140 ICMP Node Information Response (NIQ, RFC 4620)

141 Inverse Neighbor Discovery Solicitation message (IND, 

RFC 3122)

142 Inverse Neighbor Discovery Advertisement message (IND, 

RFC 3122)

143 Multicast Listener Report message (MLDv2, RFC 3810)

144 Home Agent Address Discovery Request message (MIPv6, 

RFC 3775)

145 Home Agent Address Discovery Reply message (MIPv6, 

RFC 3775)

146 Mobile Prefix Solicitation (MIPv6, RFC 3775)

147 Mobile Prefix Advertisement (MIPv6, RFC 3775)

148 Certification Path Solicitation (SEND, RFC 3971)

149 Certification Path Advertisement (SEND, RFC 3971)

151 Multicast Router Advertisement (MRD, RFC 4286)

152 Multicast Router Solicitation (MRD, RFC 4286)

153 Multicast Router Termination (MRD, RFC 4286)

154 FMIPv6 messages (MIPv6, RFC 5568)

IND Inverse Neighbor Discovery

MIPv6 Mobile IPv6

MLDv1 Multicast Listener Discovery, version 1
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MLDv2 Multicast Listener Discovery, version 2

MRD Multicast Router Discovery

ND Neighbor Discovery

NIQ Node Information Query

RR Router Renumbering

SEND SEcure Neighbor Discovery

Note that there is no equivalent ICMPv6 message corresponding to the following 

ICMPv4 messages (or else its function is now contained in another message).

4 Source Quench

5 Redirect

13 Timestamp

14 Timestamp Reply

15 Information Request

16 Information Reply

Destination Unreachable Error

       0                   1                   2                   3

       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

      |     Type      |     Code      |          Checksum             |

      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

      |                             Unused                            |

      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

      |                    As much of invoking packet                 |

      +                as possible without the ICMPv6 packet          +

      |                exceeding the minimum IPv6 MTU                 |

   IPv6 Fields:

   Destination Address

                  Copied from the Source Address field of the invoking

                  packet.
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   ICMPv6 Fields:

   Type           1

   Code           0 - No route to destination

                  1 - Communication with destination

                        administratively prohibited

                  2 - Beyond scope of source address

                  3 - Address unreachable

                  4 - Port unreachable

                  5 - Source address failed ingress/egress policy

                  6 - Reject route to destination

   Unused         This field is unused for all code values.

                  It must be initialized to zero by the originator

                  and ignored by the receiver.

   Description

   A Destination Unreachable message SHOULD be generated by a router, or

   by the IPv6 layer in the originating node, in response to a packet

   that cannot be delivered to its destination address for reasons other

   than congestion.  (An ICMPv6 message MUST NOT be generated if a

   packet is dropped due to congestion.)

Packet Too Big Message

          0                   1                   2                   3

       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

      |     Type      |     Code      |          Checksum             |

      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

      |                             MTU                               |

      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

      |                    As much of invoking packet                 |

      +               as possible without the ICMPv6 packet           +

      |               exceeding the minimum IPv6 MTU                  |

   IPv6 Fields:
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   Destination Address

                  Copied from the Source Address field of the invoking

                  packet.

   ICMPv6 Fields:

   Type           2

   Code           Set to 0 (zero) by the originator and ignored by the

                  receiver.

   MTU            The Maximum Transmission Unit of the next-hop link.

   Description

   A Packet Too Big MUST be sent by a router in response to a packet

   that it cannot forward because the packet is larger than the MTU of

   the outgoing link.  The information in this message is used as part

   of the Path MTU Discovery process.

Time Exceeded Message

       0                   1                   2                   3

       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

      |     Type      |     Code      |          Checksum             |

      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

      |                             Unused                            |

      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

      |                    As much of invoking packet                 |

      +               as possible without the ICMPv6 packet           +

      |               exceeding the minimum IPv6 MTU                  |

   IPv6 Fields:

   Destination Address

                  Copied from the Source Address field of the invoking

                  packet.
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   ICMPv6 Fields:

   Type           3

   Code           0 - Hop limit exceeded in transit

                  1 - Fragment reassembly time exceeded

   Unused         This field is unused for all code values.

                  It must be initialized to zero by the originator

                  and ignored by the receiver.

   Description

   If a router receives a packet with a Hop Limit of zero, or if a

   router decrements a packet's Hop Limit to zero, it MUST discard the

   packet and originate an ICMPv6 Time Exceeded message with Code 0 to

   the source of the packet.  This indicates either a routing loop or

   too small an initial Hop Limit value.

Parameter Problem Message

       0                   1                   2                   3

       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

      |     Type      |     Code      |          Checksum             |

      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

      |                            Pointer                            |

      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

      |                    As much of invoking packet                 |

      +               as possible without the ICMPv6 packet           +

      |               exceeding the minimum IPv6 MTU                  |

   IPv6 Fields:

   Destination Address

                  Copied from the Source Address field of the invoking

                  packet.

   ICMPv6 Fields:
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   Type           4

   Code           0 - Erroneous header field encountered

                  1 - Unrecognized Next Header type encountered

                  2 - Unrecognized IPv6 option encountered

   Pointer        Identifies the octet offset within the

                  invoking packet where the error was detected.

                  The pointer will point beyond the end of the ICMPv6

                  packet if the field in error is beyond what can fit

                  in the maximum size of an ICMPv6 error message.

   Description

   If an IPv6 node processing a packet finds a problem with a field in

   the IPv6 header or extension headers such that it cannot complete

   processing the packet, it MUST discard the packet and SHOULD

   originate an ICMPv6 Parameter Problem message to the packet's source,

   indicating the type and location of the problem.

Echo Request Message

       0                   1                   2                   3

       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

      |     Type      |     Code      |          Checksum             |

      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

      |           Identifier          |        Sequence Number        |

      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

      |     Data ...

      +-+-+-+-+-

   IPv6 Fields:

   Destination Address

                  Any legal IPv6 address.
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   ICMPv6 Fields:

   Type           128

   Code           0

   Identifier     An identifier to aid in matching Echo Replies

                  to this Echo Request.  May be zero.

   Sequence Number

                  A sequence number to aid in matching Echo Replies

                  to this Echo Request.  May be zero.

   Data           Zero or more octets of arbitrary data.

   Description

   Every node MUST implement an ICMPv6 Echo responder function that

   receives Echo Requests and originates corresponding Echo Replies.

   A node SHOULD also implement an application-layer interface for

   originating Echo Requests and receiving Echo Replies, for diagnostic

   purposes.

Echo Reply Message

       0                   1                   2                   3

       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

      |     Type      |     Code      |          Checksum             |

      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

      |           Identifier          |        Sequence Number        |

      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

      |     Data ...

      +-+-+-+-+-

   IPv6 Fields:

   Destination Address
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                  Copied from the Source Address field of the invoking

                  Echo Request packet.

   ICMPv6 Fields:

   Type           129

   Code           0

   Identifier     The identifier from the invoking Echo Request message.

   Sequence Number

                  The sequence number from the invoking Echo Request

                  message.

   Data           The data from the invoking Echo Request message.

   Description

   Every node MUST implement an ICMPv6 Echo responder function that

   receives Echo Requests and originates corresponding Echo Replies.

   A node SHOULD also implement an application-layer interface for

   originating Echo Requests and receiving Echo Replies, for diagnostic

   purposes.

   The source address of an Echo Reply sent in response to a unicast

   Echo Request message MUST be the same as the destination address of

   that Echo Request message.

   An Echo Reply SHOULD be sent in response to an Echo Request message

   sent to an IPv6 multicast or anycast address.  In this case, the

   source address of the reply MUST be a unicast address belonging to

   the interface on which the Echo Request message was received.

   The data received in the ICMPv6 Echo Request message MUST be returned

   entirely and unmodified in the ICMPv6 Echo Reply message.
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 IPv6 Routing
IPv6 has to solve the same problems as IPv4 in terms of how to get packets from one 

point to another through a packet-switched network. However, the differences in IP 

address length and addressing model mean that the existing routing protocols for IPv4 

do not work. All the popular routing protocols have been extended to support IPv6. 

These include RIPng, EIGRP, IS-ISv6, OSPF for IPv6, and BGP4 with Multiprotocol 

Extensions (BGP4+).

The following standards are relevant to routing in IPv6:

RFC 2080, “RIPng for IPv6,” January 1997 (Standards Track)

RFC 2185, “Routing Aspects of IPv6 Transition,” September 1997 

(Informational)

RFC 2545, “Use of BGP-4 Multiprotocol Extensions for IPv6 
Inter-Domain Routing,” March 1999 (Standards Track)

RFC 5308, “Routing IPv6 with IS-IS,” October 2008 

(Standards Track)

RFC 5340, “OSPF for IPv6,” July 2008 (Standards Track)

RIPng: RIP Next Generation. Defined in RFC 2080, “RIPng for IPv6,” January 1997. 

This IETF standard specifies extensions to the RIP (as defined in RFCs 1058 and 1723), 

to support IPv6. Like RIP for IPv4, RIPng also uses the distance vector algorithm. Unlike 

RIP for IPv4, RIPng is implemented only in routers. IPv6 itself provides mechanisms 

for router discovery (part of ND). RIPng is a UDP-based protocol, using port 521 

(compare with port 520 for RIP). It supports 128-bit IPv6 addresses instead of 32-bit 

IPv4 addresses. It has the same limitations as RIP, such as being useful only in small 

networks, with less than 15 hops. It does have some of the extensions of RIPv2. When 

a response is sent to all neighbors, the multicast group ff02::9 (all-rip-routers) is used. 

RIPng only routes IPv6. On a dual-stack network, you would need both RIP (for IPv4) 

and RIPng. Since RIPng runs over IPv6, it can use the IPsec Authentication header 

(AH) and Encapsulating Security Payload (ESP) mechanisms to ensure integrity and 

authentication/confidentiality of routing exchanges.

EIGRP: Enhanced Interior Gateway Routing Protocol (proprietary Cisco routing 

protocol). This already includes extensions to allow it to route IPv4 and/or IPv6 packets. 

For details, see Cisco documentation.
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IS-ISv6: Extension of IS-IS to support IPv6. Based on two levels, L2 = Backbone, L1 =  

Stub, L2L1 = Interconnected L2 and L1. It runs over CLNS (Connectionless Network 

Service, an OSI Network Layer protocol, similar to IP). Each IS node still sends out Link 

State Packets and sends information via Tag/Length/Values. There are two new TLVs, 

IPv6 Reachability and IPv6 Interface Address, and a new Network Layer Identifier, IPv6 

NLPID (Network Layer Protocol IDentifier). Other than that, IS-ISv6 is pretty much the 

same as the original IS-IS. It is still suitable mainly for large ISPs.

OSPF for IPv6: Open Shortest Path First for IPv6 (also known as OSPFv3). Defined in 

RFC 5340, “OSPF for IPv6,” July 2008. This is still an Interior Gateway Routing Protocol 

and is suitable for use within organizations, but not between autonomous systems 

(BGP4+ is needed for this).

The basic OSPF for IPv4 mechanisms (flooding, designated router election, area 

support, Short Path First calculations) are unchanged. Some changes are required 

because of new protocol semantics or larger address size. Most fields and packet-size 

limitations in OSPF for IPv4 have been relaxed, and option handling is more flexible. The 

protocol processing is now per link, instead of per subnet. There is now a flooding scope 

to reflect the scopes of IPv6 addresses. It uses IPv6 link-local addresses. The addressing 

semantics have been removed (with a few exceptions), leaving a mostly network 

protocol–independent core. OSPF Router IDs, Area IDs, and Link State IDs are still 32 

bits, so those can no longer be IP addresses (which in IPv6 are 128 bits).

The new flooding scope allows control over how widely to flood information: link 

local, area wide, or AS wide (the entire routing domain). It is now possible to run 

multiple instances of the OSPF protocol on a single link (every message now includes 

an Instance ID value). Link-local addresses are used where they are meaningful (for 

transactions completely within a link), but global-scope IPv6 addresses must still be 

used in some places (e.g., source address for OSPF protocol packets). The AuType and 

Authentication fields have been removed from OSPF for IPv4, as IPsec AH and ESP are 

available and superior. As with TCP, the header checksum covers the entire OSPF packet 

and a prepended IPv6 pseudo header. All support for MOSPF (Multicast OSPF) has been 

removed.

OSPF for IPv6 runs only over IPv6 and only routes IPv6. On a dual-stack network, you 

would need both OSPF for IPv4 (OSPFv2) and OSPF for IPv6 (OSPFv3) deployed, similar 

to RIP and RIPng. It is possible that a future version of OSPF will support both IPv4 and 

IPv6 routing.
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BGP4 with Multiprotocol Extensions (also known informally as BGP4+): Defined in 

RFC 4760, “Multiprotocol Extensions for BGP-4,” January 2007. BGP4 is currently defined 

in RFC 4271, “A Border Gateway Protocol 4 (BGP-4),” January 2006. BGP4 supports only 

IPv4. The multiprotocol extensions have been around since RFC 2283, February 1998, 

but have been updated with each new version of BGP4.

These extensions allow BGP4+ to carry routing information for multiple Network 

Layer protocols,(e.g., IPv6, IPX, L3VPN, etc.). L3VPN is a “layer 3 Virtual Private 

Network.” BGP4+ is designed to be backward compatible, such that a BGP4+-compliant 

router can exchange IPv4 routing information with a router that does not support the 

multiprotocol extensions (basic BGP4).

Currently BGP4+ is the primary protocol used for routing IPv6 packets between 

autonomous systems (very large networks under the control of a single entity, such as 

ISPs or major corporations). Most IPv6 engineers will never work with it, unless they 

work for an ISP or a really large company.

One of the issues that ISPs face when supporting IPv6 is to migrate their BGP4 

gateways to BGP4+ gateways. They typically must also upgrade many routers to 

dual stack. At the ISP level, many routers have hardware acceleration, so this can be 

expensive. These may involve “forklift” upgrades, where entirely new high-end routers 

must be purchased, and there may be relatively little resale value for legacy IPv4-only 

equipment (hint to ISPs: migrate to IPv6 now and sell your old gear while it still has 

SOME value!).

Looking at Local Routing Information
In Windows, you can view all currently known routes with the “route print” 

command. If you have enabled IPv6 and are connected to an IPv6 network, you might 

see something like the following (the “-6” tells it to print only IPv6 route information):

C:\Users\lhughes>route print -6

===========================================================================

Interface List

 11...00 18 8b 78 da 1a ......Broadcom NetXtreme 57xx Gigabit Controller

  1...........................Software Loopback Interface 1

 12...00 00 00 00 00 00 00 e0 Microsoft ISATAP Adapter

 13...00 00 00 00 00 00 00 e0 Teredo Tunneling Pseudo-Interface

===========================================================================
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IPv6 Route Table

===========================================================================

Active Routes:

 If Metric Network Destination      Gateway

 11     26 ::/0                     fe80::21b:21ff:fe1e:f4

  1    306 ::1/128                  On-link

 13     58 2001::/32                On-link

 13    306 2001:0:cf2e:3096:30c3:380d:f5fd:fa12/128

                                    On-link

 11     18 2001:df8:5403:2410::/64  On-link

 11    266 2001:df8:5403:2410:3c79:b2ca:90ce:5d59/128

                                    On-link

 11    266 2001:df8:5403:2410:a446:d5ef:d313:f5/128

                                    On-link

 11    266 fe80::/64                On-link

 13    306 fe80::/64                On-link

 13    306 fe80::30c3:380d:f5fd:fa12/128

                                    On-link

 11    266 fe80::3c79:b2ca:90ce:5d59/128

                                    On-link

  1    306 ff00::/8                 On-link

 13    306 ff00::/8                 On-link

 11    266 ff00::/8                 On-link

===========================================================================

Persistent Routes:

  None

 Network Address Translation
NAT (Network Address Translation) was introduced to extend the lifetime of the IPv4 

address space long enough for its replacement, IPv6, to be defined and refined and 

compliant infrastructure products and applications to be developed. IPv6 is now fully 

developed and ready for prime time. NAT has served its purpose. It is time to put it out to 

pasture.
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There is a common belief that the practice of hiding nodes behind a single routable 

IPv4 address (“hide-mode NAT”) adds security. It really doesn’t.

First, anytime you make an outgoing connection, either directly or via NAT, the 

connection you make is a two-way path, and the node you connect to can easily attack 

you right through your packet filtering firewall and Network Address Translation. You 

should have “defense in depth” and protect your node with a host-based firewall whether 

or not you are behind a firewall and NAT gateway.

Second, if a hacker manages to breach your firewall by installing a Trojan horse onto 

any node in your network, they can attack you from that compromised node. Hackers 

have a term for networks that have a strong perimeter defense but limited internal 

defenses. It is “hard crunchy outside, soft chewy inside.” Again, host-based firewalls on 

all nodes are a good idea.

Third, if you are using almost any peer-to-peer software, VoIP (e.g., Skype), or IPsec 

VPN, it probably includes a mechanism called NAT traversal (e.g., STUN, TURN, SOCKS, 

etc.). NAT traversal basically bores a hole right through your NAT protection (required 

for any of the preceding applications). Anything that includes NAT traversal can easily 

be used to attack you. Many people think Skype is a productivity tool. Network security 

people think it is a security vulnerability.

Fourth, any time you open a document from outside (Word document, Excel 

spreadsheet, JPEG image, etc.), it may contain malware that infects your node right 

through firewalls and NAT.

It is better to allow direct connections to your node over IPv6, through various layers 

of firewalls, including a host-based firewall, together with good active anti-malware 

software, than to have NAT giving you a false sense of security.

On the other hand, NAT causes problems with any connectivity model other than 

simple client server outgoing connections, such as web browser to web server. This was 

covered in some detail in Chapter 3, section “Network Address translation (NAT).”

The real kicker is that NAT is the hacker’s friend! It is easy for a hacker to hide 

behind a NAT gateway and do all kinds of mischief, sending of malware, etc. It is quite 

difficult for the authorities to figure out which of the nodes hidden behind the common 

address is doing the bad stuff. To do this, the ISP must log EVERY connection, including 

source address, destination address, timestamp, and port. This mounts up to several 

TERABYTES for each ISP customer over a year, which is not a trivial amount of storage. 

With a flat address space (as in IPv6), it is far easier to figure out where the attack is 

coming from.
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Because of these issues, there is no IPv6-to-IPv6 NAT defined in any IETF standard. 

There is no need for it to extend the IPv6 address space lifetime, it has no other real 

benefit, it causes many problems, and it is greatly impeding innovation. Other than those 

minor things, I guess it’s okay (sarcasm warning!).

On the other hand, there is a real need for IPv4-to-IPv6 (and IPv6-to-IPv4) Network 

Address Translation, and there are about eight proposed methods in the IETF now. All 

of them have various problems and tradeoffs (that is the nature of NAT). One of the more 

promising schemes is NAT64 in combination with DNS64. These will be discussed in 

more detail in Chapter 8 on migration to IPv6.

 TCP: The Transmission Control Protocol in IPv6
There is very little difference between TCP over IPv4 and TCP over IPv6. The main 

difference is that more storage must be provided in the implementations to hold the 

four times larger addresses (16 bytes vs. 4 bytes, for each address). The other aspect 

involves the TCP header checksum, which uses a pseudo header to allow inclusion of 

the IP addresses in the calculation of the checksum (in addition to the contents of the 

payload). Of course, there is a different pseudo header format for IPv4 and IPv6, given 

the difference in address size. There are no new RFCs for TCP over IPv6.

There is one new feature for both TCP and UDP over IPv6 called “Jumbograms.” 

This is defined in RFC 2675,26 “IPv6 Jumbograms,” August 1999. Jumbograms are very 

large packets, with a payload containing more than 65,535 bytes. The standard Payload 

Length field is only 16 bits, so the maximum payload size is 65,535 bytes. RFC 2675 

defines a new Hop-by-Hop Option that includes a 32-bit Payload Length field, allowing 

packet lengths of up to 4.3 billion bytes. Of course, such packets require paths with 

very large MTUs. The simple 16-bit checksum becomes a less reliable error detection 

scheme as the payload length increases significantly. Of course, even a 1-bit error would 

require retransmission of an entire packet, so this should be used only on extremely 

reliable links.

26 https://tools.ietf.org/html/rfc2675
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 TCP Packet Header
No changes are required to the TCP packet header, as port numbers are still 16 bits in 

length. The only differences are in how the header checksum is calculated (using the 

IPv6 pseudo header) and the availability of Jumbograms.

 UDP: The User Datagram Protocol in IPv6
UDP over IPv6 has basically the same differences from UDP over IPv4 as was described 

for TCP.

 DHCPv6: Dynamic Host Configuration Protocol 
for IPv6
Unlike with DNS, it was not possible to add new functionality into DHCPv4 to support 

IPv6 (let alone a single server that could handle both IPv4 and IPv6). DHCPv6 is pretty 

much a new design from the ground up. DHCPv4 was built from an earlier protocol 

called BOOTP and contains many now unnecessary features from that. DHCPv6 was 

cleaned up considerably and contains none of the things left over from BOOTP.

DHCPv4 runs over IPv4 and supplies only 32-bit IPv4 information (assigned IPv4 

addresses, IPv4 addresses of DNS servers, etc.). DHCPv6 runs only over IPv6 and 

supplies only 128-bit IPv6 information (assigned IPv6 addresses, IPv6 addresses of 

DNS servers, etc.). There is no conflict between DHCPv4 and DHCPv6 in terms of 

functionality or ports used, so it is possible to run both on a single, dual-stack node.

Hosts communicate only with DHCPv6 servers or relay agents on their local link, 

using link-local addresses (typically ff02::1:2, “all DHCPv6 relay agents and servers”). 

DHCPv6 uses UDP ports 546 and 547 (compare with DHCPv4, which uses UDP ports 

67 and 68). As with DHCPv4, relay agents are used to allow hosts to communicate with 

remote DHCPv6 servers (ones not on the local link). This is still done via UDP but using 

a site-scope address (ff05::1:3 “all DHCPv6 servers, but not relay agents”), which is used 

only by relay agents.

In some simple networks, there is no need for DHCPv6 because of Stateless Address 

Autoconfiguration. Currently, however, DHCPv6 is the only way for IPv6-capable nodes 

to automatically learn the IPv6 addresses of DNS servers. This is particularly important 

Chapter 6  Ipv6 Core protoCols



239

for IPv6-only (“pure IPv6”) networks, of which there are not many yet. For dual-stack 

networks, there is no conflict between DHCPv4 and DHCPv6, and both can exist even on 

a single node. In this case, the IPv4 side of a node would get its IPv4 configuration from 

the DHCPv4 server, and the IPv6 side of a node would get its IPv6 configuration from the 

DHCPv6 server.

DHCPv6 allows the administrator far better control over distribution of interface 

identifiers (low 64 bits of each address) than with Stateless Address Autoconfiguration. 

With SLAAC, interface identifiers can either make use of only a tiny percentage of the 

possible 264 address space (when using EUI-64-generated interface identifiers) or have 

interface identifiers scattered randomly all over the possible 264 address space (when 

using cryptographically generated addresses). Either of these can lead to problems with 

network access control (NAC) or firewall rules. In general, administrators like to cluster 

IP addresses by department (or other groupings), so that a single firewall or NAC rule 

can be used for an entire group, by specifying an address range (e.g., all addresses that 

fall between 2001:df8:5403:3000::1000 and 2001:df8:5403:3000::1fff, inclusive).

IPv6-capable nodes can be informed that there is a DHCPv6 server available via 2 

bits in the Router Advertisement message. The Router Advertisement message and the 

relevant bits are described in RFC 4861, “Neighbor Discovery for IP version 6 (IPv6),” 

September 2007. In the Router Advertisement message, there are 2 bits, M and O 

(first and second bits of the sixth byte of the Router Advertisement message), with the 

following semantics:

M: “Managed address configuration” flag. When set it indicates 

that addresses are available via DHCPv6. If set, then the O flag 

can be ignored. This enables stateful DHCPv6, where both the 

stateless information (IPv6 addresses of DNS and other servers) 

and global unicast addresses can be obtained from DHCPv6.

O: “Other configuration” flag. When set, it indicates that other 

configuration information is available via DHCPv6. This includes 

things such as IPv6 addresses of DNS or other servers. This 

is called stateless DHCPv6 and is used in conjunction with 

Stateless Address Autoconfiguration (for obtaining global unicast 

addresses).

If both M and O bits are clear, then SLAAC is the only way to get addresses, and there 

is no source of IPv6 addresses for any servers, including DNS.
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 Relevant RFCs for DHCPv6
There are several RFCs that define DHCPv6. The most important ones are

RFC 3319, “Dynamic Host Configuration Protocol (DHCPv6) 

Options for Session Initiation Protocol (SIP) Servers,” July 2003

RFC 3646, “DNS Configuration Options for Dynamic Host 
Configuration Protocol for IPv6 (DHCPv6),” December 2003 
(Standards Track)

RFC 3898, “Network Information Service (NIS) Configuration 

Options for Dynamic Host Configuration Protocol for IPv6 

(DHCPv6),” October 2004 (Standards Track)

RFC 4075, “Simple Network Time Protocol (SNTP) Configuration 

Option for DHCPv6,” May 2005

RFC 4076, “Renumbering Requirements for Stateless Dynamic 

Host Configuration Protocol for IPv6 (DHCPv6),” May 2005 

(Informational)

RFC 4339, “IPv6 Host Configuration of DNS Server Information 

Approaches,” February 2006 (Informational)

RFC 4477, “Dynamic Host Configuration Protocol (DHCP): 
IPv4 and IPv6 Dual-Stack Issues,” May 2006 (Informational)

RFC 4580, “Dynamic Host Configuration Protocol for IPv6 

(DHCPv6) Relay Agent Subscriber-ID Option,” June 2006 

(Standards Track)

RFC 4649, “Dynamic Host Configuration Protocol for IPv6 

(DHCPv6) Relay Agent Remote-ID Option,” August 2006 

(Standards Track)

RFC 4704, “The Dynamic Host Configuration Protocol for IPv6 

(DHCPv6) Client Fully Qualified Domain Name (FQDN) Option,” 

October 2006 (Standards Track)

RFC 4994, “DHCPv6 Relay Agent Echo Request Option,” 

September 2007 (Proposed Standard)
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RFC 5007, “DHCPv6 Leasequery,” September 2007 

(Standards Track)

RFC 5460, “DHCPv6 Bulk Leasequery,” February 2009 

(Standards Track)

RFC 5908, “Network Time Protocol (NTP) Server Option for 

DHCPv6,” June 2010 (Proposed Standard)

RFC 5970, “DHCPv6 Options for Network Boot,” September 2010 

(Proposed Standard)

RFC 6011, “Session Initiation Protocol (SIP) User Agent 

Configuration,” October 2010 (Informational)

RFC 6221, “Lightweight DHCPv6 Relay Agent,” February 2011 
(Proposed Standard)

RFC 6334, “Dynamic Host Configuration Protocol for IPv6 
(DHCPv6) Option for Dual-Stack Lite,” August 2011 (Proposed 
Standard)

RFC 6355, “Definition of the UUID-Based DHCPv6 Unique 

Identifier (DUID-UUID),” August 2011 (Proposed Standard)

RFC 6422, “Relay Supplied DHCP Options,” December 2011 

(Proposed Standard)

RFC 6603, “Prefix Exclude Option for DHCPv6-Based Prefix 

Delegation,” May 2012 (Proposed Standard)

RFC 6607, “Virtual Subnet Selection Options for DHCPv4 and 

DHCPv6,” April 2012 (Proposed Standard)

RFC 6644, “Rebind Capability in DHCPv6 Reconfigure Messages,” 

July 2012 (Proposed Standard)

RFC 6653, “DHCPv6 Prefix Delegation in Long-Term Evolution 

(LTE) Networks,” July 2012 (Informational)

RFC 6784, “Kerberos Options for DHCPv6,” November 2012 

(Proposed Standard)
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RFC 6853, “DHCPv6 Redundancy Deployment Considerations,” 
February 2013 (Best Current Practice)

RFC 6939, “Client Link-Layer Address Option in DHCPv6,” May 

2013 (Proposed Standard)

RFC 6977, “Triggering DHCPv6 Reconfiguration from Relay 

Agents,” July 2013 (Proposed Standard)

RFC 7031, “DHCPv6 Failover Requirements,” September 2013 
(Informational)

RFC 7037, “RADIUS Option for the DHCPv6 Relay Agent,” October 

2013 (Proposed Standard)

RFC 7078, “Distributing Address Selection Policy Using DHCPv6,” 

January 2014 (Proposed Standard)

RFC 7227, “Guidelines for Creating New DHCPv6 Options,” May 

2014 (Best Current Practice)

RFC 7341, “DHCPv4-over-DHCPv6 (DHCP 4o6) Transport,” 

August 2014 (Proposed Standard)

RFC 7598, “DHCPv6 Options for Configuration of Softwire Address 

and Port-Mapped Clients,” July 2015 (Proposed Standard)

RFC 7610, “DHCPv6-Shield: Protecting Against Rogue DHCPv6 
Servers,” August 2015 (Best Current Practice)

RFC 7653, “DHCPv6 Active Leasequery,” October 2015 (Proposed 

Standard)

RFC 7774, “Multicast Protocol for Low-Power and Lossy Networks 

(MPL) Parameter Configuration Option for DHCPv6,” March 2016 

(Proposed Standard)

RFC 7824, “Privacy Considerations for DHCPv6,” May 2016 
(Informational)

RFC 7839, “Access-Network-Identifier Option in DHCP,” June 2016 

(Proposed Standard)
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RFC 7844, “Anonymity Profiles for DHCP Clients,” May 2016, 

(Proposed Standard)

RFC 7934, “Host Address Availability Recommendations,” July 
2016 (Best Current Practice)

RFC 7943, “A Method for Generating Semantically Opaque 

Interface Identifiers (IISs) with the Dynamic Host Configuration 

Protocol for IPv6 (DHCPv6),” September 2016 (Informational)

RFC 7969, “Customizing DHCP Configuration on the Basis of 

Network Topology,” October 2016 (Informational)

RFC 8026, “Unified IPv4-in-IPv6 Softwire Customer Premises 

Equipment (CPE): A DHCPv6-Based Prioritization Mechanism,” 

November 2016 (Proposed Standard)

RFC 8115, “DHCPv6 Option for IPv4-Embedded Multicast and 

Unicast IPv6 Prefixes,” March 2017 (Proposed Standard)

RFC 8156, “DHCPv6 Failover Protocol,” June 2017 (Proposed 
Standard)

RFC 8168, “DHCPv6 Prefix-Length Hint Issues,” May 2017 

(Proposed Standard)

RFC 8415, “Dynamic Host Configuration Protocol for IPv6 
(DHCPv6),” November 2018 (Standards Track)

RFC 8539, “Softwire Provisioning Using DHCPv4 over DHCPv6,” 

March 2019 (Proposed Standard)

DHCPv6 has a failover mechanism. Two servers can manage a single pool of 

addresses for redundancy (in case of failure of one of the servers). This also can be used 

for load balancing.

All IPv6 hosts have automatically generated link-local addresses that can be used to 

exchange packets with any other node on the local link. DHCPv4 requires some complex 

hacks to allow hosts to communicate before they get an address. All IPv6 hosts support 

link-local multicast. All DHCPv6 servers listen to DHCPv6 multicast groups. With 

DHCPv4, clients have to do a general broadcast to all nodes on the link, which generates 

significant broadcast traffic on the link and unnecessary traffic handling on all nodes.
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With DHCPv6, a single request can configure all interfaces on a node. The server 

can offer multiple addresses, one for each interface, and each interface can even 

have different options. With DHCPv4, each interface would require a separate DHCP 

operation.

Some of the stateless information (i.e., other than assigned IPv6 addresses for each 

node) includes

• IPv6 prefix

• Vendor-specific options

• Addresses of SIP servers

• Addresses of DNS servers and search options

• NIS configuration

• SNTP servers

There are several implementations of DHCPv6 already on the market. Windows 

Server 2008 contains a very complete implementation, in addition to its DHCPv4 server. 

You can view the IPv6-ready phase 2 products list for other options, including my own 

company’s Sixscape DNS appliance. Some implementations only support stateless 

mode, which means they can supply stateless information (like DNS addresses) but not 

actually allocate addresses. Be sure the DHCPv6 server you select includes full support 

for stateful mode as well (where it can supply addresses to each node, in addition to 

stateless information). You should also be sure that the gateway router or firewall you 

select has the ability to inform nodes that DHCPv6 servers are available on the subnet.

Address Reservations with DHCPv6
In the case of DHCPv4, it is possible to make an address reservation, linked to the 

MAC address of a node. Anytime the node with a MAC address for which an address 

reservation has been made asks DHCPv4 for an address, it will get the specific address 

that was reserved for that MAC address. In the case of DHCPv6, the same concept 

applies, except that you use two identifiers called the IAID (Interface Association ID) and 

DUID (DHCP Unique IDentifier).

A DUID consists of a 2-byte type code represented in network byte order, followed 

by a variable number of bytes that make up the actual identifier. A DUID can be no more 

than 128 bytes long (not including the type code). The following types are currently 

defined:
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Link Layer Address plus Time (DUID-LLT): This type is 

recommended for all general-purpose computing devices, such as 

desktop computers, printers, routers, etc. They must contain some 

form of writable non-volatile storage. Note that the device should 

configure the time on the node before this DUID is generated, 

if possible. The only purpose of the timestamp is to lower the 

chance of an identifier conflict. The Link Layer address is typically 

the MAC address for Ethernet media. The DUID is defined as 

follows:

     0                   1                   2                   3

     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

    |               1               |    hardware type (16 bits)    |

    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

    |                        time (32 bits)                         |

    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

    .                                                               .

    .             link-layer address (variable length)              .

    .                                                               .

    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Vendor-Assigned Based on Enterprise Number (DUID-EN): This 

type is assigned to the device by the vendor. This type of DUID 

is for devices that have some form of non-volatile storage (e.g., 

EEPROM). The enterprise number is the IANA 32-bit assigned 

number for the vendor. The identifier can be anything the vendor 

chooses but must be unique within that vendor for each device.

     0                   1                   2                   3

     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

    |               2               |       enterprise-number       |

    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

    |   enterprise-number (contd)   |                               |

    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               |
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    .                           identifier                          .

    .                       (variable length)                       .

    .                                                               .

    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Link Layer Address (DUID-LL): This type is just like the DUID-

LLT, without the timestamp. It is recommended for permanently 

connected devices that have a Link Layer address, but no non-

volatile, writeable stable storage.

     0                   1                   2                   3

     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

    |               3               |    hardware type (16 bits)    |

    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

    .                                                               .

    .             link-layer address (variable length)              .

    .                                                               .

    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Viewing Your Node’s DUID

In Windows 7, using a command prompt, type the command ipconfig /all. In the 

section related to the interface you are interested in, look for the field DHCPv6 Client 

DUID. Note that this is a DUID-LLT (type code 00-01). The next six hex digit pairs 

(00-01-12-D6-97-E5) are the timestamp. The last six hex digit pairs (00-18-8B-78-DA-1A) 

are the same as the physical address (MAC address).

Ethernet adapter Local Area Connection:

   Connection-specific DNS Suffix  . : infoweapons.com

   Description . . . . . . . . . . . :  Broadcom NetXtreme 57xx Gigabit 

Controller

   Physical Address. . . . . . . . . : 00-18-8B-78-DA-1A

   DHCP Enabled. . . . . . . . . . . : Yes

   Autoconfiguration Enabled . . . . : Yes

   IPv6 Address. . . . . . . . . . . :  2001:df8:5403:2410:3c79:b2ca:90ce:5d

59(Preferred)
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   Temporary IPv6 Address. . . . . . :  2001:df8:5403:2410:882:cf5c:e810:363

d(Preferred)

   Link-local IPv6 Address . . . . . :  fe80::3c79:b2ca:90ce:5d59%11(

Preferred)

   IPv4 Address. . . . . . . . . . . : 10.2.5.237(Preferred)

   Subnet Mask . . . . . . . . . . . : 255.240.0.0

   Lease Obtained. . . . . . . . . . : Friday, March 12, 2010 10:52:52 AM

   Lease Expires . . . . . . . . . . : Friday, March 12, 2010 4:11:44 PM

   Default Gateway . . . . . . . . . : fe80::21b:21ff:fe1e:f4%11

                                       10.0.0.10

   DHCP Server . . . . . . . . . . . : 10.1.0.14

   DHCPv6 IAID . . . . . . . . . . . : 234887307

   DHCPv6 Client DUID. . . . . . . . :  00-01-00-01-12-D6-97-

E5-00-18-8B-78-DA-1A

   DNS Servers . . . . . . . . . . . : 2001:df8:5403:2400::14

                                       2001:df8:5403:2400::13

                                       10.1.0.14

                                       10.1.0.13

   NetBIOS over Tcpip. . . . . . . . : Enabled

   Connection-specific DNS Suffix Search List :

                                       cebu.infoweapons.com

You can also see a DHCPv6 IAID value (in this case 234887307). This identifies a 

particular Identity Association, which allows a server and a client to identify, group, and 

manage a set of related IPv6 addresses. Each IA consists of an IAID, one or more IPv6 

addresses, and the time T1 and T2 for that IA. Each IA is associated with exactly one 

interface. For further details, see RFC 3315, section 11.

DHCPv6 Ports and Messages
Clients and servers exchange DHCPv6 messages using UDP over IPv6. The client 

uses a link-local address, or addresses obtained via other mechanisms, as the source 

address for transmitting and receiving DHCPv6 messages. Servers receive messages 

from clients using a reserved link-scoped multicast address, so that clients don’t need 

to be configured with the addresses of DHCPv6 servers. To allow hosts to communicate 

with servers on other links, DHCPv6 relay agents are used. Clients listen for DHCPv6 

messages on UDP port 546. Servers and relay agents listen for DHCPv6 messages on 

UDP port 547.
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The link-scoped multicast address used by a client to communicate with an on-link 

relay agent or server is ff02::1:2. All DHCPv6 servers and relay agents are members of this 

multicast group.

The site-scoped multicast address used by a relay agent to communicate with servers 

is ff05::1:3, if it wants to send a message to all DHCPv6 servers or does not know the 

unicast address of the servers. All DHCPv6 servers in a given site are members of this 

multicast group.

There are several DHCPv6 messages:

The SOLICIT message (1) is sent (multicast) by a client to locate 

servers.

The ADVERTISE message (2) is sent (multicast) by a server to 

indicate that it is available to provide DHCPv6 service, in response 

to a Solicit message from a client.

The REQUEST message (3) is sent (unicast) by a client to 

request configuration parameters, including IP addresses, from a 

specific server.

The CONFIRM message (4) is sent (multicast) by a client to 

any available server to determine whether the addresses it was 

assigned are still appropriate on the link to which the client is 

connected.

The RENEW message (5) is sent (unicast) by a client to the server 

that originally provided the client’s address and configuration 

parameters, to extend the lifetime on the addresses assigned to 

the client and update other configuration parameters.

The REBIND message (6) is sent (multicast) by a client to any 

available server to extend the lifetimes on the addresses assigned 

to the client and to update other configuration parameters. This 

message is sent after a client receives no response to a RENEW 

message.

The REPLY message (7) is sent (unicast) by a server to a client in 

response to a SOLICIT, REQUEST, RENEW, or REBIND message 

received from a client. A server sends a REPLY message containing 
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configuration parameters in response to an INFORMATION-

REQUEST message. It sends a REPLY message in response to a 

CONFIRM message confirming or denying that the addresses 

assigned to the client are appropriate on the link to which 

the client is connected. A server sends a REPLY message to 

acknowledge receipt or a RELEASE or DECLINE message.

The RELEASE message (8) is sent (unicast) by a client to the 

server that assigned addresses to the client to indicate that the 

client will no longer use one or more of the assigned addresses.

The DECLINE message (9) is sent (unicast) to a server to indicate that 

the client has determined that one or more addresses assigned by the 

server are already in use on the link to which the client is connected.

The RECONFIGURE message (10) is sent (unicast) by a server 

to a client to inform the client that the server has new or updated 

configuration parameters and that the client should initiate a 

RENEW/REPLY or INFORMATION-REQUEST/REPLY transaction 

with the server in order to obtain the updated information.

The INFORMATION-REQUEST message (11) is sent (unicast) by 

a client to a server to request configuration parameters, without 

the assignment of any IP addresses to the client.

The RELAY-FORW message (12) is sent (multicast) by a relay 

agent to forward messages to servers, either directly or through 

another relay agent. The received message, either a client 

message or a RELAY-FORW message from another relay agent, is 

encapsulated in an option in the RELAY-FORW message.

The RELAY-REPL message (13) is sent (unicast) by the server to a 

relay agent containing a message that the relay agent should then 

deliver to a client. The RELAY-REPL message may be relayed by 

other relay agents for delivery to the destination relay agent. The 

server encapsulates the client message as an option in the RELAY-

REPL message, which the relay agent extracts and then relays to 

the next relay agent or directly to the client.
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DHCPv6 Status Codes
The following codes are used to communicate the success or failure of operations 

requested in messages from clients and servers and additional information about the 

specific cause in the event of a failure to perform the operation.

   Name         Code Description

   ----------   ---- -----------

   Success         0 Success.

   UnspecFail      1 Failure, reason unspecified; this

                     status code is sent by either a client

                     or a server to indicate a failure

                     not explicitly specified in this

                     document.

   NoAddrsAvail    2 Server has no addresses available to assign to

                     the IA(s).

   NoBinding       3 Client record (binding) unavailable.

   NotOnLink       4 The prefix for the address is not appropriate for

                     the link to which the client is attached.

   UseMulticast    5 Sent by a server to a client to force the

                     client to send messages to the server.

                     using the All_DHCP_Relay_Agents_and_Servers

                     address.

DHCPv6 Message Syntax
All messages sent between clients and servers share the following syntax:

       0                   1                   2                   3

       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

      |    msg-type   |               transaction-id                  |

      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

      |                                                               |

      .                            options                            .

      .                           (variable)                          .

      |                                                               |

      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
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      msg-type             Identifies the DHCP message type

      transaction-id       The transaction ID for this message exchange.

      options              Options carried in this message.

 The DHCPv6
DHCPv6 works in somewhat the same way as DHCPv4, except that different messages 

are used and communication between client and server takes place using link-local 

scoped multicast and unicast addresses.

When it first comes up, before any DHCPv6 operation, an IPv6-capable client 

node obtains a link-local unicast address through ND (and possibly a global unicast 

address as well, using information from a Router Advertisement message). If a Router 

Advertisement message is seen, then the client can check the M and O bits in it to 

determine if there is stateful DHCPv6, stateless DHCPv6, or no DHCPv6 available. If no 

Router Advertisement is available, a client can still attempt DHCPv6 server discovery, as 

follows.

The client sends a SOLICIT message to multicast group ff02::1:2. This address 

specifies all DHCPv6 servers or relay agents on the local link. The included options are

ClientID

Option Request Option (IA-NA, DNS-Servers, Domain-List)

One or more DHCPv6 servers on the link (or servers on remote links, via DHCPv6 

relay agents) will reply with an ADVERTISE message to the client that sent the SOLICIT 

message (via unicast). The included options are

ServerID, ClientID

DNS-Servers, IA-NA (IAID, IAPREFIX).

The client will select one responding DHCPv6 server and send a REQUEST message 

to it (via unicast). This will actually ask for an address lease. The included options are

ServerID, ClientID
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Option Request Option (IA-NA, DNS-Servers, Domain-List)

The selected server will send a REPLY message to the client that sent the REQUEST 

message (via unicast). This will confirm the address lease. The included options are

ServerID, ClientID

DNS-Servers: 2001:xxx:yyy:zzz::a, 2001:xxx:yyy:zzz::b

IA-NA: IAID: 1,

IAPREFIX: Preferred lifetime: nnnnnn,

Valid lifetime: nnnnnn,

Prefix: 2001:xxx:yyy:zzz::c/64

For Further Information on DHCPv6
For details on how clients send and respond to DHCPv6 messages, see RFC 3315, 

section 17.

For details on DHCP Client-initiated Configuration Exchanges, see RFC 3315, 

section 18.

For details on DHCP Server-initiated Configuration Exchanges, see RFC 3315, 

section 19.

For details on relay agent behavior, see RFC 3315, section 20.

For details on the optional authentication mechanism, for use of DHCPv6 in 

unsecured environments, such as wireless networks, see RFC 3315, section 21.

For available DHCPv6 message options and their syntax, see RFC 3315, section 22.

Stateless DHCPv6 assumes that assigned IPv6 addresses are obtained some other 

way, such as Stateless Address Autoconfiguration, and that only stateless information 

(IPv6 addresses of DNS servers, SIP servers, etc.) will be obtained from DHCPv6. RFC 

3736, “Stateless Dynamic Host Configuration Protocol (DHCP) Server for IPv6,” April 

2004, defines the subset of messages and options from the full (stateful) DHCPv6 

functionality that are required to provide stateless DHCPv6 service.

For details on publishing the address of SIP servers with DHCPv6, see RFC 3633, 

“IPv6 Prefix Options for Dynamic Host Configuration Protocol (DHCP) version 6,” 

December 2003.

For details on publishing the address of DNS servers with DHCPv6, see RFC 

3646, “DNS Configuration Options for Dynamic Host Configuration Protocol for IPv6 

(DHCPv6),” December 2003.
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For details on publishing the address of NIS (Network Information Service) servers 

with DHCPv6, see RFC 3898, “Network Information Service (NIS) Configuration Options 

for Dynamic Host Configuration Protocol for IPv6 (DHCPv6),” October 2004.

For details on publishing the address of SNTP (Simple Network Time Protocol) 

servers with DHCPv6, see RFC 4075, “Simple Network Time Protocol (SNTP) 

Configuration Option for DHCPv6,” May 2005.

 Useful Commands Related to DHCPv6
In Windows 7, there are some commands available in a command prompt box related 

to DHCPv6:

ipconfig /release6: Release assigned IPv6 address (es) and de-

configure network.

ipconfig/renew 6: Do a new configuration request for IPv6.

ipconfig/all: View all network configuration settings (IPv4 

and IPv6).

This is an example of the output from “ipconfig /all”:

...

Ethernet adapter Local Area Connection:

   Connection-specific DNS Suffix  . : hughesnet.local

   Description . . . . . . . . . . . : Realtek PCIe GBE Family Controller

   Physical Address. . . . . . . . . : 00-22-15-24-32-9C

   DHCP Enabled. . . . . . . . . . . : Yes

   Autoconfiguration Enabled . . . . : Yes

   IPv6 Address. . . . . . . . . . . : 2001:df8:5403:3000::2:1(Preferred)

   Lease Obtained. . . . . . . . . . : Friday, March 12, 2010 9:43:06 PM

   Lease Expires . . . . . . . . . . : Wednesday, March 24, 2010 9:43:09 PM

   IPv6 Address. . . . . . . . . . . :

                                        2001:df8:5403:3000:b5ea:976d:679f:30

f5(Preferred)

   Temporary IPv6 Address. . . . . . :

                                        2001:df8:5403:3000:218a:4956:7d8c:7c

2c(Preferred)
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   Link-local IPv6 Address . . . . . :  fe80::b5ea:976d:679f:30f5%11(

Preferred)

   IPv4 Address. . . . . . . . . . . : 172.20.2.1(Preferred)

   Subnet Mask . . . . . . . . . . . : 255.255.0.0

   Lease Obtained. . . . . . . . . . : Friday, March 12, 2010 9:42:57 PM

   Lease Expires . . . . . . . . . . : Thursday, March 18, 2010 9:43:00 PM

   Default Gateway . . . . . . . . . : fe80::21b:21ff:fe1d:c159%11

                                       172.20.0.1

   DHCP Server . . . . . . . . . . . : 172.20.0.11

   DHCPv6 IAID . . . . . . . . . . . : 218112533

   DHCPv6 Client DUID. . . . . . . . :  00-01-00-01-11-99-BD-28-00-22-15-24 

 -32-9C

   DNS Servers . . . . . . . . . . . : 2001:df8:5403:3000::c

                                       2001:df8:5403:3000::b

                                       172.20.0.11

                                       172.20.0.12

   NetBIOS over Tcpip. . . . . . . . : Enabled

   Connection-specific DNS Suffix Search List : hughesnet.local

...

In the preceding, notice the following:

• The MAC address (“physical address”) of the interface is 

00-22-15-23-32-9C.

• A 64-bit interface identifier (b5ea:976d:679f:30f5) was created, which 

is a cryptographically generated value (not from EUI-64). A link-local 

unicast address was generated from this (by prepending fe80::/64). 

The link-local address of the default gateway (fe80::21b:21ff:fe1d:c159) 

was then obtained using ND router discovery.

• A Router Advertisement message supplied the subnet prefix 

(2001:df8:5403:3000::/64), so the node used it to create two global 

unicast addresses, one of which (2001:df8:5403:3000:b5ea:976d:679

f:30f5) used the 64-bit random interface identifier from ND and the 

other (2001:df8:5403:3000:218a:4956:7d8c:7c2c) used yet another 

random interface identifier.
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• Obtain an IP address automatically and Obtain DNS server 

address automatically were selected in the IPv4 GUI configuration 

(“DHCP Enabled”), and a working DHCPv4 server was found 

(“Autoconfiguration Enabled”). So an IPv4 address (172.20.2.1), the 

subnet mask (255.255.0.0), the default gateway (172.20.0.1), and the 

IPv4 addresses of two DNS servers were obtained from the DHCPv4 

server. The lease for this was obtained on March 12, 2010, 9:42 p.m., 

and would expire on March 18, 2010, at 9:43 p.m. The MAC address 

(00-22-15-23-32-9C) was used to make a DHCPv4 reservation for this 

node, so this node will always get that IPv4 address.

• Obtain an IPv6 address automatically and Obtain DNS server address 

automatically were selected in the IPv6 GUI configuration, and both 

the M and O bits were set in the Router Advertisement message 

(stateful and stateless DHCPv6 available), so another global unicast 

IPv6 address (2001:df8:5403:3000::2:1) was obtained from DHCPv6, 

plus the IPv6 addresses of two DNS servers. The lease for this was 

obtained on March 12, 2010, at 9:43 p.m., and would expire on March 

24, 2010, at 9:43 p.m.

• The DUID of the node is 00-01-00-01-11-99-BD-28-00-22-15-24-32-9C.  

The first two hex digit pairs contain 00-01. That means this is a type 

1 DUID (DUID-LLT), “Link Layer plus Timestamp.” The next six 

hex digit pairs (00-01-11-99-BD-28) are the timestamp, and the last 

six hex digit pairs (00-22-15-23-32-9C) contain the interface MAC 

address. This DUID, along with the IAID (218112533), was used to 

make a DHCPv6 address reservation for this node. So this node will 

always get that IPv6 address.

 IPv6 Network Configuration
Let’s assume our LAN has the following configuration:

Network prefix: 2001:df8:5403:3000::/64

Default gateway: 2001:df8:5403:3000::1

DHCPv6 server address: 2001:df8:5403:3000::11

Chapter 6  Ipv6 Core protoCols



256

DNS server addresses: 2001:df8:5403:3000::11

2001:df8:5403:3000::12

Domain name: redwar.org

Furthermore, assume the DHCPv6 server is correctly configured with this 

information and is managing the address range 2001:df8:5403:3100::1000 to 

2001:df8:5403:3100::1fff (and that some leases have already been granted).

Any node connected to a network with IPv6 (that will access IPv6 nodes on the 

Internet) must have certain items configured, including

• IPv6 link-local node address (obtained automatically)

• All nodes on link multicast address (ff01::1), there by default

• IPv6 global unicast address

• IPv6 address of default gateway (link-local address of gateway 

obtained automatically)

• IPv6 addresses of DNS servers (manually configured or 

from DHCPv6)

• Nodename

• DNS domain name

 Manual Network Configuration for IPv6-Only
It is possible to perform IPv6 configuration manually, either by editing ASCII 

configuration files, as in FreeBSD or Linux, or via GUI configuration tools, as in 

Windows. If you have understood the material in this chapter, it should be fairly easy to 

configure your node(s). In most cases, if you have ISP service, the ISP will give you all the 

information necessary to configure your node(s). In the coverage of dual-stack networks, 

we will show configuration of both IPv4 and IPv6 on a single node.

Auto Network Configuration Using Stateless Address Autoconfiguration
It is easy for a FreeBSD node to be automatically configured using Stateless Address 

Autoconfiguration. Note that the global unicast address will be created with the EUI-64 

algorithm from your MAC address.

Let’s configure a FreeBSD 7.2 node automatically with SLAAC. Assign it the following 

configuration:
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FreeBSD interface name: vr0

Nodename: us1.redwar.org

Node IP address (whatever SLAAC comes up with)

Default gateway (whatever SLAAC comes up with)

DNS domain name: redwar.org

DNS Server 1: 2001:df8:5403:3000::11

DNS Server 2: 2001:df8:5403:3000::12

You need to edit the following files (you will need root privilege to do this):

/etc/rc.conf

...

hostname="us1.redwar.org"

IPv6_enable="YES"

...

/etc/resolv.conf

Domain       redwar.org

nameserver   2001:df8:5403:3000::11

nameserver   2001:df8:5403:3000::12

If you make these changes, then reboot. You can check the configuration as shown:

$ ifconfig vr0

vr0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0 mtu 1500

        options=2808<VLAN_MTU,WOL_UCAST,WOL_MAGIC>

        ether 00:15:f2:2e:b4:1c

        inet6 2001:df8:5403:3000::215:f2ff:fe2e:b41c prefixlen 64

        inet6 fe80::215:f2ff:fe2e:b41c%vr0 prefixlen 64 scopeid 0x1

        media: Ethernet autoselect (100baseTX <full-duplex>)

        status: active

$ uname –n

us1.redwar.org
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$ nslookup

> server

> exit

$ netstat –finet6 -rn

 Auto Network Configuration Using Manually  
Specified (Static) IPv6 Address
Let’s configure a FreeBSD 7.2 node manually with a static node address. Assign it the 

following configuration:

FreeBSD interface name: vr0

Nodename: us1.redwar.org

Node IP address: 2001:df8:5403:3000::13

Default gateway: 2001:df8:5403::1

DNS domain name: redwar.org

DNS Server 1: 2001:df8:5403:3000::11

DNS Server 2: 2001:df8:5403:3000::12

You need to edit the following files (you will need root privilege to do this):

/etc/rc.conf

...

hostname='us1.redwar.org'

IPv6_enable='YES'

IPv6_ifconfig_vr0='2001:df8:5403:3000::13 prefixlen 64'

IPv6_defaultrouter='2001:df8:5403:3000::1'

...

/etc/resolv.conf

Domain        redwar.org

nameserver    2001:df8:5403:3000::11

nameserver    2001:df8:5403:3000::12
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If you make these changes, then reboot. You can check the configuration as shown:

$ ifconfig vr0

vr0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0 mtu 1500

        options=2808<VLAN_MTU,WOL_UCAST,WOL_MAGIC>

        ether 00:15:f2:2e:b4:1c

        inet6 2001:df8:5403:3000::13 prefixlen 64

        inet6 fe80::215:f2ff:fe2e:b41c%vr0 prefixlen 64 scopeid 0x1

        media: Ethernet autoselect (100baseTX <full-duplex>)

        status: active

$ uname –n

us1.hughesnet.local

$ nslookup

> server

> exit

$ netstat –finet6 -rn

Note If you specify a static Ipv6 address in FreeBsD 7.x (“Ipv6-config_vr0=”...”), 
the node will not obtain a link-local default gateway address automatically. 
therefore, in this case it is essential that you also manually specify a default 
gateway address (which can be global unicast or link local), using the  
“Ipv6_defaultrouter=...” option in /etc/rc.conf. If no default gateway is defined, 
communication with other on-link nodes will work okay, but communication with 
off-link nodes will fail.

This is different from the behavior of Windows 7 and Linux, where the addition of a 

manually configured global unicast address does not stop the node from obtaining the 

link-local default gateway automatically.

Chapter 6  Ipv6 Core protoCols



260

 Summary
In this chapter, we covered the “core” protocols related to IPv6:

• IPv6 itself

• IPCMPv6 (the helper protocol)

• ND (Neighbor Discovery, which is really just a subset of ICMPv6)

• Stateless Address Autoconfiguration (SLAAC) (which is one of the ND 

mechanisms)

We also covered the new IPv6 packet header, as well as the all-new packet header 

extensions. We compared that with the older IPv4 packet header, noting that the basic 

header is twice as long, but simpler. The advanced features have now been moved to the 

header extensions.

We covered the IPv6 addressing model, which is more complex than the IPv4 model. 

For the first time, address scopes have been fully implemented. IPv4 private addresses 

were kind of an address scope, but in IPv6 that concept is fully realized.

We covered DHCPv6, although technically that does not live in the Internet Layer 

(like DHCPv4, it lives in the Application Layer). With the new SLAAC, there is not much 

need for DHCPv6, especially now that SLAAC advertises the DNS addresses for the 

network. The only real need for DHCPv6 in current networks is for Prefix Delegation 

(how ISPs advertise the network prefix to subscribers).

Finally, we covered how you actually configure IPv6 addresses in FreeBSD.
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CHAPTER 7

IPsec and IKEv2
This chapter covers two advanced protocols for TCP/IP called IPsec and IKEv2. IPsec is 

for “Internet Protocol Security” and adds authentication and encryption at the Internet 

Layer. IKEv2 is the Internet Key Exchange protocol for use with IPsec, and the current 

version is 2. You can use IPsec without IKEv2 with manual key management, but this is 

not scalable or particularly secure. Both IPsec and IKEv2 are available for IPv4 and IPv6, 

but NAT breaks both IPsec itself and IKEv2, so IPsec works far better over IPv6 (where 

there is no NAT to break them). IPsec was created for both IPv4 and IPv6, in RFC 1825,1 

“Security Architecture for the Internet Protocol,” August 1995:

This memo describes the security mechanisms for IP version 4 (IPv4) and 
IP version 6 (IPv6) and the services that they provide.

You can deploy IPsec on IPv4 today, but if the path crosses a NAT gateway, you have 

to also deploy NAT traversal, which introduces more security issues than IPsec solves. 

Because of this, SSL- VPN2 is easier to work with and more widely used than IPsec on 

IPv4. Unfortunately, SSL-VPN is a very badly designed scheme misusing SSL in the 

wrong part of the network stack. There is also no IETF standard for SSL-VPN, because 

the IETF doesn’t consider it a viable protocol. So there is no guarantee that two vendors’ 

implementations will actually interoperate. IPsec is the only IETF-approved scheme for 

implementing VPNs, and as IPv6 becomes more widely deployed, it will finally become 

widely used. The problems people run into today are more problems with IPv4 and NAT 

than with IPsec. It works great on IPv6.

1 https://tools.ietf.org/html/rfc1825
2 https://openvpn.net/faq/why-ssl-vpn/
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Originally IPsec was mandatory for IPv6 implementations (but of course did not 

have to be enabled on every connection), leading to the myth that IPv6 was more secure 

than IPv4. RFC 6434,3 “IPv6 Node Requirements,” December 2011, changed MUST to 

SHOULD (IPsec became optional in implementations but is still strongly recommended). 

Most IPv6 implementations I use (on real computers, not sensors) include IPsec.

Note that you can still build a subnet-to-subnet VPN with IPsec over IPv6 even if 

both subnets are dual stack or even IPv4-only, if IPv6 is available on a path connecting 

them. You can tunnel IPv4 through an IPv6 path.

These facts add strong incentives for organizations to begin supporting IPv6 sooner 

rather than later.

 Internet Protocol Layer Security (IPsec)
The official name for this technology (as used by the IETF) is the Security Architecture for 

the Internet Protocol. Since it takes place in the Internet Layer, protocols at the Transport 

and Application Layers need not even be aware of it and do not need to be modified to 

use it. In effect, you build secure tunnels at the IP Layer that the higher-layer protocols 

go through unmodified. Compare with SSL/TLS where the Application Layer is heavily 

impacted, both in the design and implementation stage (many changes to source code 

and application design) and in the deployment stage (obtaining and installing server 

digital certificates into the server application). You could say that all applications get a 

“free ride” over IPsec, gaining security features (without having to include any support 

for security themselves) simply by running over Internet Layer links secured with IPsec.

By security we are here referring to three specific aspects of security:

Privacy (keeping others from being able to view the content 

of your transmissions), accomplished using the Encapsulating 

Security Payload (ESP) feature

Authentication (knowing for sure whom the packets came from), 

accomplished with the Authentication header (AH) feature

3 https://tools.ietf.org/html/rfc6434
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Message integrity (knowing if someone has made any changes 

to the Data field or certain fields of the header, including the 

source and destination addresses), also accomplished with the 

Authentication header (AH) feature

The AH and ESP features are mutually independent. You can make use of neither, 

either, or both, depending on your requirements. If you need only authentication and 

message integrity, you can use only AH. If you need only privacy, you can use only ESP. If 

you require both, you can use both AH and ESP (there is no conflict between them).

Note, however, that since AH protects the source and destination addresses in the 

IP header and the source and destination ports in the TCP or UDP header, any changes 

at all to these fields will be detected as tampering (to AH there is no way to distinguish 

malicious tampering from changes your own network makes to these fields). This 

means AH will report the changes to IP addresses and ports in the header by NAT to 

be a hacking attack. It is possible to combine NAT traversal with IPsec (as discussed in 

RFC 3715,4 “IPsec-Network Address Translation (NAT) Compatibility Requirements”), 

but this greatly complicates the creation and deployment of IPsec applications and 

introduces new security issues, which may outweigh the benefits of using IPsec in the 

first place. IPsec is not very suitable for use on existing IPv4 networks since NAT is so 

widely deployed. Many network professionals have gotten a bad impression of it, but 

this is because of NAT in IPv4 networks, not any shortcoming of IPsec. There is no other 

technology for building VPNs supported by the IETF. IPsec works great in IPv6 networks. 

This is because of better support in IPv6 headers to some extent, but primarily because 

there is no NAT.

Note that IPsec AH does not use a “heavyweight” scheme like PKI digital 

signatures for authentication. It uses the much lighter-weight HMAC5 scheme (a hash 

algorithm that uses a key). If it used real digital signatures (based on asymmetric key 

cryptography), it would reduce throughput dramatically.

Any security features at this level (which must be performed once per packet) must 

be very lightweight (they cannot use mechanisms that require a lot of CPU power). This 

rules out the use of asymmetric key cryptography (as used in digital signatures and 

digital envelopes), at least on a per-packet basis. Use of asymmetric key cryptography 

would cause severe degradation of network throughput. Fortunately, there is a 

4 https://tools.ietf.org/html/rfc3715
5 https://en.wikipedia.org/wiki/HMAC
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lightweight alternative to digital signatures, which is Hash-Based Message Authentication 

Codes (essentially a key-driven message digest), which is used in AH. Encryption is 

handled using only symmetric key encryption and decryption with the same symmetric 

key for many packets. The key can be manually distributed (shared secret deployment) 

or securely distributed via the Internet Key Exchange (IKE) protocol, which does use 

asymmetric key cryptography (but IKE is used infrequently – the exchanged key is used 

to encrypt or decrypt a large number of packets before another key is exchanged). Even 

with these lightweight algorithms, there can still be an impact on network throughput 

(especially on systems with lower-performance CPUs). Network Interface Cards (NICs) 

are available that include hardware acceleration of the IPsec algorithms (HMAC 

generation and checking, as well as symmetric key encryption/decryption). These allow 

wire-speed network throughput even on systems with low-performance CPUs.

 Relevant Standards for IPsec
The following standards are relevant to IPsec and IKE:

RFC 2410, “The NULL Encryption Algorithm and Its Use with 

IPsec,” November 1998 (Standards Track)

RFC 2412, “The Oakley Key Determination Protocol,” November 

1998 (Informational)

RFC 2709, “Security Model with Tunnel-Mode IPsec for NAT 

Domains,” October 1999 (Informational)

RFC 3193, “Securing L2TP Using IPsec,” November 2001 

(Standards Track)

RFC 3554, “On the Use of Stream Control Transmission Protocol 

(SCTP) with IPsec,” July 2003 (Standards Track)

RFC 3456, “Dynamic Host Configuration Protocol (DHCPv4) 

Configuration of IPsec Tunnel Mode,” January 2003 

(Standards Track)

RFC 3457, “Requirements for IPsec Remote Access Scenarios,” 

January 2003 (Informational)
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RFC 3554, “On the Use of Stream Control Transmission Protocol 

(SCTP) with IPsec,” July 2003 (Standards Track)

RFC 3566, “The AES-XCBC-MAC-96 Algorithm and Its Use with 

IPsec,” September 2003 (Standards Track)

RFC 3585, “IPsec Configuration Policy Information Model,” 

August 2003 (Standards Track)

RFC 3602, “The AES-CBC Cipher Algorithm and Its Use with 
IPsec,” September 2003 (Standards Track)

RFC 3715, “IPsec-Network Address Translation (NAT) 

Compatibility Requirements,” March 2004 (Informational)

RFC 3884, “Use of IPsec Transport Mode for Dynamic Routing,” 

September 2004 (Informational)

RFC 3947, “Negotiation of NAT-Traversal in the IKE,” January 2005 

(Standards Track)

RFC 3948, “UDP Encapsulation of IPsec ESP Packets,” January 

2005 (Standards Track)

RFC 4025, “A Method for Storing IPsec Keying Material in DNS,” 

March 2005 (Standards Track)

RFC 4106, “The Use of Galois/Counter Mode (GCM) in 

IPsec Encapsulating Security Payload (ESP),” June 2005 

(Standards Track)

RFC 4109, “Algorithms for Internet Key Exchange version 1 

(IKEv1),” May 2005 (Standards Track)

RFC 4196, “The SEED Cipher Algorithm and Its Use with IPsec,” 

January 2006 (Standards Track)

RFC 4301, “Security Architecture for the Internet Protocol,” 
December 2005 (Standards Track)

RFC 4302, “IP Authentication Header,” December 2005 
(Standards Track)
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RFC 4303, “IP Encapsulating Security Payload (ESP),” 
December 2005 (Standards Track)

RFC 4304, “Extended Sequence Number (ESN) Addendum 

to IPsec Domain of Interpretation (DOI) for Internet Security 

Association and Key Management Protocol (ISAKMP),” December 

2005 (Standards Track)

RFC 4308, “Cryptographic Suites for IPsec,” December 2005 
(Standards Track)

RFC 4309, “Using Advanced Encryption Standard (AES) CCM 
Mode with IPsec Encapsulating Security Payload (ESP),” 
December 2005 (Standards Track)

RFC 4312, “The Camellia Cipher Algorithm and Its Use with 

IPsec,” December 2005 (Standards Track)

RFC 4322, “Opportunistic Encryption Using the Internet Key 

Exchange (IKE),” December 2005 (Informational)

RFC 4430, “Kerberized Internet Negotiation of Keys (KINK),” 

March 2006 (Standards Track)

RFC 4434, “The AES-XCBC-PRF-128 Algorithm for the Internet 

Exchange Protocol (IKE),” February 2006 (Standards Track)

RFC 4494, “The AES-CMAC-96 Algorithm and Its Use with IPsec,” 

June 2006 (Standards Track)

RFC 4543, “The Use of Galois Message Authentication Code 

(GMAC) in IPsec ERP and AH,” May 2006 (Standards Track)

RFC 4555, “IKEv2 Mobility and Multihoming Protocol (MOBIKE),” 

June 2006 (Standards Track)

RFC 4615, “The Advanced Encryption Standard-Cipher-based 
Message Authentication Code-Pseudo-Random Function-128 
(AES-CMAC-PRF-128) Algorithm for the Internet Key 
Exchange Protocol (IKE),” August 2006 (Standards Track)

RFC 4807, “IPsec Security Policy Database Configuration MIB,” 

March 2007 (Standards Track)
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RFC 4809, “Requirements for an IPsec Certificate Management 
Profile,” February 2007 (Informational)

RFC 4868, “Using HMAC-SHA-256, HMAC-SHA-384, and 
HMAC-SHA-512 with IPsec,” May 2007 (Standards Track)

RFC 4877, “Mobile IPv6 Operation with IKEv2 and the Revised 

IPsec Architecture,” April 2007 (Standards Track)

RFC 4891, “Using IPsec to Secure IPv6-in-IPv4 Tunnels,” May 
2007 (Informational)

RFC 4894, “Use of Hash Algorithms in Internet Key Exchange 
(IKE) and IPsec,” May 2007 (Informational)

RFC 4945, “The Internet IP Security PKI Profile of IKEv1/
ISAKMP, IKEv2, and PKIX,” August 2007 (Standards track)

RFC 5265, “Mobile IPv4 Traversal Across IPsec-Based VPN 

Gateways,” June 2008 (Standards Track)

RFC 5374, “Multicast Extensions to the Security Architecture 
for the Internet Protocol,” November 2008 (Standards Track)

RFC 5386, “Better-Than-Nothing Security: An Unauthenticated 

Mode of IPsec,” November 2008 (Standards Track)

RFC 5387, “Problem and Applicability Statement for Better-Than- 

Nothing Security (BTNS),” November 2008 (Informational)

RFC 5406, “Guidelines for Specifying the Use of IPsec Version 
2,” February 2009 (Best Current Practice)

RFC 5529, “Modes of Operation for Camellia for Use with IPsec,” 

April 2009 (Standards Track)

RFC 5566, “BGP IPsec Tunnel Encapsulation Attribute,” June 2009 

(Standards Track)

RFC 5660, “IPsec Channels: Connection Latching,” October 2009 

(Standards Track)

RFC 5755, “An Internet Attribute Certificate Profile for 

Authorization,” January 2010 (Standards Track)
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RFC 5856, “Integration of Robust Header Compression over IPsec 

Security Associations,” May 2010 (Informational)

RFC 5857, “IKEv2 Extensions to Support Robust Header 

Compression over IPsec,” May 2010 (Standard)

RFC 5858, “IPsec Proposed Extensions to Support Robust Header 

Compression over IPsec,” May 2010 (Proposed Standard)

RFC 5879, “Heuristics for Detecting ESP-NULL Packets,” May 2010 

(Informational)

RFC 6027, “IPsec Cluster Problem Statement,” October 2010 

(Informational)

RFC 6071, “IP Security (IPsec) and Internet Key Exchange (IKE) 

Document Roadmap,” February 2011 (Informational)

RFC 6040, “Tunneling of Explicit Congestion Notification,” 

November 2010 (Proposed Standard)

RFC 6071, “IP Security (IPsec) and Internet Key Exchange (IKE) 

Document Roadmap,” February 2011 (Informational)

RFC 6151, “Updated Security Considerations for the MD5 

Message-Digest and the HMAC-MD5 Algorithms,” March 2011 

(Informational)

RFC 6193, “Media Description for the Internet Key Exchange 

Protocol (IKE) in the Session Description Protocol (SDP),” April 

2011 (Informational)

RFC 6311, “Protocol Support for High Availability of IKEv2/IPsec,” 

(Standards Track)

RFC 6379, “Suite B Cryptographic Suites for IPsec,” October 
2011 (Historic)

RFC 6380, “Suite B Profile for Internet Protocol Security 
(IPsec),” October 2011 (Historic)

RFC 6467, “Secure Password Framework for Internet Key 

Exchange Version 2 (IKEV2),” December 2011 (Informational)
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RFC 6479, “IPsec Anti-Reply Algorithm Without Bit Shifting,” 

January 2012 (Informational)

RFC 6538, “The Host Identity Protocol (HIP) Experiment Report,” 

March 2012 (Informational)

RFC 7018, “Auto-Discovery VN Problem Statement and 

Requirements,” September 2012 (Informational)

RFC 7146, “Securing Block Storage Protocols over IP: RFC 

3723 Requirements Update for IPsec v3,” April 2014 (Proposed 

Standard)

RFC 7296, “Internet Key Exchange (IKEv2) Protocol,” 
December 2005 (Standards Track)

RFC 7427, “Signature Authentication in the Internet Key 
Exchange Version 2 (IKEv2),” October 2014 (Proposed 
Standard)

RFC 7634, “ChaCha20, Poly1305 and Their Use in the Internet Key 

Exchange Version 2 (IKEv2),” January 2015 (Proposed Standard)

RFC 7815, “Minimal Internet Key Exchange Version 2 (IKEV2) 

Initiator Implementation,” March 2016 (Informational)

RFC 7236, “Guidelines on the Cryptographic Algorithms to 

Accompany the Usage of Standards GOST R 34.10-2012 and GOST 

R 34.11-2012,” October 2017 (Proposed Standard)

RFC 8221, “Cryptographic Algorithm Implementation 
Requirements and Usage Guidance for Encapsulating Security 
Payload (ESP) and Authentication Header (AH),” October 2017 
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 Security Association, Security Association Database, 
and Security Parameter Index
A Security Association (SA) is a collection of which protocols and algorithms to use for 

authentication and encryption, together with the keys used, for communication in one 

direction between two IPsec-enabled nodes (e.g., from Alice to Bob). A different SA is 

created for communication in the other direction, between the same two nodes (e.g., 

from Bob to Alice). Each pair of communicating IPsec nodes requires an SA for each 

direction that data will be sent between them (normally both directions). Each node 

stores both SAs for a connection in its Security Association Database (SADB). It refers 

to the SA for outgoing traffic when it sends packets and the SA for incoming traffic when 

it receives packets. When a secure connection is set up the first time (or if anything is 

changed), then the relevant Security Associations are negotiated and stored.

A Security Association Database (SADB) is a collection of Security Associations, on 

a given node. Each IPsec-enabled node has its own SADB (this is not stored in a central 

DBMS and in fact does not resemble what most people would call a database – it’s really 

more of a simple table). As the node negotiates Security Associations with other nodes, it 

stores each new one into its SADB.

The Security Parameter Index (SPI) is an index into the SADB. An SPI together with a 

destination IP address uniquely identifies a particular Security Association.

 IPsec Transport Mode and IPsec Tunnel Mode
There are two modes in which a given IPsec connection can operate: Transport Mode 

and Tunnel Mode.

In Transport Mode, with AH, only the packet payload and certain fields in the packet 

headers (including source and destination IP addresses and source and destination 

port numbers) are authenticated. This means the contents of the payload and those 

header fields are included in the calculation of the AH cryptographic checksum using 

HMAC. None of those fields are modified in any way by IPsec. Therefore, the original 

addresses are used for routing of the packet. However, if NAT modifies any of these 

header fields as the packet goes through a NAT gateway (which is the normal behavior 

of NAT), then the cryptographic checksum will fail when the packet is received (after all, 

someone has tampered with the packet contents).
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In IPv4 Transport Mode, the AH packet header is inserted after the IP header, but 

before the TCP (or UDP) header, as follows:

                   BEFORE APPLYING AH

             ----------------------------

       IPv4  |orig IP hdr  |     |      |

             |(any options)| TCP | Data |

             ----------------------------

                   AFTER APPLYING AH

             -------------------------------------------------------

       IPv4  |original IP hdr (any options) | AH | TCP |    Data   |

             -------------------------------------------------------

             |<- mutable field processing ->|<- immutable fields ->|

             |<----- authenticated except for mutable fields ----->|

In IPv6 Transport Mode, the original IP packet header comes first, followed by one 

or more extension headers, one of which is the new AH, followed by the TCP (or UDP) 

header and then the Data field (payload).

                        BEFORE APPLYING AH

             ---------------------------------------

       IPv6  |             | ext hdrs |     |      |

             | orig IP hdr |if present| TCP | Data |

             ---------------------------------------

                       AFTER APPLYING AH

            ------------------------------------------------------------

      IPv6  |             |hop-by-hop, dest*, |    | dest |     |      |

            |orig IP hdr  |routing, fragment. | AH | opt* | TCP | Data |

            ------------------------------------------------------------

            |<--- mutable field processing -->|<-- immutable fields -->|

            |<---- authenticated except for mutable fields ----------->|

                  * = if present, could be before AH, after AH, or both

In Transport Mode with ESP, only the TCP (or UDP) header and the Data field 

(payload) are encrypted. No other header fields are encrypted, or the packet could not 

be delivered. Transport mode is used only for host-to-host communications. No IPsec 
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gateway is required. Any node involved in a Transport Mode IPsec connection must 

have support for IPsec Transport Mode. If automated key exchange is to be used, those 

nodes must also support a common key exchange protocol (IKEv1, IKEv2, or KINK). 

If available, IKEv2 is preferred. If IKE is used, each node requires an appropriate IPsec 

digital certificate that binds the public key to its IP address(es). If KINK is used, then a 

Kerberos Key Distribution Center (KDC) must be available to all nodes using it.

In IPv4 Transport Mode with ESP, the original IP header comes first, followed by the 

ESP header, followed by the TCP (or UDP) header, followed by the data. With ESP, after 

the Data field, there is an ESP trailer and an Integrity Check Value (ICV). Encryption is 

done on the TCP (or UDP) header, the Data field (payload), and the ESP trailer. Integrity 

(for the ICV) covers those fields plus the ESP header.

                  BEFORE APPLYING ESP

             ----------------------------

       IPv4  |orig IP hdr  |     |      |

             |(any options)| TCP | Data |

             ----------------------------

                  AFTER APPLYING ESP

             -------------------------------------------------

       IPv4  |orig IP hdr  | ESP |     |      |   ESP   | ESP|

             |(any options)| Hdr | TCP | Data | Trailer | ICV|

             -------------------------------------------------

                                 |<---- encryption ---->|

                           |<-------- integrity ------->|

In IPv6 Transport Mode with ESP, the original IP header comes first, followed by one 

or more extension headers, one of which is the ESP extension header, followed by the 

original TCP (or UDP) header and then the Data field (the packet payload). As with IPv4, 

there is an ESP trailer and an ESP ICV. Encryption is done on any extension headers 

after the ESP extension header, the TCP (or UDP) header, the Data field (payload), and 

the ESP trailer. Integrity (for the ICV) covers those fields plus the ESP header.

                      BEFORE APPLYING ESP

             ---------------------------------------

       IPv6  |             | ext hdrs |     |      |

             | orig IP hdr |if present| TCP | Data |
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             ---------------------------------------

                      AFTER APPLYING ESP

             ---------------------------------------------------------

       IPv6  | orig |hop-by-hop,dest*,|   |dest|   |    | ESP   | ESP|

             |IP hdr|routing,fragment.|ESP|opt*|TCP|Data|Trailer| ICV|

             ---------------------------------------------------------

                                          |<--- encryption ---->|

                                      |<------ integrity ------>|

                 * = if present, could be before ESP, after ESP, or both

In Tunnel Mode (with AH and/or ESP), the entire original IP packet (all headers plus 

the payload) is encrypted and/or authenticated. The result is encapsulated into a new 

IP packet with new headers. This encapsulation is added to packets on the way out by 

an IPsec tunnel gateway and removed on the way at the other end of the network path 

by another IPsec tunnel gateway. In between, it looks like a normal IPv4 (or IPv6) packet 

that has an odd-looking payload and is routed like any other packet. The IP version of 

the inner packet does not have to be the same as the IP version of the outer packet. You 

can tunnel IPv6 packets over IPv4 or IPv4 packets over IPv6. The node you connect 

to must support the version(s) of IP you send to it, though. After the encapsulation is 

removed and the authentication and/or encryption is removed, the resulting packet is 

forwarded to the inside of the tunnel gateway, where it continues on to its destination.

In IPv4 Tunnel Mode with AH, the outer IP header comes first (possibly with 

options), followed by the new AH header and followed by the original entire packet.

In IPv6 Tunnel Mode with AH, the outer IP header comes first, followed by one or 

more extension headers, including the AH extension header, followed by the original 

entire packet (which itself may contain extension packet headers, but they won’t be 

processed until after the packet is de-tunneled).

        ----------------------------------------------------------------

   IPv4 |                              |    | orig IP hdr*  |   |      |

        |new IP header * (any options) | AH | (any options) |TCP| Data |

        ----------------------------------------------------------------

        |<- mutable field processing ->|<------ immutable fields ----->|

        |<- authenticated except for mutable fields in the new IP hdr->|

        --------------------------------------------------------------
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   IPv6 |           | ext hdrs*|    |            | ext hdrs*|   |    |

        |new IP hdr*|if present| AH |orig IP hdr*|if present|TCP|Data|

        --------------------------------------------------------------

        |<--- mutable field -->|<--------- immutable fields -------->|

        |       processing     |

        |<-- authenticated except for mutable fields in new IP hdr ->|

          * = if present, construction of outer IP hdr/extensions and

              modification of inner IP hdr/extensions is discussed in

              the Security Architecture document.

In IPv4 Tunnel Mode with ESP, the outer IP header comes first, followed by the ESP 

header, followed by any options from the original packet header, followed by the TCP 

(or UDP) header, followed by the Data field (payload). Again, the data is followed by an 

ESP trailer and ESP ICV. Encryption covers everything after the ESP header, up to and 

including the ESP trailer. The integrity value covers all that plus the ESP header.

In IPv6 Tunnel Mode with ESP, the outer IP packet header comes first followed by 

any new packet header extensions, followed by the ESP header and then the entire 

original packet. As before, the Data field (payload) is now followed by the ESP trailer and 

the ESP ICV. Encryption covers everything after the ESP header, up to and including the 

ESP trailer. The integrity value covers all that plus the ESP header.

                 BEFORE APPLYING ESP

            ----------------------------

      IPv4  |orig IP hdr  |     |      |

            |(any options)| TCP | Data |

            ----------------------------

                 AFTER APPLYING ESP

            -----------------------------------------------------------

      IPv4  | new IP hdr* |     | orig IP hdr*  |   |    | ESP   | ESP|

            |(any options)| ESP | (any options) |TCP|Data|Trailer| ICV|

            -----------------------------------------------------------

                                |<--------- encryption --------->|

                          |<------------- integrity ------------>|

                      BEFORE APPLYING ESP
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            ---------------------------------------

      IPv6  |             | ext hdrs |     |      |

            | orig IP hdr |if present| TCP | Data |

            ---------------------------------------

                     AFTER APPLYING ESP

            ------------------------------------------------------------

      IPv6  | new* |new ext |   | orig*|orig ext |   |    | ESP   | ESP|

            |IP hdr| hdrs*  |ESP|IP hdr| hdrs *  |TCP|Data|Trailer| ICV|

            ------------------------------------------------------------

                                |<--------- encryption ---------->|

                            |<------------ integrity ------------>|

            * = if present, construction of outer IP hdr/extensions and

                modification of inner IP hdr/extensions is discussed in

                the Security Architecture document.

The IPsec tunnel processing can be physically located inside a gateway firewall or 

router, or it can be in a node that does just IPsec tunneling, on the inside of an existing 

router or firewall. All IPsec-related processing (generating or validating the HMAC 

cryptographic checksum and/or packet encryption/decryption) takes place in the 

tunneling IPsec node. IPsec Tunnel Mode is primarily used for network-to-network 

tunnels, but it can be used for host-to-network communications (e.g., a road warrior 

connecting into the home network securely) or even host-to-host communications 

(e.g., for private chat or VoIP). If any hosts (as opposed to gateways) are involved in an 

IPsec Tunnel Mode connection, those hosts would need to support IPsec Tunnel Mode. 

If the tunnel is built between two gateway nodes (network-to-network tunnel), then 

any other node in either network can send things through that tunnel to nodes in the 

other network without having to know anything about IPsec. If automated key exchange 

is to be used, the participating nodes must also support a common key exchange 

protocol (IKEv1, IKEv2, or KINK). If available, IKEv2 is preferred. If IKE is used, each 

node requires an appropriate IPsec digital certificate that binds the public key to its IP 

address(es), for mutual authentication. If KINK is used, then a Kerberos Key Distribution 

Center must be available to all nodes using it.

An IPsec tunnel must be set up in the sending and receiving nodes so that the 

sending node knows what address to put in the outer packet header. This configuration 

would specify things like “All traffic destined for 123.45.56.00/24 is to be tunneled and 
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sent to the gateway located at 123.45.67.1” or “Accept IPsec-tunneled traffic from the 

node that is located at 87.65.34.21, de-tunnel it, and route the inside packet onto the 

LAN.” Regardless of what transport the original traffic used (TCP or UDP), the tunneled 

traffic will be over UDP. This introduces additional overhead and can complicate the 

built-in error recovery mechanism in TCP. The IP addresses in the outer packet header 

are not authenticated.

If IPv4-tunneled traffic crosses any router, the addresses of all nodes must be valid 

global unicast IP addresses (although this could be simulated using BINAT with a node 

that has a private IP address behind a NAT gateway). It would be possible to create 

an IPsec path over IPv4 entirely within a routing domain using private IP addresses. 

Basically, there must be a flat address space (or a reasonable facsimile thereof) over the 

entire path of the connection. A classic problem with VPNs connecting nodes in disjoint 

private networks is that the private address spaces in the two networks must not overlap. 

If two companies are both using 10.0.0.0/8 as their private addresses, either VPNs will 

not work between them or at least one network must renumber (e.g., to 172.16.0.0/12). 

If you have an HQ network and several branch offices, you might want to use 10.0.0.0/16 

for HQ, 10.1.0.0/16 for the first branch office, 10.2.0.0/16 for the second branch office, 

etc. This would allow up to 256 branch offices, each with up to 65,535 nodes. This way, if 

you do want to build VPNs between them someday, there will not be any overlap.

 IPsec over IPv6
In IPv6, none of the issues related to NAT arise, since all nodes can easily obtain global 

unicast IPv6 addresses, and the entire world is a single flat address space. IPsec works 

beautifully over IPv6, and this is one of the strongest arguments for migrating to dual 

stack sooner rather than later. Use the IPv6 side for protocols that require a flat address 

space, such as IPsec, SIP, P2P, etc. Use the IPv4 side for legacy applications like web 

surfing, email, etc. You can gradually move those over to IPv6 as well.

The IPv6 packet header design supports IPsec very well. There are two packet 

header extensions defined, one for AH and one for ESP. The AH extension header 

will be inserted if and only if AH is used on that packet. For details, see RFC 4302, 

“IP Authentication Header.” The ESP extension header will be inserted if and only 

if ESP is used on that packet. For details, see RFC 4303, “IP Encapsulating Security 

Payload (ESP).”
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 IPsec in Multicast Networks
It is possible to deploy IPsec in a multicast network. Security Association negotiation is 

rather more complicated in a one-to-many connection than in a one-to-one connection. 

RFC 5374, “Multicast Extensions to the Security Architecture for the Internet Protocol,” 

covers the details. IPsec in multicast networks could allow content providers to control 

access to multicast content using ESP and some clever key management. For example, 

each valid subscriber could be issued a unique IPsec digital certificate (tied to their set 

top box) that would allow decrypting the symmetric session key used to encrypt the 

content. If they don’t pay their bill, their certificate could be revoked.

 Using IPsec to Secure L2TP Connections
L2TP (Layer 2 Tunneling Protocol) itself does not provide either privacy or 

authentication. RFC 3193, “Securing L2TP Using IPsec,” specifies how to use IPsec in 

conjunction with it to add privacy (with ESP) and/or authentication (with AH) to an 

L2TP-based system.

 Internet Key Exchange (IKE)
The Internet Key Exchange (IKEv1 and IKEv2) is based on ISAKMP (Internet Security 

Association and Key Management Protocol), which is a framework for key exchange. 

It uses parts of the Oakley and SKEME (Secure Key Exchange MEchanism for Internet) 

protocols within this framework. Oakley describes a series of key exchanges, known as 

modes, and specifies things such as perfect forward secrecy for keys, identity protection, 

and authentication. It is discussed in RFC 2412, “The Oakley Key Determination 

Protocol.” SKEME is a key exchange technique that provides anonymity and quick key 

refreshment. There is no RFC that covers SKEME, but there are some papers available 

online. There is coverage of the parts of Oakley and SKEME used in IKE in RFCs 2408 

and 2409.

IKE uses the Diffie-Hellman Key Agreement protocol to securely exchange a shared 

secret, from which symmetric session keys for AH and ESP are derived. IKE is also used 

to mutually authenticate nodes to each other. Authentication can be accomplished 

with a pre-shared secret (manually distributed to each node) or by use of IPsec digital 

certificates (ones that bind IPv4 and/or IPv6 addresses to the public key). Each pair 
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of nodes that use IPsec use IKE to do key exchange and mutual authentication, which 

results in setting up a Security Association (SA) at each end for the other node in the pair.

IKE is usually implemented as a daemon process (a software application that 

starts running when the computer boots and stays running until shutdown) on each 

IPsec- enabled node, in user space (the part of memory where user applications 

run). IKE communicates via UDP over port 500. There is no client or server role; the 

communication is between peers. Either node of a pair can initiate an IKE connection. 

The other node of the pair will accept it. The AH and ESP packet processing is embedded 

in the TCP/IP stack (specifically in the IP Layer), which usually runs in Kernel Space (the 

part of memory where the operating system kernel runs, typically protected from access 

by user applications).

Note in the following that Oakley defines modes: Main Mode, Aggressive Mode, and 

Quick Mode. ISAKMP defines phases: phase 1 and phase 2. Main Mode and Aggressive 

Mode take place during ISAKMP’s phase 1, while Quick Mode takes place during 

ISAKMP’s phase 2.

IKE phase 1 establishes an encrypted, authenticated communication channel 

between the two parties. It first uses the Diffie-Hellman Key Agreement protocol, which 

produces a shared secret. A symmetric session key is derived from the shared secret 

by both parties, which is used to encrypt further IKE exchanges. The goal of phase 1 

is to create a bidirectional ISAKMP Security Association (SA). Mutual authentication 

can be accomplished either using a pre-shared secret or via cryptographic challenge/

response using IPsec public key digital certificates. Either a pre-shared secret or an IPsec 

certificate must be installed on each IPsec-enabled node when the system is deployed. 

Phase 1 can operate in either Main Mode or Aggressive Mode. Main Mode protects the 

identities of the nodes but takes longer. Aggressive Mode is faster but does not protect 

the identities of the nodes.

IKE phase 2 uses the secure channel established in phase 1 to negotiate additional 

Security Associations (SAs) for services such as IPsec. The output of phase 2 is a pair 

of unidirectional SAs (one for traffic from Alice to Bob and one for traffic from Bob to 

Alice). On each node, one of these SAs is used for inbound traffic and the other one for 

outbound traffic. Phase 2 operates in Quick Mode.

Cryptographic challenge/response is used by each end to authenticate itself to the 

other. This is based on public/private key pairs (asymmetric cryptography) and digital 

certificates. Each direction works as follows (flipping roles A and B when the second 

direction is done):
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Step 1: Node A sends its public key digital certificate to Node B.

Step 2: Node B verifies Node A’s digital certificate by checking its 

digital signature, its expiration date, and its revocation status. It 

also climbs the chain of trust to a trusted root key. If the identity in 

the certificate is an IP address, it must match the source IP address 

of the IKE connection.

Step 3: Node B generates a random string and encrypts it using 

Node A’s public key (from its digital certificate) and sends it as a 

challenge to Node A.

Step 4: Node A decrypts the challenge using its own private key 

and returns the result to Node B as its response.

Step 5: Node B compares the response with the original string. 

If they match, that is proof that Node A possesses the private 

key associated with the public key in Node A’s digital certificate 

(without Node A revealing its private key to anyone). This 

authenticates Node A to Node B.

An IPsec digital certificate is like a server (SSL) digital certificate or a client digital 

certificate. The primary difference is what identity information the public key is bound 

to. In a server cert, the identity information is an FQDN (e.g., www.example.com) and an 

organization name (in the distinguished name). In a client cert, the identity information 

is a person’s name and email address (in the distinguished name). It is also possible 

for an IPsec certificate to specifically include IKE as a valid key usage (id_kp_ipsecIKE 

attribute). In an IPsec cert, there are several possibilities for the identity:

• Individual IPv4 and/or IPv6 address (ID_IPV4_ADDR and ID_

IPV6_ADDR). These do not work well if the connection traverses 

NAT. There is no problem with using IPv6 addresses.

• IPv4 or IPv6 subnet (ID_IPv4_ADDR_SUBNET and ID_IPv6_ADDR_

SUBNET). The same issues are involved if the connection traverses 

NAT. For example, you could identify your node as being in the 

subnet 2001:418:5403:3000::/64.

Chapter 7  IpseC and IKev2

http://www.example.com


280

• IPv4 or IPv6 address range (ID_IPv4_ADDR_RANGE and ID_IPV6_

ADDR_RANGE). This is used for specifying a block of addresses that 

doesn’t happen to fall on (power of 2) subnet boundaries (e.g., all 

addresses from 2001:418:5403:3000::100 to 2001:418:5403:3000::200).

• FQDN (ID_FQDN). This depends on trusting the mapping from 

FQDN to IP address; hence, DNS should only be used if DNSSEC is 

deployed. Otherwise, the resolution from FQDN to IP address must 

be handled by some other means, which is trusted. Again, NAT can 

cause problems with this.

If IP addresses are specified, during the authentication process, the source IP 

address of the IKE connection must match the IP address (byte for byte) in the IPsec 

digital certificate. This is similar to SSL/TLS, where the nodename you are connecting to 

must match the FQDN in the server certificate. In SSL, if you connect to an alias name or 

a numeric IP address, you will get an error.

 Internet Key Exchange Version 2 (IKEv2)
IKEv1 was defined in November 1998. There are still some IPsec implementations that 

support only IKEv1, so some IKEv2 implementations also support IKEv1 for backward 

compatibility (e.g., RACOON2 in BSD). There were many issues with IKEv1, which led to 

the creation of IKEv2 in December 2005. The issues with IKEv1 include the following:

• The specification of IKEv1 was spread over three basic RFCs (2407, 

2408, and 2409), plus others for NAT traversal (3715) and so on. In 

comparison, almost all of IKEv2 was specified in RFC 4306. The list 

of supported cryptographic algorithms was split off into RFC 4307 for 

ease of updating the algorithm suite in the future.

• IKEv1 had no support for SCTP or Mobile IP. Both are supported 

in IKEv2. For SCTP, see RFC 3554, “On the Use of Stream Control 

Transmission Protocol (SCTP) with IPsec.” For Mobile IP, see RFC 

4877, “Mobile IPv6 Operation with IKEv2 and the Revised IPsec 

Architecture” (section 7.3), and RFC 4555, “IKEv2 Mobility and 

Multihoming Protocol (MOBIKE).”
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• IKEv1 had eight distinct initial exchange mechanisms, each of which 

had advantages and disadvantages, vs. one four-message initial 

exchange in IKEv2.

• IKEv1 included an excessive number of cryptographic algorithms, 

which resulted in complex implementation and long (and costly) 

certification processes (e.g., Common Criteria and FIPS 140-2). For 

details, see RFC 2409, updated by RFC 4109, “Algorithms for Internet 

Key Exchange version 1 (IKEv1).” In comparison, IKEv2 reduced 

the number of supported cryptographic algorithms. For details, see 

RFC 4306, “Cryptographic Algorithms for Use in the Internet Key 

Exchange Version 2 (IKEv2).”

• IKEv1 had reliability issues due to poor state management. This 

could result in a hung node, requiring Dead Peer Detection (which 

was never standardized, leading to interoperability issues). IKEv2 

added sequence numbers and acknowledgements to greatly improve 

state management.

• IKEv1 had issues with Denial of Service attacks, where connections 

from spoofed addresses could cause it to do expensive asymmetric 

key processing. IKEv2 does such processing only after it verifies the 

validity and existence of a client.

• The IPv6-ready test centers have no certification tests for IKEv1, 

but they do for IKEv2. They also have certification tests for IPsec 

over IPv6.

Some IPv4 routers (especially ones for home or small office) include an IPsec 

Helper function. This routes all IPsec traffic to the first node that negotiates a Security 

Association (SA). The assumption is that there is only one IPsec endpoint inside the 

home network. This is yet another attempt to make IPsec work over NAT. In IPv6 routers, 

there is no need for any IPsec Helper function.

Another issue with NAT involves fragmentation. During IKE, if an IPsec digital 

certificate is sent, this often is larger than a single packet, which leads to packet 

fragmentation. Many NAT gateways will simply drop fragmented packets, as these are 

usually part of a hacking attack. This is never a problem in IPv6.
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It should be obvious by now why there are so many problems using IPsec in the 

legacy Second Internet. NAT helped keep the Internet going while IPv6 was being 

created, but now that IPv6 is complete and available, we should switch to it at least 

for certain protocols (especially IPsec and SIP) rather than create ever more complex 

workarounds to fix the problems caused by NAT.

 Kerberized Internet Negotiation of Keys: KINK
There is an alternative to IKE for securely exchanging keys among IPsec-enabled 

nodes, called KINK. It is defined in RFC 4430,6 “Kerberized Internet Negotiation of Keys 

(KINK).” With IKE, each node needs an IPsec digital certificate to authenticate itself 

to other nodes, which is done on a peer-to-peer basis. A full PKI must be deployed to 

support the issuance and maintenance of these certificates. With KINK, nodes need 

only mutually authenticate with the authentication server of the Key Distribution Center 

(KDC) of a Kerberos facility. No IPsec digital certificates are required for each node, and 

no PKI is required. However, there must be a Kerberos KDC that can do the necessary 

authentication, and all participating IPsec-enabled nodes need client-side support 

for Kerberos and KINK. Deploying Kerberos securely can be just as big a challenge 

as deploying a PKI. If your nodes will need to connect over IPsec to nodes in other 

organizations, KINK is probably not the best way to go. IKE is clearly the preferred key 

exchange technology.

 Summary
In this chapter we covered IPsec (IP Layer security) and IKE (Internet Key Exchange). 

We compared it with SSL-VPN (which is not an IETF standard and uses HTTPS in 

a nonstandard way). With IPv4, IPsec and IKE are blocked by NAT, so SSL-VPN has 

become widely used there. In IPv6, there is no NAT to block IPsec and IKE, so it will 

quickly replace SSL-VPN.

IKEv1 is now deprecated, so everyone should be using IKEv2 at this point.

It is possible to do mutual authentication with IPsec, which requires use of IPsec 

VPN digital certificates at both ends. These are normally tied to the devices, not to users.

6 https://tools.ietf.org/html/rfc4430
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There was some confusion among early users of IPv6 that IPsec was mandatory on 

all connections. It is mandatory for it to be supported in an IPv6 implementation, but it is 

not mandatory to use it on every connection. Therefore, with regard to IPsec, IPv6 is no 

more or less secure than IPv4. Either version of IP is more secure if IPsec is used and less 

secure if IPsec is not used.

We also covered an alternative to IKE called KINK.
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CHAPTER 8

Transition Mechanisms
This chapter covers a variety of protocols and mechanisms that were created to 

simplify the introduction of IPv6 into the Internet. The goal is not to make an abrupt 

transition from all-IPv4 to all-IPv6 on some kind of “flag day” (as happened in the 

transition from the First Internet to the Second Internet). That would be unbelievably 

disruptive and unlikely to succeed. The goal is to gradually add new capabilities that 

take advantage of IPv6, or work far better over it (e.g., IPsec VPN, SIP, IPTV,1 and most 

other multicast), while continuing to use IPv4 for those things that work tolerably well 

over IPv4 with NAT (e.g., web, email, FTP, SSH,2 and most client-server with intermediary 

servers). This allows immediate alleviation of the most grievous problems caused by 

widespread deployment of NAT and other shortcomings of IPv4 while allowing a longer, 

more controlled migration of those protocols that do not benefit as much from IPv6. 

Eventually, all protocols and applications will be migrated (with a few exceptions – likely 

Skype can never be ported to IPv6, being heavily based on NAT traversal), and IPv4 can 

quietly be dropped from operating systems and hardware. However, this will probably be 

5–10 years from now. As more and more applications are transitioned to IPv6, that will 

take the pressure off the remaining stock of IPv4 addresses.

Most of these transition mechanisms are defined in RFCs as part of the IPv6 

standards. There are many mechanisms, some with confusingly similar names, such as 

“6in4,” “6to4,” and “6over4,” which are all quite different. Most deployments of IPv6 will 

use one or more of these transition mechanisms; none will use all of them. Some of the 

transition mechanisms are designed for use in the early phases of the transition, where 

there is an “ocean” of IPv4 with small (but growing) islands of IPv6 (e.g., 6in4 tunneling). 

Some are for use in the later stages of the transition, where the Internet has flipped into 

an “ocean” of IPv6, with small (and shrinking) islands of IPv4 (e.g., 4in6 tunneling, Dual-

Stack Lite). Some are for use in the end stages of the transition where some networks are 

1 https://en.wikipedia.org/wiki/IPTV
2 https://en.wikipedia.org/wiki/Secure_Shell

© Lawrence E. Hughes 2022 
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“IPv6-only” with no IPv4 present (e.g., NAT64/DNS64 to allow reaching legacy external 

IPv4-only servers from an IPv6-only node).

Since 2010, Teredo, ISATAP, and 6over4 have fallen out of favor, while 6in4, 6rd, and 

NAT64/DNS64 have become more widely used. 6in4 has the disadvantage that the user 

must have at least one public IPv4 address in their network to serve as one endpoint of 

the tunnel. These are becoming extremely difficult to obtain. No phones have them, few 

residential accounts have any, and even business accounts are getting fewer and fewer of 

them over time. Again, the transition was supposed to be complete by 2010, before IPv4 

public addresses were totally depleted. 6rd works relatively well even without a public 

IPv4 address at the customer site.

A new standard, 464XLAT, has emerged for mobile devices, which allows telcos to 

deploy IPv6-only service to customer phones while allowing legacy (IPv4-only) apps 

to still work. All recent Android phones include support for 464XLAT. This approach is 

being widely deployed in the United States today.

 Relevant Standards for Transition Mechanisms
RFCs related to transition mechanisms (except for Softwires) can be found in the 

following.

RFCs from the Softwires working group (Dual-Stack Lite, MAP-E, MAP-T, 4in6) can 

be found under Softwires.3

RFC 2473, “Generic Packet Tunneling in IPv6 Specification,” 

December 1998 (Standards Track) [4in6]

RFC 2529, “Transmission of IPv6 over IPv4 Domains Without 

Explicit Tunnels,” March 1999 (Standards Track) [6over4]

RFC 3053, “IPv6 Tunnel Broker,” January 2001 (Informational)

RFC 3056, “Connection of IPv6 Domains via IPv4 Clouds,” 
February 2001 (Standards Track) [6to4]

RFC 3089, “A SOCKS-Based IPv6/IPv4 Gateway Mechanism,” April 

2001 (Informational)

3 #_heading=h.4i7ojhp
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RFC 3142, “An IPv6-to-IPv4 Transport Relay Translator,” June 2001 

(Informational)

RFC 3964, “Security Considerations for 6to4,” December 2004 
(Informational) [6to4]

RFC 4038, “Application Aspects of IPv6 Transition,” March 2005 

(Informational)

RFC 4213, “Basic Transition Mechanisms for IPv6 Hosts and 
Routers,” October 2005 (Standards Track) [Dual Stack, 6in4]

RFC 4241, “A Model of IPv6/IPv4 Dual Stack Internet Access 
Service,” December 2005 (Informational)

RFC 4380, “Teredo: Tunneling IPv6 over UDP Through Network 

Address Translations (NATs),” February 2006 (Standards Track) 

[Teredo]

RFC 4798, “Connecting IPv6 Islands over IPv4 MPLS Using IPv6 

Provider Edge Routers (6PE),” February 2007 (Standards Track)

RFC 4942, “IPv6 Transition/Co-existence Security 
Considerations,” September 2007 (Informational)

RFC 5158, “6to4 Reverse DNS Delegation Specification,” March 

2008 (Informational) [6to4]

RFC 5214, “Intra-Site Automatic Tunnel Addressing Protocol 

(ISATAP),” March 2008 (Informational) [ISATAP]

RFC 5569, “IPv6 Rapid Deployment on IPv4 Infrastructures 
(6rd),” January 2010 (Informational) [6rd]

RFC 5572, “IPv6 Tunnel Broker with the Tunnel Setup Protocol 

(TSP),” February 2010 (Experimental) [TSP]

RFC 5579, “Transmission of IPv4 Packets over Intra-Site 
Automatic Tunnel Addressing Protocol (ISATAP) Interfaces,” 
February 2010 (Informational)

RFC 5902, “IAB Thoughts on IPv6 Network Address Translation,” 

July 2010 (Informational)
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RFC 6052, “IPv6 Addressing of IPv4/IPv6 Translators,” October 

2010 (Proposed Standard)

RFC 6127, “IPv4 Run-Out and IPv4-IPv6 Co-Existence 
Scenarios,” May 2011 (Informational)

RFC 6146, “Stateful NAT64: Network Address and Protocol 
Translation from IPv6 Clients to IPv4 Servers,” Aprille 2011 
(Proposed Standard)

RFC 6147, “DNS64: DNS Extensions for Network Address 
Translation from IPv6 Clients to IPv4 Servers,” April 2011 
(Proposed Standard)

RFC 6180, “Guidelines for Using IPv6 Transition Mechanisms 
During IPv6 Deployment,” May 2011 (Informational)

RFC 6219, “The China Education and Research Network 

(CERNET) IVI Translation Design and Deployment for the IPv4/

IPv6 Coexistence and Transition,” May 2011 (Informational)

RFC 6324, “Routing Loop Attack Using IPv6 Automatic Tunnels: 

Problem Statement and Proposed Mitigations,” August 2011 

(Informational)

RFC 6343, “Advisory Guidelines for 6to4 Deployment,” August 

2011 (Informational)

RFC 6384, “An FTP Application Layer Gateway (ALG) for IPv6-to-

IPv4 Translation,” October 2011 (Proposed Standard)

RFC 6535, “Dual Stack Hosts Using the Bump-In-the-Stack 

Technique (BIS),” February 2012 (Informational)

RFC 6586, “Experiences from an IPv6-Only Network,” April 2012 

(Informational)

RFC 6654, “Gateway-Initiated IPv6 Rapid Deployment on IPv4 

Infrastructures (GI 6rd),” July 2012 (Informational)
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RFC 6889, “Analysis of Stateful 64 Translation,” April 2013 

(Informational)

RFC 7021, “Assessing the Impact of Carrier-Grade NAT on 
Network Applications,” September 2013 (Informational)

RFC 7050, “Discovery of the IPv6 Prefix User for IPv6 Address 

Synthesis,” November 2013 (Standards Track)

RFC 7051, “Analysis of Solution Proposals for Hosts to Learn 

NAT64 Prefix,” November 2013 (Informational)

RFC 7084, “Basic Requirements for IPv6 Customer Edge 
Routers,” November 2013 (Informational)

RFC 7225, “Discovering NAT64 IPv6 Prefixes Using the Port 

Control Protocol (PCP),” May 2014, (Proposed Standard)

RFC 7269, “NAT64 Deployment Options and Experience,” June 
2014 (Informational)

RFC 7648, “Port Control Protocol (PCP) Proxy Function,” 

September 2015 (Proposed Standard)

RFC 7857, “Updates to Network Address Translation (NAT) 
Behavioral Requirements,” April 2016 (Best Current Practice)

RFC 7915, “IP/ICMP Translation Algorithm,” June 2016 

(Standards Track)

RFC 8215, “Local-Use IPv4/IPv6 Translation Prefix,” August 2017 

(Informational)

RFC 8219, “Benchmarking Methodology for IPv6 Transition 
Technologies,” August 2017 (Informational)

 Transition Mechanisms
There are four general classes of transition mechanisms to help us get from all-IPv4 

through a mixture of IPv4 and IPv6 (“dual stack”) to eventually all-IPv6.
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 Co-existence (Dual Stack and Dual-Stack Lite)
Co-existence involves all client and server nodes supporting both IPv4 and IPv6 in their 

network stacks. The only mechanisms in this group are dual stack and Dual-Stack Lite. 

This is the most general solution but also involves running essentially two complete 

networks that share the same infrastructure. It does not double network traffic, as some 

administrators fear. Any new connection over IPv6 is typically one less connection over 

IPv4. Over time, an increasing percentage of the traffic on any network will be IPv6, but 

the only increase in overall traffic will be from the usual suspects (increasing number of 

applications, users, and/or customers), not from supporting dual stack. In fact, at some 

point you will see the total amount of IPv4 traffic begin to decrease. You may see an 

increase in incoming customer connections (on devices that support IPv6) due to the 

ability of every IPv6 to now also accept connections. When YouTube started accepting 

connections over IPv6, there was an enormous and almost instant jump in IPv6 traffic on 

the backbone. Many nodes are ready to begin using IPv6 as soon as content is available, 

because of automated tunneling. In many cases, the end users might not even have been 

aware that they were now connecting over IPv6.

As an example, Facebook reports that over 90% of connections from US mobile 

phones are now over IPv6. Few of these uses are even aware that they have IPv6 service.

There is a recent variant of the dual-stack concept called Dual-Stack Lite that uses 

the basic dual-stack design but adds in IP-in-IP tunneling and ISP-based Network 

Address Translation to allow an ISP to share precious IPv4 addresses among multiple 

customers. It is defined in RFC 6333,4 “Dual-Stack Lite Broadband Deployments 

Following IPv4 Exhaustion,” August 2011. There is additional information in RFC 6908,5 

“Deployment Considerations for Dual-Stack Lite,” March 2013, and in RFC 7870,6 “Dual-

Stack Lite (DS-Lite) Management Information Base (MIB) for Address Family Transition 

Routers (AFTRs),” June 2016. In my previous book (The Second Internet), there was only 

an Internet Draft on Dual-Stack Lite.

4 https://tools.ietf.org/html/rfc6333
5 https://tools.ietf.org/html/rfc6908
6 https://tools.ietf.org/html/rfc7870
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Figure 8-1. Example dual-stack network

 Tunneling
Tunneling involves creating IP-in-IP tunnels with a variety of mechanisms to allow 

sending IPv6 traffic over existing IPv4 infrastructures by adding an IPv4 packet header to 

the front of an entire IPv6 packet. This treats the entire IPv6 packet, including IPv6 packet 

header(s), TCP/UDP header, and payload fields, as a “black box” payload of an IPv4 

packet. In the later phases of the transition, it reverses this: it treats an entire IPv4 packet, 

including IPv4 packet header and options, TCP/UDP header, and payload fields, as a 

“black box” payload of an IPv6 packet. Some of these tunnel mechanisms are “automatic” 

(no setup required). Others require manual setup. Some require authentication, while 

others do not. The benefit is to leverage the existing IPv4 infrastructure as a transport 

for IPv6 traffic, without having to wait for ISPs and equipment vendors to support IPv6 

everywhere before anyone can start using it. This allows early adopters to deploy nodes 

and entire networks today, regardless of whether or not their ISP supports IPv6 today. In 

some cases (e.g., tunnels to a gateway router or firewall), when the ISP does provide dual-

stack service, it is a simple process to change from tunneled service to direct service, and 

the process is largely transparent to inside users. There are several organizations providing 

free tunneled IPv6 service (using various tunnel mechanisms) during the transition, to 

help with the adoption of IPv6. Tunneling mechanisms include 6in4, 4in6, 6to4, 6over4, 

and Teredo. TSP has fallen by the way. There are many operating system features and 

installable client software available to make use of these tunneling mechanisms.
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Figure 8-2. Typical 6in4 tunnel

 Translation
This is basically Network Address Translation (with all its attendant problems), this 

time between IPv4 and IPv6 (as opposed to the more traditional NAT, which is IPv4 to 

IPv4). An IPv6-to-IPv4 translation gateway allows an IPv6-only internal node to access 

external IPv4-only nodes and allow replies from those legacy IPv4 nodes to be returned 

to the originating internal IPv6 node. Connections from an internal IPv6-only node to 

external IPv6-only or dual-stack nodes would be done as usual over IPv6 (without going 

through the translation gateway). This would be useful for deploying IPv6-only nodes in 

a predominantly IPv4 world. An IPv4-to-IPv6 gateway would allow an IPv4-only internal 

node to access external IPv6-only nodes and allow replies from those external IPv6 

nodes to be returned to the internal IPv4-only node. Connections from an internal IPv4-

only node to external IPv4-only nodes, or to dual-stack nodes, would be done as usual 

over IPv4 (without going through the translation gateway). This would be useful for 

deploying IPv4-only nodes in a predominantly IPv6 world. Some of these mechanisms 

require considerable modification to (and interaction with) DNS, such as NAT-PT and 

NAT64 + DNS64.

There are two broad classes of Network Address Translation between IPv4 and IPv6 – 

those that work at the IP Layer and are transparent to upper layers and protocols and 

those that work at the Application Layer (i.e., Application Layer gateways, also called 

proxies). The IP Layer mechanisms need only be implemented once, for all possible 

Application Layer protocols. Unfortunately, they also have the most technical issues.
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Figure 8-3. Typical NAT64/DNS64 translation

There has been a lot of work since 2010 on NAT64/DNS64, to provide access to 

legacy IPv4 nodes from otherwise IPv6-only networks via a NAT64 gateway on the 

network border. This was experimental and not very useful at the time of my previous 

book. NAT64 is specified in RFC 6146,7 “Stateful NAT64: Network Address and Protocol 

Translation from IPv6 Clients to IPv4 Servers,” April 2011. There is more information 

available in RFC 7269,8 “NAT64 Deployment Options and Experience,” June 2014. There 

are several commercial and open source implementations of NAT64 gateways. NAT64 

requires use of DNS64 by all clients using the gateway. DNS64 is a variant of DNS, 

specified in RFC 6147,9 “DNS64: DNS Extensions for Network Address Translation from 

IPv6 Clients to IPv4 Servers,” April 2011.

464XLAT is specified in RFC 6877,10 “464XLAT: Combination of Stateful and Stateless 

Translation,” April 2013.

7 https://tools.ietf.org/html/rfc6146
8 https://tools.ietf.org/html/rfc7269
9 https://tools.ietf.org/html/rfc6147
10 https://tools.ietf.org/html/rfc6877

Chapter 8  transition MeChanisMs

https://tools.ietf.org/html/rfc6146
https://tools.ietf.org/html/rfc7269
https://tools.ietf.org/html/rfc6147
https://tools.ietf.org/html/rfc6877
https://tools.ietf.org/html/rfc6146
https://tools.ietf.org/html/rfc7269
https://tools.ietf.org/html/rfc6147
https://tools.ietf.org/html/rfc6877


294

As pointed out in the 2014 OECD report, the big benefits from IPv6 deployment will 

come when you can phase out IPv4 (at least in the main network). There will be legacy 

(IPv4-only) nodes for some time to come that you might want to connect to, but that 

can be handled by a NAT64/DNS64 gateway at the border of an IPv6-only network. Even 

though there are problems with NAT6411 (as with any NAT), where there are problems 

(e.g., VoIP, IPsec), people can switch to IPv6 for those protocols, while the easy stuff will 

work via NAT64. Over time, as more and more external sites support IPv6, there will be 

less and less need for NAT64. Meanwhile, we can get IPv4 out of our product networks, 

which will make network management and security much better and cheaper.

The home and corporate networks of the near future will be IPv6-only with access to 

legacy nodes via NAT64/DNS64.

 Proxies (Application Layer Gateways)
The other kind of translation mechanism takes place at the Application Layer. They are 

called proxies, because they do things “on behalf of” other servers, much like a stock 

proxy voter will vote your stock on your behalf. They are also called Application Layer 

gateways (ALGs) because they are gateways (they do forwarding of traffic from one 

interface to another), and they work at the Application Layer of the TCP/IP four-layer 

model. They don’t have the serious problems found in IP Layer translation mechanisms, 

such as dealing with IP addresses embedded in protocols (like SIP or FTP). However, 

there are some problems unique to proxies.

A proxy must be written for every protocol to be translated, and often even different 

proxies for incoming and outgoing traffic, even for a given protocol (e.g., “SMTP in” 

and “SMTP out”). Typically, each proxy is a considerable amount of work. Often only 

a handful of the most important protocols will be handled by proxies, while all other 

protocols are handled by packet filtering.

Writing a proxy involves implementing most or all of the network protocol, although 

sometimes in a simplified manner (e.g., there is no need to store incoming email 

messages in a way suitable for retrieval by POP3 or IMAP; they just need to be queued by 

destination domain for retransmission by SMTP).

Proxies can support SSL/TLS, but the secure connection extends only from client 

to proxy and/or from proxy to server (not directly from client to server). This includes 

11 www.cisco.com/web/learning/le21/le39/docs/TDW_130_Prezo.pdf
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both encryption (the traffic will be in plain text on the proxy) and authentication 

(authentication is only from server to proxy and/or proxy to client, not from server to 

client). Typically, another digital certificate is required for the proxy server if it supports 

SSL/TLS (in addition to the one for the server).

Proxies can’t work with traffic secured in the IP Layer (IPsec ESP), without access to 

the keys necessary to decrypt the packets.

Throughput is typically lower than with a packet filtering firewall, due to the need to 

process the protocol. Of course, the security is much better – it won’t let through traffic 

that is not a valid implementation of the specific protocol, while packet filtering might let 

through almost anything so long as it uses the right port. There is typically no problem 

dealing with IP addresses embedded in a protocol.

In many cases, the proxies are not transparent, which means the client must know 

that it is talking not directly to a server, but via an intermediate proxy. Many protocols 

support this kind of operation, for example, HTTP provides good support for an HTTP 

proxy. Basically, there must be a way for a client to specify not only the nodename of the 

final server but also the address or nodename of the proxy server. In a browser (HTTP 

client), the nodename of the final server is specified as usual, and the address of the 

proxy server is specified during the browser configuration (“use a proxy, which is at 

address w.x.y.z”). When configured for proxy operation, the browser actually connects to 

the proxy address and relays the address of the final server to the proxy. The proxy then 

makes an ongoing connection to the final web server. Some protocols have no support 

for proxy-type operation (e.g., FTP). It is possible for a firewall to recognize outgoing 

traffic over a given port and automatically redirect it to a local proxy.

Application Layer gateways (e.g., for SIP, HTTP, and SMTP) work quite well. Basically, 

they accept a connection on one interface of a gateway and make a second “ongoing” 

connection (on behalf of the original node) via another interface of the same gateway. 

It is easy for the two connections to use different IP versions (e.g., translate IPv4 traffic 

to IPv6 traffic or vice versa). In some ALGs an entire message might be spooled onto 

temporary storage (e.g., email messages) and then retransmitted later. In other cases, 

the ongoing connection would be simultaneous with the incoming connection and 

bidirectional (e.g., with HTTP). This would correspond to a human “simultaneous 

translator” who hears one language (e.g., Chinese), translates, and simultaneously 

speaks another language (e.g., English).
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Another example of this is an outgoing web proxy, which could accept connections 

from either IPv4-only or IPv6-only browsers and then make an ongoing connection 

to external servers using whatever version of IP those servers support (based on DNS 

queries). Again, this is a traditional (forward) web proxy, with the addition of IP version 

translation. This would allow IPv4-only or IPv6-only clients to access any external web 

server, regardless of IP version they support. Such a proxy could of course also provide 

any services normally done by an outgoing web proxy, such as caching and URL filtering.

Another example of this is a dual-stack façade that would accept incoming 

connections from outside over either IPv4 or IPv6 and make an ongoing connection over 

IPv4 to an internal IPv4-only (or over IPv6 to an IPv6-only) web server. It would relay the 

web server’s responses using whatever version of IP was used in the original incoming 

connection to the client. This is a typical “reverse” web proxy, with the addition of IP 

version translation. This kind of translation can help you provide dual-stack versions 

of your web services quickly and easily, without having to dual-stack the actual servers 

themselves. The same technique could allow you to make your email services dual stack 

without having to modify your existing mail server.

 Dual Stack
Dual stack is defined in RFC 4213,12 “Basic Transition Mechanisms for IPv6 Hosts and 

Routers,” October 2005. A dual-stack node should include code in the Internet Layer of 

its network stack to process both IPv4 and IPv6 packets. Typically, there is a single Link 

Layer that can send and receive either IPv4 or IPv6 packets. The Link Layer also contains 

both the IPv4 Address Resolution Protocol (ARP) and the IPv6 Neighbor Discovery 

(ND) protocol. The Transport Layer has only minor differences in the way IPv4 and 

IPv6 packets are handled, primarily concerning the way the TCP or UDP checksum is 

calculated (the checksum also covers the source and destination IP addresses from the 

IP header, which of course is different in the two IP versions). The Application Layer 

code can make calls to routines in the IPv4 socket API, the IPv6 basic socket API, and the 

IPv6 advanced socket API. IPv4 socket functions will access the IPv4 side of the IP Layer, 

and IPv6 socket functions will access the IPv6 side of the IP Layer.

12 https://tools.ietf.org/html/rfc4213
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Figure 8-4. Four-layer network model for dual stack

The node should include the ability to do conventional IPv4 network configuration 

(including a node address, default gateway, subnet mask, and addresses of DNS servers, 

all as 32-bit IPv4 addresses). This configuration information can be done manually, 

via DHCPv4, or some combination thereof. The node should also include the ability to 

do conventional IPv6 network configuration (including a link-local IP address, one or 

more global unicast addresses, a default gateway, the subnet length, and the addresses 

of DNS servers, all 128-bit IPv6 addresses). This configuration information can be done 

manually, automatically via Stateless Address Autoconfiguration, automatically by 

DHCPv6, or by some combination thereof. There is usually a way to disable either the 

IPv6 functionality (in which case the node behaves as an IPv4-only node) or the IPv4 

functionality (in which case the node behaves as an IPv6-only node). There may or may 

not also be some tunneling mechanism involved. If the node is in a native dual-stack 

network, no tunnel mechanism is seen by the user (any tunnel involved will be between 

the user’s Customer Premises Equipment and the IPv6 service provider, not inside the 

network). If the node is in an IPv4-only or an IPv6-only network, there will need to be a 

tunnel mechanism to bring in traffic of the other IP version (typically 6in4, 4in6, or 6rd).

IPv4-only and IPv6-only applications (client, server, and peer-to-peer) will work just 

fine on a dual-stack node. They will make calls to system functions on only one side of 

the network stack. They will not gain any new ability to accept or make connections over 

the other IP version just because they are running on a dual-stack node.
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A dual-stack client can connect to IPv4-only servers, IPv6-only servers, or dual-stack 

servers. A dual-stack server can accept connections from IPv4-only clients, IPv6-only 

clients, or dual-stack clients. Dual stack is the most complete and flexible solution. The 

only issues are the additional complexity of implementation and deployment and the 

additional memory requirements. For very small devices (typically clients), dual stack 

may not be an option. Some critics of IPv6 claim that dual stack is not viable because 

we are running out of IPv4 addresses. What they are missing is that there are plenty of 

private IPv4 addresses for use behind NAT, and the IPv4 side of dual-stack systems can 

be used only for protocols where this is not a problem while using their IPv6 side for 

those protocols that are incompatible with NAT (IPsec VPN, SIP, P2P, etc.) or can benefit 

from other IPv6 features, which are superior to their IPv4 equivalents, such as multicast 

and QoS (for SIP, IPTV, conferencing, P2P Direct, etc.). Also, any application running 

on that node that needs to accept a connection from external nodes (e.g., your own web 

server) can use a global unicast IPv6 address (for IPv6-capable clients). If you want to 

accept connections from IPv4 clients, you would have needed a globally routable IPv4 

address for that anyway or would need to deploy NAT traversal (with or without dual 

stack). Dual stack cannot create more globally routable IPv4 addresses. It can, however, 

allow you to easily make use of an almost unlimited number of globally routable IPv6 

addresses (both unicast and multicast). It is common for only a few nodes in a dual-stack 

network to have IPv4 public addresses (or forwarding via NAT from a border node with a 

public IPv4 address), but every node can have a public (global) IPv6 address. If incoming 

connections are not blocked at a firewall, those nodes are accessible over IPv6 from 

anywhere on the global IPv6 Internet.

A key part of a dual-stack network is a correctly configured dual-stack DNS service. 

It should not only be able to handle both A and AAAA records (as well as reverse PTR 

records for IPv4 and IPv6); it should also be able to accept queries and do zone transfers 

over both IPv4 and IPv6. A dual-stack network typically uses DHCPv4 to assign IPv4 

addresses to each node and either Stateless Address Autoconfiguration and/or DHCPv6 

to assign IPv6 addresses to each node. A dual-stack firewall can bring in either direct 

dual-stack service (both IPv4 and IPv6 traffic) from an ISP (if available), routing both 

to the inside network; or it can bring in direct IPv4 traffic from an ISP and terminate 

tunneled IPv6 traffic (from a “virtual” ISP usually different from the IPv4 ISP) and route 

both IPv4 and IPv6 into the inside network. In either case (direct dual-stack service or 

tunneled IPv6 with endpoint in the gateway), inside nodes appear to have native dual-

stack service and require no support for tunneling.
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The DNS support does not require any modifications to a standard DNS server (e.g., 

BIND). Virtually all current DNS servers and appliances have (at least some) support for 

IPv6. DNS just needs to be able to perform its normal forward and reverse lookups with 

either IPv4 (A/PTR) or IPv6 (AAAA/PTR) resource records. There is no need for the DNS 

server to do nonstandard mappings between IPv4 and IPv6 addresses as is required with 

most IP Layer translation schemes (e.g., NAT64 + DNS64).

Migrating IPv4-only client or server applications to IPv6-only is quite simple. There 

is essentially a one-to-one mapping of function calls from the IPv4 socket API to similar 

ones in the IPv6 basic socket API. Of course, more storage is required for each IP address 

in data structures (4 bytes for IPv4 addresses, 16 bytes for IPv6 addresses).

Modifying either IPv4-only clients or IPv4-only servers to dual-stack operation is 

somewhat more complicated. A dual-stack client must be modified to retrieve multiple 

addresses from a forward lookup (IPv4 and/or IPv6) and try connections sequentially 

to the returned address list until a connection is accepted. The default (assuming IPv6 

connectivity is available) is to attempt connections over IPv6 first. If DNS advertises an 

IPv6 address and the node supports IPv6, but for some reason the client is unable to 

connect over IPv6 (e.g., the tunnel is down), there will be a 30-second timeout and then 

a fallback to IPv4. A dual-stack server must listen for connections on both IPv4 and IPv6 

and process connections from either. It is also possible to deploy two copies of each 

server, one being IPv4-only and the other IPv6-only. This might involve cross-process file 

locking on any shared resource, such as a message store. Either approach to providing 

dual-stack servers will work fine, and the user experience will be the same. Conditional 

compilation could be used to have a single source code tree create both an IPv4-only 

and an IPv6-only executable (depending on settings of system variables at compilation 

time). For most server designs (process per connection or thread per connection), the 

split model (an IPv4-only server and an IPv6-only server) would roughly double the 

memory footprint compared with a single dual-stack server.

There has been an improvement on this scheme since 2010 called “Happy Eyeballs.” 

The first version of this was specified in RFC 6555,13 “Happy Eyeballs: Success with 

Dual-Stack Hosts,” April 2012. The second version of this was specified in RFC 8305,14 

“Happy Eyeballs Version 2: Better Connectivity Using Concurrency,” December 2017. 

This mechanism is actually implemented in clients, especially web browsers. It usually 

connects over both IPv4 and IPv6 and uses whichever one responds first (with some 

13 https://tools.ietf.org/html/rfc6555
14 https://tools.ietf.org/html/rfc8305
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allowance for a slightly slow IPv6 response). The results of this measurement are stored, 

and that IP version is used for future connections to that server for some time. I have 

found that sometimes even if I have IPv6 and the server is IPv6, Happy Eyeballs will 

choose to connect over IPv4 (which violates the prior standard that IPv6 is preferred). 

This also impacts the statistics on server access over IPv6 (as seen on Google IPv6 

stats). It would be nice if there were some way to disable Happy Eyeballs on a browser 

for people who know what they are doing, but no browser offers that option. It is 

permanently ON, on every browser I’ve tested. There is an implicit assumption that there 

is no difference in IPv6 and IPv4 (at least for web), which may not always be true. I may 

want to provide a better or more complete experience to people who connect over IPv6, 

but with Happy Eyeballs, the user has not control over this, unless they disable IPv4 on 

their node, which may cause other issues.

Most open source servers today have good support for dual-stack operation. These 

include the Apache web server, Postfix SMTP server, Dovecot IMAP/POP3 mail access 

servers, etc. If you are a developer and want to see examples of how to deploy dual-

stack servers, there are numerous examples available in open source. Most open source 

client software also has good support for IPv6 and dual stack. These include the Firefox 

web browser, Thunderbird email client, etc. The open source community has done an 

excellent job of supporting the migration to IPv6. Both the original IPv4-only socket 

API and the newer IPv6 socket APIs are readily available on all UNIX and UNIX-like 

platforms. The documentation for the newer IPv6 socket APIs is in RFC 3493,15 “Basic 

Socket Interface Extensions for IPv6,” and RFC 3542,16 “Advanced Sockets Application 

Program Interface (API) for IPv6.” There is also RFC 5014,17 “IPv6 Socket API for Source 

Address Selection,” and RFC 4584,18 “Extension to Sockets API for Mobile IPv6.”

Virtually all Microsoft server products (since 2007) have had good support for dual-

stack operation. The Azure Cloud service has been promising IPv6 support from the 

beginning, with very little progress. You can use load balancers to map an IPv6 address 

to an IPv4 address on the Azure VM, but you cannot configure an IPv6 address or make 

connections to IPv6 nodes, from an Azure node. AWS has provided at least some support 

for IPv619 for some time. Microsoft products that support IPv6 well include Windows 

15 https://tools.ietf.org/html/rfc3493
16 https://tools.ietf.org/html/rfc3542
17 https://tools.ietf.org/html/rfc5014
18 https://tools.ietf.org/html/rfc4584
19 http://thirdinternet.com/recipes-for-amazon-web-services-aws/
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Server 2008 R2 and later (and all its components, such as DNS, file and printer sharing, 

etc.), Exchange Server 2007 or later, and many others. Their client operating systems 

have had good support for IPv6 since Vista. For Microsoft developers, both the original 

IPv4-only socket API (Winsock) and the new IPv6 socket APIs (basic and advanced) are 

available as part of the standard Microsoft developer libraries.

 Tunneling
Tunneling is very different from translation – the packets from the foreign IP are sent, 

complete with packet headers, as the Data field of packets of the other IP. For example, 

6in4 packets have an IPv4 header, followed by an IPv6 header and IPv6 body. 4in6 

packets have an IPv6 header, followed by an IPv4 header and IPv4 body. Once they reach 

the end of the tunnel, the extra header is stripped off, and the inside packet is routed on 

its way.

Figure 8-5. How 6in4 tunnels work
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Figure 8-6. 6in4 tunneling – capture of IPv6 Echo Request showing nested 
structure

If tunneled service is brought into the network by a gateway device (typically the 

gateway router or firewall), which contains the tunnel endpoint, the internal network is 

a native dual-stack network from the viewpoint of all internal nodes. No internal node 

needs to have support for any tunneling mechanism. If at some point the tunneled 

service is replaced with direct service (both IPv4 and IPv6 service direct from your ISP), a 

minor reconfiguration at the gateway is all that is required. Internal nodes will probably 

not require any reconfiguration at all. They will typically have a new IPv6 prefix (unless 

you were getting tunneled service from your ISP), so you will likely have to update all 

forward and reverse address references in your DNS server (only for IPv6 addresses), to 

reflect the new IPv6 prefix. If your DNS server supports instant prefix renumbering like 

Sixscape DNS, this is a quick, painless process. If you are using DHCPv6 in stateful mode 

(where it assigns IP addresses) in conjunction with dynamic DNS registration, even DNS 

changes due to change of IPv6 prefix may happen automatically.

A tunnel mechanism has both a server side and a client side. The server side typically 

can accept one or more connections from tunnel clients. It is also commonly called a 

Tunnel Broker. A tunnel client typically makes connections to a single tunnel server. 

Some such connections (e.g., with 6in4) are not authenticated (although the server 
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can typically be restricted to accepting connections only from specific IP addresses 

or address ranges). Some such connections include authentication of the client to the 

server before the tunnel will begin operation. Some connections (e.g., 6in4) require 

a globally routable IPv4 address on the client (although this can be the same address 

as the hide-mode NAT address). Other tunnel clients (e.g., 6rd) will work behind NAT, 

even with a private address. These include a NAT traversal mechanism in the client, 

and typically all tunneled packets are carried over UDP. Once a tunnel is created, it is 

bidirectional. Packets can be sent either upstream or downstream. From a hop count 

perspective, the tunnel counts as one hop, no matter how many hops the tunneled 

packets traverse.

Typical Product Support for Tunneling: pfSense Open Source Dual-Stack 
Firewall

As an example of a typical product that includes support for tunneling, pfSense20 

is an open source dual-stack firewall. On the IPv4 side, it includes typical firewall 

capabilities including routing, filtering by port and address, stateful packet inspection, 

and various forms of NAPT (hide mode, BINAT or 1:1, and port forwarding). On the 

IPv6 side, it includes all that (except for NAPT), plus a Router Advertisement Daemon 

(to enable Stateless Address Autoconfiguration) and 6in4 server and client modes. 

You could use the 6in4 client mode to bring in IPv6 tunneled service from any 6in4 

virtual ISP (e.g., Hurricane Electric21). You could create your own IPv6 virtual ISP using 

pfSense’s 6in4 tunnel server mode. For example, you could provide tunneled IPv6 

service from your HQ or collocation facility to various branches, using the 6in4 tunnel 

server at HQ and the 6in4 tunnel clients at each branch. You can carve off any number of 

“/64” subnets into each branch office. For example, you could split a “/48” block into 16 

“/52” blocks and route one “/52” block into each branch office.

Because the client-mode tunnel endpoint is located inside a firewall node, incoming 

IPv6 packets from the tunnel can be filtered and routed into any inside network(s). 

Outgoing IPv6 packets from any internal network can be filtered and routed out the 

tunnel to the outside world (via the same 6in4 tunnel).

The server-mode tunnel endpoint is also located inside a firewall node, so the 

firewall’s routing capabilities allow you to easily route any block of addresses from the 

outside world into any tunnel (and hence to branch offices) and outgoing packets (from 

tunnels coming from branch offices) to the outside world. Currently there is no support 

20 www.pfsense.org/
21 https://tunnelbroker.net/
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for OSPFv3 or BGP4+, so you would need to relay outgoing IPv6 traffic onward via an ISP 

(or virtual ISP) that can do further routing.

Because the tunnel mechanism used (6in4) is an IETF standard,22 pfSense’s tunnels 

will interoperate with server- or client-mode 6in4 tunnel endpoints on any other 

vendor’s products or even on other open source routers or firewalls.

 6in4 Tunneling
RFC 421323 (in addition to specification for dual stack) specifies 6in4 tunneling 

(unfortunately they use the term “6over4” when you might recognize “6in4,” which 

is very confusing). Technically, 6in4 is a tunneling mechanism. 6over4 is a transition 

mechanism that uses 6in4 tunneling to create a virtual IPv6 link over an IPv4 multicast 

infrastructure (see RFC 2529,24 “Transmission of IPv6 over IPv4 Domains Without 

Explicit Tunnels,” March 1999). This book will use the term 6in4 unless we are 

specifically talking about 6in4 tunnels over IPv4 multicast. 6in4 is also sometimes 

referred to as “Protocol 41” tunneling. 6in4 tunneling requires both ends of the tunnel 

to have globally routable IPv4 addresses (neither tunnel endpoint can be behind NAT). 

It is possible for a firewall that is using a globally routable IPv4 address for HIDE-mode 

NAT (with multiple internal nodes hidden behind it) to use that same address as one 

endpoint of a 6in4 tunnel.

6in4 Encapsulation
This process is done to “push packets into the tunnel” for packets going from either 

end of the tunnel to the other. The basic idea is to prepend a new IPv4 packet header 

to a complete IPv6 packet (which itself consists of the basic IPv6 header, zero or more 

extension headers, a TCP or UDP header, and a payload) and treat the entire IPv6 packet 

as a “black box” payload for the IPv4 packet.

The encapsulation of an IPv6 datagram in IPv4 for 6in4 tunneling is shown in the 

following.

22 https://tools.ietf.org/html/rfc4213
23 https://tools.ietf.org/html/rfc4213
24 https://tools.ietf.org/html/rfc2529
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Figure 8-7. Example of 6in4 encapsulation

The new IPv4 packet header is constructed as follows (from the RFC):

IP Version

4 (the encapsulating packet is IPv4)

IP Header Length

5 (in 32-bit words, so 20 bytes, and no IPv4 options are used in the 

encapsulating header)

Type of Service

0 unless otherwise specified (see RFC 2983 and RFC 3168 for 

details)

Total Length

IPv6 payload length plus IPv6 header length (40) plus IPv4 header 

length (20), so IPv6 payload length + 60

Identification

Generated uniquely as for any IPv4 packet

Flags

DF (Don’t Fragment) flag set as specified in section 3.2 of 

RFC 4213

MF (More Fragments) flag set as necessary if fragmenting

Fragment Offset

Set as necessary if fragmenting
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Time To Live (TTL)

Set as described in section 3.3 of RFC 4213

Protocol

41: This is the defined payload type for IPv6 tunneled over 

IPv4 and is used regardless of whether the IPv6 transport is 

UDP or TCP.

Header Checksum

Calculated as usual for an IPv4 packet header

Source Address

An IPv4 address of the encapsulator: either configured by the 

administrator or an address of the outgoing interface

Destination Address

IPv4 address of the tunnel endpoint (i.e., the client side of 

the tunnel)

6in4 Decapsulation
This is done for all packets received over the tunnel from the other end. The basic 

idea is to strip the outer (IPv4) packet header off (and discard it) and then handle what is 

left (the original IPv6 packet) as native IPv6 traffic.

From the RFC: When a dual-stack node receives an IPv4 datagram that is addressed 

to one of its own IPv4 addresses (or a joined multicast group address), which has a 

Protocol field of 41 (tunneled IPv6), the packet must be verified to belong to a configured 

tunnel interface (according to source/destination addresses), be reassembled (if it was 

fragmented), and have the IPv4 header removed, and then the resulting IPv6 datagram is 

submitted to the IPv6 layer on the node for further processing.

The decapsulation process for 6over4 tunneling is shown in the following.

Figure 8-8. Sample 6in4 decapsulation
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According to RFC 4213, section 3.2, the MTU of the tunnel must be between 1280 

and 1480 bytes (inclusive) but should be 1280 bytes. Section 3.3 specifies that the tunnel 

counts as a single hop to IPv6, regardless of how many hops the underlying IPv4 packet 

traverses. The actual TTL value in the outer IP header should be set as for any IPv4 

packet (see RFC 3232 and RFC 4087).

RFC 4213 section 3.4 specifies how to handle errors that happen while the 

encapsulated packet is inside the tunnel. Unfortunately, older routers may not return 

enough of the packet to include both source and destination IPv6 addresses of the 

encapsulated packet, so it may not be possible to construct a correct ICMPv6 error 

message. Newer routers typically include enough of the failed packet for correct ICMPv6 

error message creation.

 6over4 Tunneling
6over4 tunneling is defined in RFC 2529,25 “Transmission of IPv6 over IPv4 Domains 

Without Explicit Tunnels,” March 1999. It is a transition mechanism that uses 6in4 

tunneling over an IPv4 multicast–capable network. The term 6over4 is sometimes 

confusingly used for 6in4 tunneling. Due to the requirement for IPv4 multicast, which is 

very difficult to deploy, 6over4 is not commonly used. You can deploy a basic 6in4 tunnel 

without IPv4 multicast.

 6to4 Tunneling
6to4 tunneling is described in the following RFCs:

• RFC 3056, “Connection of IPv6 Domains via IPv4 Clouds,” 
February 2001

• RFC 3068, “An Anycast Prefix for 6to4 Relay Routers,” June 2001 

(deprecated by RFC 7526, in May 2015)

• RFC 3964, “Security Considerations for 6to4,” December 2004 
(Informational)

• RFC 5158, “6to4 Reverse DNS Delegation Specification,” March 2008

25 https://tools.ietf.org/html/rfc2529
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6to4 is a transition mechanism that provides tunneled IPv6 over IPv4 without 

explicitly configured tunnels. With the original 6to4 mechanism, the IPv4 addresses 

involved must be valid globally routable IPv4 addresses (not behind NAT). Teredo is a 

variant of 6to4 tunneling that will work even behind NAT.

6to4 does not provide general translation to IPv4 addresses for interoperation 

between IPv6 hosts and IPv4 hosts (it is not a translator – it is a tunneling scheme). It 

uses automatically created tunnels over IPv4 to facilitate communication between any 

number of IPv6 hosts.

A “6to4 host” is a regular IPv6 host that also has at least one 6to4 address 

assigned to it.

A “6to4 router” is a regular IPv6 router that includes a 6to4 pseudo interface. It is 

normally a border router between an IPv6 site and a wide-area IPv4 network.

A “6to4 relay router” is a 6to4-capable router, which is also configured to support 

transit routing between 6to4 addresses and native IPv6 addresses.

Without 6to4 relay routers, you can communicate with other nodes that use 6to4 

tunneling over IPv6 (even though your ISP does not yet support IPv6). To communicate 

with IPv6 users who are not using 6to4, you need to relay your traffic through a 6to4 relay 

router. You can create your own relay router. It must have both a 6to4 pseudo interface 

and native (not 6to4) IPv6 connectivity to the IPv6 Internet.

A 6to4 router will send an encapsulated packet directly over IPv4 if the first 16 bits 

of an IPv6 destination address are 2002, using the next 32 bits as the IPv4 destination 

(which must be another 6to4 node that will unpack the IPv6 packet being sent and use 

it or relay it to other IPv6 hosts). For all other IPv6 destination addresses, a 6to4 router 

will forward the packet to the IPv6 address of a well-known relay router that has access 

to native IPv6 (or simply send it to the IPv6 anycast address 2002:c058:6301::/128, which 

will send it to the nearest available 6to4 relay router).

For details on how to configure a FreeBSD node with 6to4 tunneling, see www.kfu.

com/~nsayer/6to4.
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An IPv6 address for use with 6to4 tunneling looks like the following:

     | 3 |  13  |    32     |   16   |          64 bits               |

     +---+------+-----------+--------+--------------------------------+

     |FP | TLA  | V4ADDR    | SLA ID |         Interface ID           |

     |001|0x0002|           |        |                                |

     +---+------+-----------+--------+--------------------------------+

Essentially the IPv6 prefix for all 6to4 addresses is 2002:(ipv4addr)::/48.

RFC 2374 defines SLA ID as follows:

The SLA ID field is for a Site Level Aggregator Identifier. This 

can be used by individual organizations to create its own local 

addressing hierarchy and to identify subnets. It is analogous to 

subnets in IPv4, except that each organization has a much greater 

number of subnets.

RFC 3056 defines a 6to4 pseudo interface as follows:

6to4 encapsulation of IPv6 packets inside IPv4 packets occurs at 

a point that is locally equivalent to an IPv6 interface, with the link 

layer being the IPv4 unicast network. This point is referred to as 

the pseudo-interface. Some implementers may treat it exactly like 

any other interface, and others may treat it like a tunnel endpoint.

 Teredo
Teredo is one extension of basic 6to4 tunneling. It adds encapsulation over UDP 

datagrams and uses a simplified version of STUN NAT traversal, allowing a Teredo 

client to be behind NAT. It is defined in RFC 4380,26 “Teredo: Tunneling IPv6 over UDP 

Through Network Address Translations (NATs),” February 2006. The name “Teredo” is 

part of the Latin name for a little worm that bores holes through wooden ship hulls. This 

gives you a pretty good idea of what the Teredo protocol does to your firewall. Teredo 

is installed and enabled by default in Windows Vista and Windows 7. It is possible to 

disable it, which everyone should do!

26 https://tools.ietf.org/html/rfc4380
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There is an open source Teredo client for Linux, BSD, and Mac OS X called Miredo.27 

It can act as a client, relay, and server.

There are publicly available Teredo “relay routers” that allow any node with Teredo 

to access the IPv6 Internet. Microsoft makes several very large ones available for use 

from Windows nodes. Windows nodes are preconfigured to use these relay servers. 

Unlike 6to4 and some other tunnel mechanisms, Teredo can only provide a single “/128” 

IPv6 address per tunnel endpoint. Teredo allows you to let one node connect to the IPv6 

Internet, not an entire network.

Teredo uses a different IPv6 address block than basic 6to4 tunneling. The rest of the 

Teredo address is defined differently as well:

• Bits 0–31 contain the Teredo prefix, which is 2001:0000::/32. You 

might want to block this range for both incoming and outgoing 

connections on your border firewall.

• Bits 32–63 contain the IPv4 address of the Teredo server used.

• Bits 64–79 contain some flags. Currently only bit 64 is used. If set to 1, 

the client is behind a cone NAT; otherwise, it is 0. More of these flag 

bits are used in Vista, Windows 7, and Windows Server 2008.

• Bits 80–95 contain the obfuscated UDP port number (port number 

that is mapped by NAT, with all bits inverted).

• Bits 96–127 contain the obfuscated IPv4 address of the node (public 

IPv4 address of the NAT with all bits inverted).

As an example, a Teredo address might be 2001::4136:e378:8000:63bf:3fff:fdd2, which 

broken into fields is as follows:

• Bits 0–31: 2001:0000 – the Teredo prefix

• Bits 32–63: 4136:e378 – IPv4 address 65.54.227.120 in hexadecimal

• Bits 64–79: 8000 – cone-mode NAT

• Bits 80–95: 63bf – obfuscated port number 40000

• Bits 96–127: 3fff:fdd2 – obfuscated public IPv4 address of the node 

(192.0.2.45)

27 https://en.wikipedia.org/wiki/Miredo
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Hurricane Electric, as of Q1 2009, had deployed 14 public Teredo relays (via anycast), 

in Seattle, Washington; Fremont, California; Los Angeles, California; Chicago, Illinois; 

Dallas, Texas; Toronto, Ontario; New York, New York; Ashburn, Virginia; Miami, Florida; 

London, England; Paris, France; Amsterdam, Netherlands; Frankfurt, Germany; and 

Hong Kong SAR.

Usage of Teredo has dropped off to virtually zero as native IPv6 and 6in4 tunnels 

have become more common.

 6rd: IPv6 Rapid Deployment
6rd is another extension of 6to4 tunneling that adds reliable routing. Normal 6to4 

tunnels use the standard 2002://16 prefix and in theory scale to the entire world. 

Unfortunately, there is no way to control who can connect to 6to4 public servers, and 

there is no incentive to provide quality service. Also there is no guarantee that any 6to4 

node will be reachable. The same is true of Teredo.

6rd instead works only within the confines of a single ISP, and instead of the 

2000://16 prefix, each ISP uses a prefix that they own and control and runs the relay 

router. They can ensure quality service and reachability of all nodes within their network.

6rd was deployed by a French ISP called “Free” (in spite of the name, this is a 

commercial ISP). This was done in 5 weeks starting in December 2007. This gave France 

the second highest IPv6 penetration in the world, 95% of which was via Free’s 6rd. RFC 

5569 discusses Free’s 6rd deployment. The current Internet Draft that defines 6rd (draft-

ietf-softwire-IPv6-6rd-08, “IPv6 via IPv4 Service Provider Networks ‘6rd,’” March 23, 

2010) should be approved soon. Meanwhile, you can read the draft.

In January 2010, Comcast (a large US ISP) announced plans to do a trial deployment 

of IPv6 using 6rd. SoftBank (a large Japanese ISP) also has announced that they will roll 

out IPv6 using 6rd.

 Intra-site Automatic Tunnel Addressing Protocol (ISATAP)
ISATAP is a transition mechanism that allows transmission of IPv6 packets between 

dual-stack nodes on top of an IPv4 network. It is similar to 6over4, but it uses IPv4 as a 

virtual non-broadcast multiple-access (NBMA) network Link Layer and does not require 

IPv4 multicast (which 6over4 does require). It is discussed in RFC 5214, “Intra-Site 

Automatic Tunnel Addressing Protocol (ISATAP).”
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ISATAP specifies a way to generate a link-local IPv6 address from an IPv4 address, 

plus a mechanism for performing Neighbor Discovery on top of IPv4.

The generated link-local address is created by appending the 32-bit IPv4 address 

onto the 96-bit prefix fe80:0:0:0:0:5efe::. For example, the IPv4 address 192.0.2.143 in 

hexadecimal is c000028f. Therefore, the corresponding ISATAP link-local address is 

fe80::5efe:c000:28f.

The Link Layer address for ISATAP is not a MAC address, but an IPv4 address 

(remember IPv4 is used as a virtual Link Layer). Since the IPv4 address is just the low 

32 bits of the ISATAP address, mapping onto the “Link Layer” address simply involves 

extracting the low 32 bits (ND is not required). However, router discovery is more 

difficult without multicast. ISATAP hosts are configured with a potential routers list 

(PRL). Each of the routers on this list is probed by an ICMPv6 Router Discovery message, 

to determine which of them are functioning and to then obtain the list of on-link IPv6 

prefixes that can be used to create global unicast IPv6 addresses.

Current implementations create their PRL by querying the DNS. DHCPv4 is used to 

determine the local domain. Then a DNS query is done for isatap.<localdomainame>. 

For example, if the local domain is demo.com, it would do a DNS query for isatap.

demo.com.

ISATAP avoids circular references by only querying DNS over IPv4, but it is still a 

lower-layer protocol that is using a higher-layer function (DNS). This is a violation of 

network design principles.

ISATAP is implemented in Windows XP, Windows Vista, Windows 7, Windows 

Mobile, and Linux (since Kernel 2.6.25). It is not currently implemented in *BSD28 due to 

a potential patent issue.

 Softwires (Includes Dual-Stack Lite, MAP-E,  
MAP-T, and 4in6)
The IETF has a very active Softwires working group. Essentially, they are trying to 

create standards for tunneling IPv6 over IPv4 networks and for tunneling IPv4 over 

IPv6 networks. There are two basic models for this; one is called hub and spoke. This is 

similar to the way that airlines have a few large hub airports and many spokes or local 

flights radiating from those hubs to smaller communities nearby. For example, Atlanta 

28 *BSD refers to the family of BSD variants: FreeBSD, NetBSD, OpenBSD.

Chapter 8  transition MeChanisMs



313

International Airport is a hub for the entire Southeastern United States. If you fly in or 

out of that region, you will likely interchange in Atlanta. There are several schemes that 

vary in exactly what part of the network path the softwire is deployed:

• From ISP to customer modem/router

• From ISP via customer modem/router to an inside softwire router

• From ISP via customer modem/router to an end-user node

All the components necessary to deploy the various schemes are widely available, 

including

• LNS: Large ISP-based L2TP Network Server

• Dual AF CPE: Customer Premises Equipment modem/router with 

support for L2TPv2 softwires

• Dual AF router: Customer premise dual-stack router with support for 

L2TPv2 softwires

• Dual AF host: Client software for end-user nodes with support for 

L2TPv2 softwires

In the preceding, “Dual AF” means Dual Address Family, in other words, IPv4 + IPv6, 

or dual stack.

The other softwire architecture is called mesh. This involves several peer nodes, with 

multiple connections between them. If all nodes are connected to all other nodes, that 

would be a fully meshed network.

The term softwire refers to a tunneled link between two or more nodes. In early RFCs 

related to this technology, sometimes the term pseudowire is used instead. Softwires 

are assumed to be long-lived, and the setup time is expected to be a very small fraction 

of the total time required for the startup of the Customer Premises Equipment/Address 

Family border router. The goal is to make cost-effective use of existing facilities and 

equipment where possible.

Current softwire solutions are mostly based on L2TPv2, which is defined in RFC 

2661,29 “Layer Two Tunneling Protocol ‘L2TP,’” August 1999. L2TPv1 was defined in RFC 

2341,30 “Cisco Layer Two Forwarding (Protocol) ‘L2F,’” May 1998. L2TPv2 is layered on 

29 https://tools.ietf.org/html/rfc2661
30 https://tools.ietf.org/html/rfc2341
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PPP, which is defined in RFC 1661,31 “The Point-to-Point Protocol (PPP),” July 1994. 

All L2TPv2 connections use UDP encapsulation. There are already some very large 

deployments of softwires on L2TPv2 in ISPs today. L2TPv2 meets all IPv6-over-IPv4 

softwire requirements today. It is 99% ready for IPv4-over-IPv6 softwire today.

Future softwire solutions will be based on L2TPv3, which is defined in RFC 3931,32 

“Layer Two Tunneling Protocol – Version 3 (L2TPv3),” March 2005. L2TPv3 can be 

layered on PPP, but in v3 it is optional (it can layer directly on IP). UDP encapsulation 

is also optional in v3. UDP encapsulation is useful for NAT traversal, but it increases 

overhead and lowers throughput and reliability. If no NAT needs to be traversed, turning 

off the UDP encapsulation can lower overhead. Session ID and Control Connection IDs 

are 32 bits (vs. 16 in L2TPv2). L2TPv3 also provides better user authentication and data 

channel security through use of optional cookies. An L2TPv3 cookie is an up to 64-bit 

cryptographically generated random value, included in every packet. L2TPv3 is close to 

meeting all softwire requirements.

 Relevant Standards for Softwires
RFC 4925, “Softwire Problem Statement,” July 2007 
(Informational)

RFC 5512, “The BGP Encapsulation Subsequent Address Family 

Indicator (SAFI) and the BGP Tunnel Encapsulation Attribute,” 

April 2009 (Standards Track)

RFC 5543, “BGP Traffic Engineering Attribute,” May 2009 

(Standards Track)

RFC 5549, “Advertising IPv4 Network Layer Reachability 

Information with an IPv6 Next Hop,” May 2009 (Standards Track)

RFC 5565, “Softwire Mesh Framework,” June 2009 
(Standards Track)

RFC 5566, “BGP IPsec Tunnel Encapsulation Attribute,” June 2009 

(Standards Track)

31 https://tools.ietf.org/html/rfc1661
32 https://tools.ietf.org/html/rfc3931
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RFC 5571, “Softwire Hub and Spoke Deployment Framework 
with Layer Two Tunneling Protocol Version 2 (L2TPv2),” June 
2009 (Standards Track)

RFC 5619, “Softwire Security Analysis and Requirements,” August 

2009 (Standards Track)

RFC 5640, “Load-Balancing for Mesh Softwires,” August 2009 

(Standards Track)

RFC 5969, “IPv6 Rapid Deployment on IPv4 Infrastructures 
(6rd) – Protocol Specification,” August 2010 (Standards Track)

RFC 6333, “Dual-Stack Lite Broadband Deployments Following 
IPv4 Exhaustion,” August 2011 (Standards Track)

RFC 6334, “Dynamic Host Configuration Protocol for 

IPv6 (DHCPv6) Option for Dual-Stack Lite,” August 2011 

(Standards Track)

RFC 6519, “RADIUS Extensions for Dual-Stack Lite,” February 

2012 (Standards Track)

RFC 6674, “Gateway-Initiated Dual-Stack Lite Deployment,” 
July 2012 (Standards Track)

RFC 6908, “Deployment Considerations for Dual-Stack Lite,” 
March 2013 (Informational)

RFC 7040, “Public IPv4-over-IPv6 Access Network,” November 
2013 (Informational)

RFC 7596, “Lightweight 4over6: An Extension to the Dual-Stack 
Lite Architecture,” July 2015 (Standards Track)

RFC 7597, “Mapping of Address and Port with Encapsulation 
(MAP-E),” July 2015 (Standards Track)

RFC 7598, “DHCPv6 Options for Configuration of Softwire Address 

and Port-Mapped Clients,” July 2015 (Standards Track)

RFC 7599, “Mapping of Address and Port Using Translation 
(MAP-T),” July 2015 (Standards Track)
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RFC 7600, “IPv4 Residual Deployment via IPv6 – A Stateless 
Solution (4rd),” July 2015 (Experimental)

RFC 7785, “Recommendations for Prefix Binding in the Context of 

Softwire Dual-Stack Lite,” February 2016 (Informational)

RFC 7856, “Softwire Mesh Management Information Base (MIB),” 

May 2016 (Standards Track)

RFC 7870, “Dual-Stack Lite (DS-Lite) Management Information 

Base (MIB) for Address Family Transition Routers (AFTRs),” June 

2016 (Standards Track)

RFC 8026, “Unified IPv4-in-IPv6 Softwire Customer 
Premises Equipment (CPE): A DHCPv6-Based Prioritization 
Mechanism,” November 2016 (Standards Track)

RFC 8114, “Delivery of IPv4 Multicast Services to IPv4 
Clients over an IPv6 Multicast Network,” March 2017 
(Standards Track)

RFC 8115, “DHCPv6 Option for IPv4-Embedded Multicast and 

Unicast IPv6 Prefixes,” March 2017 (Standards Track)

RFC 8389, “Definitions of Managed Objects for Mapping of 

Address and Port with Encapsulation (MAP-E),” December 2018 

(Standards Track)

RFC 8513, “A YANG Data Model for Dual-Stack Lite (DS-Lite),” 

January 2019 (Standards Track)

 Dual-Stack Lite
The IETF Softwires working group has come up with a variant on the basic dual-

stack network design, which is described in RFC 6333,33 “Dual-Stack Lite Broadband 

Deployments Following IPv4 Exhaustion,” August 2011. There is additional information 

on Dual-Stack Lite in RFC 6908,34 “Deployment Considerations for Dual-Stack Lite,” 

March 2013.

33 https://tools.ietf.org/html/rfc6333
34 https://tools.ietf.org/html/rfc6908
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Clients using Dual-Stack Lite will still need to support both IPv4 and IPv6, but 

the service from the ISP to the customer will be IPv6-only, with IPv4 service tunneled 

over IPv6 in both directions. If you examine the traffic between the CPE and the ISP, 

there will only be IPv6 packets, but some of them will contain IPv4 packets as the Data 

field. The IPv4 addresses provided to the customer will be RFC 1918 private addresses, 

provided by a giant Carrier-Grade NAT (CGN) at the ISP. The NAT involved actually uses 

the customer’s IPv6 address to tag the private IPv4 addresses used by the client, which 

would allow multiple ISP clients to use the same private address range (e.g., all of them 

could use 10.0.0.0/8, and the LSN would keep each organization’s addresses separate 

based on their unique IPv6 address). There is a special new private address range 

(100.64/10) that is used in the carrier-based mapping. So, if the address assigned to the 

WAN node on your CPE is in 100.64/10, you are behind CGN. This is becoming more 

and more common as unallocated IPv4 public addresses vanish. According to the CGN 

RFC (659835), no one should deploy CGN without also deploying IPv6, but many telcos 

and ISPs ignore this and deploy CGN without any IPv6, in order to keep providing their 

customers with IPv4 service.

IPv6-only or dual-stack nodes at the client would be able to connect to any IPv6 

node in the world directly, via the ISP’s IPv6 service. IPv4-only or dual-stack nodes at the 

client would be able to connect to any IPv4 node in the outside world via IPv4 tunneled 

over IPv6, with addresses from the ISP’s Carrier-Grade NAT. There is no 6to4 translation 

that would allow an IPv6-only node to connect to external IPv4 nodes or 4to6 translation 

that would allow an IPv4-only node to connect to external IPv6 nodes. Any internal 

node that needs to connect to external IPv4 nodes should be configured to support dual 

stack. The tunneling of IPv4 packets inside the outgoing IPv6 packets takes place inside 

the CPE, as does the de-tunneling of IPv4 packets from the incoming IPv6 packets. It’s 

basically 6in4 upside down. This scheme can be deployed for a very long time compared 

with basic dual stack.

The way this differs from basic dual-stack operation is that there is no direct IPv4 

service provided, and the IPv4 addresses used at the client are private and managed 

by infrastructure at the ISP. This allows the ISP to share a relatively small number of 

precious real IPv4 addresses among a large number of customers and also allows the 

ISP to run IPv6 only to the customer. A major advantage of DS Lite is that no 6to4 or 4to6 

translation is required. The downside is that all nodes on the internal network are still 

35 https://tools.ietf.org/html/rfc6598
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dual stack – you must still manage two sets of IP addresses (IPv6 and IPv4). It is much 

cleaner and less expensive to eliminate IPv4 altogether in the internal network, other 

than via NAT64 border gateways.

This will require a firmware upgrade (or replacement) of the Customer Premises 

Equipment (CPE), which is typically a DSL or cable modem, with embedded router 

and NAT.

The Internet Systems Corporation (who also supplies the BIND DNS server and 

dhcpd DHCPv4 server) has created a freeware implementation of the ISP-side facilities 

to support DS Lite, called AFTR36 (Address Family Transition Router). This includes 

IPv4-over-IPv6 tunneling, DHCPv4, DHCPv6, and some other pieces.

The CPE device for DS-Lite37 is called B4 (Basic Bridging BroadBand Element). There 

is an open source implementation of this for the Linksys WRT-54GL. Some network 

vendors are beginning to produce DS Lite–compatible CPE now.

 PET (Prefixing, Encapsulation, and Translation)
PET is one of the emerging softwire standards, which is trying to work out the optimal 

combination of tunneling and translation mechanisms to provide a workable framework 

for IPv4/IPv6 co-existence. The types of tunnels discussed are

• IP-in-IP tunnels (RFC 2893, RFC 4213)

• GRE tunnel (RFC 1702)

• 6to4 tunnel (RFC 3056)

• 6over4 tunnel (RFC 2529)

• Softwire transition technique (RFC 5565)

The translation mechanisms discussed include

• SIIT (RFC 2765)

• NAT-PT (RFC 2766 – deprecated)

• BIS (RFC 2767)

• SOCKS64 (RFC 3089)

36 www.isc.org/downloads/aftr/
37 www.isc.org/blogs/ds-lite-architecture-overview-and-automatic-configuration/
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• BIA (RFC 3338)

• IVI (RFC 6219)

These standards discuss various combinations of the preceding tunneling 

and translation mechanisms to accomplish different kinds of co-existence. The 

recommended tunneling scheme is the softwire transition technique (RFC 5565). It 

also notes that DNS may have to interact with the co-existence solution using a DNS 

Application Layer gateway, such as DNS64.

 Translation
Translation between IPv4 and IPv6 is by far the most complex transition mechanism. 

It has all the issues of IPv4-to-IPv4 Network Address Translation, plus new issues that 

complicate it even further. There is a great deal of activity in the IETF trying to create 

standards that will be implementable and deployable.

Since IPv4 addresses are running out, many ISPs would like to deploy IPv6-only 

service to their customers (as opposed to dual stack with both IPv4 and IPv6 services). 

Without translation, an IPv6-only node cannot access legacy IPv4-only nodes on the 

Second Internet (which currently includes most online sites). Over time, more and more 

sites and services will be dual stack, which will make IPv6-only nodes more useful. Until 

that time, translation gateways will be needed for IPv6-only nodes. It will be far simpler 

and cheaper, resulting in a superior user experience if both IPv4 and IPv6 are deployed, 

even if the IPv4 service is heavily NATted. However, ISPs seemed to be obsessed with 

deploying translation. There are a variety of ways that this can be accomplished, but 

most are quite complex and likely to be major sources of problems.

Tunneling cannot achieve IPv4-to-IPv6 interworking, but it’s highly transparent 

and lightweight, can be implemented by hardware, and can keep IPv4 routing and IPv6 

routing separated. It allows existing infrastructure (whether IPv4 or IPv6) to be used as a 

transport to link two nodes (or networks) using the other version of IP.

Translation achieves direct intercommunication between IPv4 and IPv6 nodes or 

networks by means of converting the semantics between IPv4 and IPv6. However, it has 

limitations in operational complexity and scalability. Like any NAT, it may have serious 

issues with transparency (some protocols may not work through it). Correct translation 

requires
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• Address or (address, port) tuple substitution

• MTU discovery

• Fragmentation when necessary

• Translation of both IP and ICMP fields

• ICMP address substitution in payloads (e.g., with SIP)

• IP/TCP/UDP checksum recomputation

• Application Layer translation when necessary

Stateless translation consumes IPv4 addresses to satisfy IPv6 hosts, which does not 

scale (for one thing we are running out of IPv4 addresses; for another, there are lots more 

IPv6 addresses than IPv4 addresses). It can be implemented in hardware, but any ALG 

translation is too complex for hardware.

Stateful translation requires maintaining complex state for dynamic mapping of 

(address, port) tuples and cannot be implemented in hardware.

 NAT64/DNS64
This transition mechanism requires both a NAT64 gateway and either a DNS server that 

supports DNS64 mapping or a DNS ALG that supports DNS64. What follows is a highly 

simplified description of operation. The full details are covered in the RFCs (there is 

quite a bit of complexity involved in the real operation).

The NAT64 gateway should have two interfaces, one connected to the IPv4 network 

(with a valid IPv4 address on that network) and the other connected to the IPv6 network 

(with a valid IPv6 address on that network). IPv6 traffic from a node on the IPv6 network 

going to an IPv4 node is sent in IPv6 and routed to the NAT64 gateway. The gateway 

does address translation and forwards the translated packets to the IPv4 interface, from 

which they are routed to the destination node. Reply packets from the IPv4 node are sent 

in IPv4 to the gateway and are translated into IPv6 and forwarded to the IPv6 interface, 

from which they are routed back to the original sender. This process requires state, 

binding an IPv6 address and TCP/UDP port (referred to as an IPv6 transport address) to 

an IPv4 address and TCP/UDP port (referred to as an IPv4 transport address).

Packets that originate on the IPv4 side cannot be correctly translated, because there 

would be no state from the packets coming through the gateway in the v6->v4 direction. 

NAT64 is not symmetric. For traffic initiated by an IPv6 node, everything works right. 
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Once the binding is created, that traffic flow can continue (from the IPv6 node to the 

IPv4 and back).

For the traffic originating on the IPv4 side to be translated to IPv6, it requires some 

additional mechanism, such as ICE or a static binding configuration.

This mechanism depends on constructing IPv4-converted IPv6 addresses. Each IPv4 

address is mapped into a different IPv6 address by concatenating a special IPv6 prefix 

assigned to the NAT64 device (Pref64::/n).

It also uses a small pool of IPv4 addresses, from which mappings will be created 

and released dynamically, as needed (as opposed to permanently binding specific IPv4 

addresses to specific IPv6 addresses). This implies that NAT64 does both address and 

port translation.

When an IPv6 initiator does a DNS lookup to learn the address of the responder, 

DNS64 is used to synthesize AAAA resource records from A resource records. The 

synthesized AAAA resource records are passed back to the IPv6 initiator, which then 

initiates an IPv6 connection with the IPv6 address that is associated with the IPv4 

receiver. The packet will be routed to the NAT64 device, which will create the IPv6-to-

IPv4 address mapping as described before.

In general, dual-stack nodes should not use DNS64. If they get a synthesized IPv6 

address and a native IPv4 address, the rule to prefer IPv6 will cause the dual-stack host 

to do the access via the NAT64 gateway instead of direct using IPv4. If you deploy DNS64, 

it should be used only by IPv6-only nodes, and there should be a regular DNS for use by 

any dual-stack nodes.

 IVI
This address translation scheme is being used on a large scale between CERNET (IPv4-

only) and CERNET2 (IPv6-only) for nodes on either side to connect to nodes on the 

other side, as well as allowing IPv6-only nodes to connect to IPv4 nodes out on the 

public Internet.

The pros of using IVI are as follows:

• It is stateless, so it scales to a large number of nodes better than 

NAT64/DNS64.

• The translation is decoupled from DNS.
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• It is symmetric, so can be used for connections initiated on either 

side of the gateway (IPv4 to IPv6 side or IPv6 to IPv4 side).

• There is an open source implementation of the IVI gateway and 

DNS64 ALG available on Linux.

The cons of using IVI are as follows:

• An ALG is still required for any protocol that embeds IP addresses in 

the protocol, such as SIP.

• It restricts the IPv6 hosts to use a subset of the addresses inside the 

ISP’s IPv6 block. Therefore, IPv6 Stateless Address Autoconfiguration 

cannot be used to assign IPv6 addresses to nodes. You must either 

manually assign addresses or use stateful DHCPv6.

• There are still some issues with end-to-end transparency, address 

referrals, and incompatible semantics between protocol versions.

• You still need a DNS64 ALG for DNS.

 Preferred Network Implementation Going Forward: 
IPv6-Only
As the 2014 OECD report points out, the real benefits of IPv6 only come once you remove 

IPv4, except for gateway access to legacy IPv4-only nodes outside your network.

One very interesting discussion of this approach can be found in “Microsoft Works 

Toward IPv6-Only Single Stack Network,”38 by Veronika McKillop (Microsoft CSEO), April 

3, 2019.

This is a large-scale, real-world deployment of IPv6-only and will be fully realized 

globally over time. It is already far enough along to provide some very good insights into 

doing this from actual experience.

Here are key points from this writeup:

• IPv4 address depletion is already a serious problem, and not just 

public addresses. Microsoft is now having problems allocating even 

38 https://teamarin.net/2019/04/03/microsoft-works-toward-ipv6-only-single-stack- net
work/?fbclid=IwAR0iqDbK8uehU0uCC-NA1Da55RfjiHRPHFSky4jRyKZxB3TeF4Uh6IR54no
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private addresses company-wide. They have predicted that they will 

no longer be able to use the 10/8 private address block in around 2–3 

years. They have explored reclaiming unused IPv4 addresses, with 

little success.

• There are big benefits to a single stack network in troubleshooting, 

security, and QoS policies. Dual stack still involves having to work 

with NAT44, which has many problems.

• Since all companies today use private IPv4, there are always 

problems of address conflict in acquisitions, requiring even more 

NAT44 and address renumbering. These problems are not present in 

IPv6, even with ULA.

• Industry pressure is growing, such as Apple’s decision to require 

IPv6 in all apps submitted to the App Store. It is critical that app 

developers have an IPv6-only environment to test apps. MA currently 

has 12 locations for this kind of work.

• A good IPv6 address plan is critical. The one they created in 2006 has 

required very minor changes (one in 2015 and another in 2018). They 

started with one /32 from ARIN and then in 2013 added /32s from 

RIPE and APNIC.

• It is important that both DHCPv6 and RDNSS (IPv6 addresses for 

DNS via RA messages) must be implemented everywhere, since some 

nodes only support one way or the other.

• Extensive training in IPv6 for engineering staff is critical.

• Working with outside vendors often requires forcing them to support 

IPv6 well.

• Clouds are still mostly IPv4-only, which causes major problems for 

cloud-based security.

• Global routing works better with IPv6.

• Currently, 20–30% of their internal traffic is IPv6.

• NAT64/DNS64 is essential but still problematic.
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• They have a “scream test” that involves removing all IPv4 from a 

network temporarily and seeing who screams and what about.

• “My advice is to take your deployment bit by bit. Focus on things that 

give you the biggest benefit, the biggest learning, the biggest impact 

on the largest group of users.”

• “Dual stack is only a temporary solution. The ultimate solution is 

IPv6-only.”

 Supporting IPv6 for Developers at Sixscape
We develop products for Windows, MacOS, Android, and iOS. All must fully support IPv6 

and even work in IPv6-only environments (where possible). This means our developers 

must have access to three different network architectures, IPv4-only, dual stack, and 

IPv6-only.

Most of our developers use notebooks, and even a desktop can be provided with a 

Wi-Fi network adapter, so we chose to implement multiple Wi-Fi networks (and for both 

2.4 GHz and 5.0 GHz). So we have six SSIDs in our office:

• V4-2.4: IPv4-only, 2.4 GHz, 172.18/16

• V4-5.0: IPv4-only, 5.0 GHz, 172.18/16

• DS-2.4: IPv4 + IPv6, 2.4 GHz, 172.17/16 and 2001:470:xxxx:1000::/64

• DS-5.0: IPv4 + IPv6, 5.0 GHz, 172.17/16 and 2001:470:xxxx:1000::/64

• V6-2.4: IPv6-only, 2.4 GHz, 2001:470:xxxx:2000::/64

• V6-5.0: IPv6-only, 5.0 GHz, 2001:470:xxxx:2000::/64

Depending on what Wi-Fi adapter your computer has, you may see only the 2.4 GHz 

or both 2.4 GHz and 5.0 GHz SSIDs. From the visible SSIDs, choose the subnet you want 

to test with. 5.0 GHz has higher speeds (up to 867 Mbps internally, although our ISP 

connection is only 500 Mbps).

DHCPv4, DHCPv6, and RDNSS are all implemented. Static routes and firewall 

rules allow the 172.18/16 and 2001:470:xxxx:2000::/64 subnets access anything in 

the 172.17/16 and 2001:470:xxxx:1000::/64 subnets (and vice versa). The public IPv4 

Internet is accessible from the V4-only and DS subnets, while the public IPv6 Internet 

is accessible from the V6-only and DS subnets. All internal nodes can configure 
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appropriate internal IP addresses and addresses of DNS and find the default gateways. 

We can open incoming ports to any nodes on the V6-only or DS subnets and provide 

limited access via incoming connections via our 6 public IPv4 addresses (either BINAT or 

port mapped). I have IPv6 at home as well and often access the node at my desk via RDP 

from home – it is just like being in the office. If needed, we can make a wired Ethernet 

connection from any subnet to any internal node, but typically the wired connections 

are only to the DS subnet.

Our firewall (pfSense based) supports four NICs – one for WAN, one for V4-only 

LAN, one for DS LAN, and one for V6-only LAN. Those NICs are connected to three Wi-

Fi routers (via the LAN taps, not WAN taps). This bridges the Wi-Fi networks to the wired 

networks. I have not yet implemented NAT64 on the V6-only subnet but will do that 

soon. It is interesting currently (without NAT64) to see how much outside stuff works on 

the V6-only subnet. Most things do, amazingly (Google, FB, DynDNS, etc.).

As an example, our DNSSEC appliance is fully functional in a V6-only network – 

most have some IPv4 dependency (e.g., NTP, SNMP, etc.). I believe we need to extend 

IPv6-ready certification to include working in an IPv6-only subnet (without NAT64), as a 

higher-level certification.

Our ISP does not currently offer native IPv6, so we use 6in4 to bring a /48 block in 

from Hurricane Electric (there is a tap here in Singapore, so performance is quite good). 

Even if we only had a single IPv4 public address, we would be able to use that for both 

cone NAT and our endpoint of the 6in4 tunnel. We route one /64 block to the DS subnet 

and another to the V6-only subnet. The fact that we obtain IPv6 via a tunnel does not 

impact this setup at all. However, if we had an ISP that only provided one /64, we would 

not be able to do this.

 Summary
In this chapter, we covered the many transition mechanisms intended to help during the 

transition from all-IPv4 to all-IPv6. Some of these (dual stack, 6in4 tunneling, etc.) have 

been successful and are still in use. Some of these (6over4, Teredo, ISATAP) were used in 

the early days but due to various problems have fallen out of use. We covered those here 

in case you tun into an old implementation of them.
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Most of the translation mechanisms have not worked very well. The only one still in 

use had to be severely restricted in terms of how it was deployed for it to actually work 

(NAT64/DNS64). It now only supports connections from IPv6-only nodes in an IPv6-

only subnet to external IPv4 servers. This can help during the deployment of IPv6-only 

subnets.

One of the hot topics today is finally doing away with IPv4 in entire subnets (IPv6-

only). The US DoD has now mandated that new equipment must work in dual-stack 

and IPv6-only subnets. This means there can be no IPv4 dependencies (e.g., using IPv4 

versions of ancillary protocols such as NDP or SNMP).
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CHAPTER 9

IPv6 on Mobile Devices
My telco in Singapore (M1) was providing IPv6 service on their cellular dataplan if you 

knew how to configure your phone. The trick on Android was to change your service type 

to “LTE/3G/2G” and set the APN protocol to “IPv4/IPv6.” On iPhone no special settings 

were required – it just worked. In the United States, my service from AT&T includes IPv4 

and IPv6 with no configuration required – it just works out of the box. They allocate a /64 

block for every phone. My phone currently has block 2600:380:b0d0:f919::/64 allocated. 

Note that with AT&T I can see both Wi-Fi and dataplan IPv6 addresses at the same time.

It is a bit tricky to find your mobile IP addresses on iOS – get the HE.NET app from 

the App Store (shown in the following). In Android the Network Info II app allows you to 

see IPv6 addresses. I will show examples of this later.

 Android
The IPv6 address 2401:7400:6000:93d9:1:1:9366:9705 is configured on my phone, 

along with the private IPv4 address 10.194.78.202. The external public IPv4 address 

is 246.106.56.119. Note that on Android, if the Wi-Fi configures an IPv6 address, no 

additional IPv6 addresses are configured on the dataplan. This screenshot required 

disabling the Wi-Fi. Note that on my ISP, if the phone goes to sleep, it will keep the 

same /64 prefix when it wakes back up. If I reboot, I get a new /64 prefix. Your mileage 

may differ.

Note that the phone actually gets a /64 block, not a single /128 address. If you set up 

a hot spot, both IPv4 and IPv6 are shared, and devices that connect to the hot spot get an 

IPv6 address in the same /64 block as the address on the phone. This may be significant 

as we start running servers on phones! Sixscape has created a way to securely register 

your IPv6 address from a mobile device (using IRP).

© Lawrence E. Hughes 2022 
L. E. Hughes, Third Generation Internet Revealed, https://doi.org/10.1007/978-1-4842-8603-6_9

https://doi.org/10.1007/978-1-4842-8603-6_9


328

Figure 9-1. Network IP address allocation on Android
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Figure 9-2. IPv6test.com test of IPv6 on Android

Note that I can even ping this address from my Windows node:

C:\Windows\system32>ping 2401:7400:6000:93d9:1:1:9366:9705

Pinging 2401:7400:6000:93d9:1:1:9366:9705 with 32 bytes of data:

Reply from 2401:7400:6000:93d9:1:1:9366:9705: time<1ms

Reply from 2401:7400:6000:93d9:1:1:9366:9705: time=51ms

Reply from 2401:7400:6000:93d9:1:1:9366:9705: time=107ms

Reply from 2401:7400:6000:93d9:1:1:9366:9705: time=104ms

Ping statistics for 2401:7400:6000:93d9:1:1:9366:9705:

    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),

Approximate round trip times in milli-seconds:

    Minimum = 0ms, Maximum = 107ms, Average = 65ms
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 iPhone

Figure 9-3. IP address allocation on iPhone 7 using HE network application
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Figure 9-4. Rest of IP allocation info on iPhone 7

On the Wi-Fi interface, a link-local IPv6 address and two global IPv6 addresses have 

automatically configured.

On the dataplan (cellular data), another link-local IPv6 address and two more global 

IPv6 addresses have automatically configured.

For outgoing IPv6, here is the result from surfing to ipv6-test.com on the iPhone 

(with Wi-Fi disabled, so the dataplan IPv6 address was used).
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Figure 9-5. Ipv6-test.com site on iPhone 7

As on Android, I can ping both of these addresses from my Windows node:

C:\Windows\system32>ping 2401:7400:4000:da1d:957:287b:d2a7:3117

Pinging 2401:7400:4000:da1d:957:287b:d2a7:3117 with 32 bytes of data:

Reply from 2401:7400:4000:da1d:957:287b:d2a7:3117: time=258ms

Reply from 2401:7400:4000:da1d:957:287b:d2a7:3117: time=74ms

Reply from 2401:7400:4000:da1d:957:287b:d2a7:3117: time=92ms

Reply from 2401:7400:4000:da1d:957:287b:d2a7:3117: time=106ms

Ping statistics for 2401:7400:4000:da1d:957:287b:d2a7:3117:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),

Approximate round trip times in milli-seconds:
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Minimum = 74ms, Maximum = 258ms, Average = 132ms

C:\Windows\system32>ping 2401:7400:4000:da1d:8fa:de81:dd26:d505

Pinging 2401:7400:4000:da1d:8fa:de81:dd26:d505 with 32 bytes of data:

Reply from 2401:7400:4000:da1d:8fa:de81:dd26:d505: time=703ms

Reply from 2401:7400:4000:da1d:8fa:de81:dd26:d505: time=90ms

Reply from 2401:7400:4000:da1d:8fa:de81:dd26:d505: time=111ms

Reply from 2401:7400:4000:da1d:8fa:de81:dd26:d505: time=100ms

Ping statistics for 2401:7400:4000:da1d:8fa:de81:dd26:d505:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),

Approximate round trip times in milli-seconds:

Minimum = 90ms, Maximum = 703ms, Average = 251ms

On Android, if there is an IPv6 address on Wi-Fi, any IPv6 address on the dataplan 

is ignored. On iOS, it will configure IPv6 from both Wi-Fi and dataplan, but if there is an 

IPv6 Wi-Fi address available, connections will use it rather than the dataplan address.

 What Are the Implications of This?
For the first time ever since Internet access has been available on mobile devices, there 

are finally public IP addresses for mobile devices. That is a major game changer. Up until 

now, all IP addresses on mobile devices have been private (RFC 1918) addresses, behind 

NAT (in some cases, behind multiple layers of NAT, with CGN). That means you can only 

make outgoing connections from your mobile device to nodes with public addresses, 

typically servers at telcos, ISPs, large content providers, etc. There is no way for external 

nodes to make connections to your phone. So the only apps you can get or run on your 

phone are clients.

Now, with IPv6 on mobile devices, you have public IP addresses (accessible only by 

IPv6 users, but definitely public addresses). These addresses can not only be used for 

outgoing connections; they will also accept incoming connections, from any IPv6 node 

in the world (unless the ports involved are blocked somewhere along the way). You can 

now run servers (FTP, web, email, LDAP, etc.) on your mobile device. If you publish this 

address in DNS, anyone you allow can connect to those servers.
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This also opens up the possibility of end-to-end direct connections: straight from my 

node to yours, with no intermediary server between us. The Second Internet (using IPv4 

with NAT) forces us to use intermediary servers running on nodes with public addresses. 

If I want to chat with you, with IPv4 I cannot make a connection directly to your node; 

we both have to make outgoing connections to some intermediary server (XMPP and 

so on). That server then relays messages back and forth between our two outgoing 

connections. If the connections are secured by TLS, the messages will be in plain text 

on that intermediary server. Most snooping takes place on intermediary servers, not 

in transit between end users and the server. You can achieve end-to-end privacy and 

sender-to-recipient authentication with S/MIME, but that requires all parties to have 

mutually trusted client certificates and a PKI to manage them. S/MIME is primarily for 

email, although I have made it work over FTP as well. I don’t know of any chat protocol 

that supports S/MIME currently, although in theory it could be done (not with XMPP).

With end-to-end direct messaging, there is only one link involved and no 

intermediary server(s). In this case, TLS is actually end to end. If both ends use a client 

cert, this approach achieves strong mutual authentication (we both know for certain who 

the other party is) and end-to-end privacy. I call this PeerTLS. Messages are encrypted 

in my node and decrypted in yours. Most people are not aware that TLS can work with a 

client cert at both ends, but I have verified that it works great. When I message you, I am 

not really interested in verifying your nodename; I want to know your identity (in other 

words the information in your client cert, not in a server cert). Note that this will work 

over IPv4 but only within a private Internet (e.g., your company LAN) – it cannot cross a 

NAT gateway. With IPv6, there are no NAT gateways, so assuming port 4605 is open from 

my node to yours, my node can connect directly to yours, regardless of where we are in 

the world.

Note that decentralized messaging uses existing protocols, just implemented in 

an end-to-end model, using PeerTLS. This has been tested with chat, email (SMTP), 

file transfer (FTP), and VoIP (SIP/RTP). With this model, every user has both a client 

and a (personal) server running on their node (even on a phone). There is no need 

for a centralized intermediary server (or an account from an ISP or telco). Anyone 

can exchange messages directly with any other user (assuming both have IPv6). This 

provides true end-to-end encryption (only one link is involved) and mutual strong 

authentication (both parties know for certain who they are communicating with). This 

may be one of the biggest wins of the migration to IPv6.
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This is 5G-style decentralized messaging, not possible on the Second Internet 

because of NAT.

 Decentralized Messaging
There are many advantages to decentralized messaging over current client/server via 

intermediary servers:

• As long as there is network connectivity between our nodes, it doesn’t 

matter if our connection to the Internet is up or not. For comparison, 

even when I'm chatting with the person next to me on Skype, if the 

ISP connection goes down, the chat stops.

• The speed of the connection is limited only by the bandwidth on the 

shortest network path between us.

• Traffic never leaves the shortest network path between us, although 

that could involve going to our ISP if the other party is not local.

• PeerTLS with both ends using a client cert provides strong mutual 

authentication in addition to end-to-end encryption.

• You are not dependent on any intermediary servers being up and 

running or having an account on them (you will need an IRP account 

if you want to publish and obtain IP addresses and/or client certs 

for other parties, but the messaging traffic does not go through 

this path).

• No one but the parties communicating have any control over the 

message content.

• It is very difficult for anyone to snoop on decentralized connections, 

especially if they are encrypted end to end – there can be no man-in- 

the-middle attack if there is no “middle.”
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 Summary
IPv6 deployment is very far along with mobile service providers, as there are major and 

obvious benefits over trying to splice together many IPv4 10.x.x.x subnets. The largest 

IPv4 subnet is only a /8, which provides some 16 million private IP addresses. Most 

mobile service providers have many more than 16M subscribers. With IPv6, a single 

subnet can provide /64 blocks for every subscriber with no problem.

If you check on your phone today (and you may need to download an application, 

like Network Info II on Android or HE.NET on iPhones), you can see the IPv6 addresses 

on your phone. Even without those applications, if you surf to https://ipv6- test.com,  

you can see whether you have IPv6 today. Most of the people reading this probably 

already do have it. For mobile device users, the future has already arrived.

If your Wi-Fi supports IPv6, both Android and iOS phones can get IPv6 over Wi-Fi, 

in addition to over your dataplan. If your service provider is not currently providing IPv6 

for some reason, but you have IPv6 running in your local subnet, you can still connect to 

nodes in the Third Internet via Wi-Fi.

This is one of the most exciting areas of IPv6 deployment. For the first time since 

phones were given access to the Internet, they now can get public IP addresses. I’m 

already pioneering several aspects of this, including direct end-to-end connections and 

PeerTLS.
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CHAPTER 10

DNS
DNS (the Domain Name System) is a critical part of today’s Internet. Without it, we 

would have to keep massive (and always out-of-date) directories (like telephone books), 

where you could look up the name of some site (such as Dell’s pages about their PCs) 

and then find the “telephone number” (IP address) of that page, which you would then 

“dial” (type into your browser). This is clearly not very practical. DNS is such a complex 

and critical topic for both IPv4 and IPv6 that I have included a chapter just for it.

 How DNS Evolved
Various schemes have been used to keep track of nodenames and their corresponding IP 

addresses. The end result is a remarkably powerful and flexible system called DNS.

 Host Files
In the early days of TCP/IP, a list of known “hosts” (computers, routers, firewalls, etc.) 

was kept in a special file called hosts in the /etc directory of all UNIX computers (the 

complete filename was /etc/hosts). This file included one or more lines, each of which 

contained an IP address, followed by one or more nodenames (e.g., www) or even fully 

qualified nodenames (e.g., www.ibm.com). If you told your copy of UNIX to use the hosts 

file for “name resolution,” when you used one of the nodenames listed in your hosts file, 

it would use the IP address associated with that name. This still works today – you can 

override DNS with your hosts file if you specify it first in the search order. Even Windows 

systems have a hosts file, typically located at

• C:\Windows\System32\drivers\etc\hosts
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A typical hosts file might look like

    172.20.0.11   ws1 ws1.hughesnet.local

    172.20.0.12   ws2 ws2.hughesnet.local

    172.20.0.13   us1 us1.hughesnet.local

 Network Information Service (NIS)
In organizations with many UNIX computers, and especially once people started linking 

networks together with TCP/IP, it became necessary to keep everyone’s hosts file up 

to date and synchronized. This was done manually for a while. Then NIS (Network 

Information Service) was created by Sun to automatically distribute copies of the official 

hosts file (in addition to other important configuration files for UNIX) to every node, on a 

periodic basis.

 DNS Was Invented
Soon even this became unwieldy, so in 1983, at the request of Jon Postel, Paul 

Mockapetris designed DNS as a distributed database engine with distributed data. We 

are still using this system today. You will find that with minor extensions, it even supports 

IPv6 and dual-stack networks. There is a gigantic, worldwide hierarchical system of DNS 

servers that allows each network administrator to manage the names and IP addresses of 

nodes in their network that users anywhere in the world might need to know about (e.g., 

that organization’s web servers, email servers, etc.). DNS is also used to keep track of the 

nodenames and IP addresses of all internal nodes in an organization’s private network, 

which only users in that organization need to know about (the organization’s file servers, 

network printers, intranet web servers, other users’ workstations, etc.).

 Domain Names
Domain names refer to the hierarchical namespace as defined by RFC 1035 (above); RFC 

1123, “Requirements for Internet Hosts – Application and Support,” October 1989; and 

RFC 2181, “Clarifications to the DNS Specification,” July 1997. Briefly, domain names 

consist of a list of names (e.g., atlanta, usa, exampleco, and com), in most specific to least 

specific order, separated by periods (e.g., atlanta.usa.exampleco.com). Here, com is the 
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TLD (or top-level domain) name for commercial organizations. The name exampleco is 

the name of a hypothetical company, which is a commercial organization, and all parts 

of it use the domain exampleco.com. Within ExampleCo, there is a branch in the United 

States, which uses the subdomain usa.exampleco.com. Finally, there is an office in 

Atlanta, Georgia, which uses the subdomain atlanta.usa.exampleco.com. If there is a web 

server named www in that office, it would have a fully qualified domain name of www.

atlanta.usa.exampleco.com. There is no way to tell (without more information) if the 

first name in such a string is a node’s name or the first component of a domain name. 

 Top-Level Domain Names
There are a number of TLDs including generic ones that have been in use for a long time:

com: For commercial organization (company)

org: Noncommercial organization

edu: Educational organization

net: Internet related, for example, ISP

gov: Government related

mil: Military related

Recently, this was opened up – anyone with sufficient funds can now have their own 

top-level Domain and manage subdomains under it. There are now over 1500 top-level 

domains.

There are also many ccTLDs (country code top-level domains), each of which uses 

the ITU two-letter code for the country, such as us, uk, jp, and ph). There are a few 

exceptions to the ITU code usage, for example, the ITU code for Great Britain is gb, 

while their ccTLD is uk. Each country manages subdomains under their ccTLD as they 

see fit. Certain ccTLDs appear to have other meanings, like tv for the country of Tuvalu, 

which sells domains in their space to people who want to use it to mean television. 

Under ccTLDs, there are usually (but not always) second-level domains, such as co for 

commercial, or for organization, etc. Actual organization names would then be third- 

level domain names. Hence, a UK-based commercial entity called Warmbeer, Ltd. might 

have the domain name warmbeer.co.uk. Their web server might be www.warmbeer.co.uk. 
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A few ccTLDs, like ph for the Philippines, use the full three-letter code for organization 

type, instead of the more common two-letter codes, as a second-level domain name, for 

example, infoweapons.com.ph.

 Internationalized Domain Names
There are also Internationalized Domain Names (IDNs) that use 16-bit Unicode 

characters to allow domain names in languages that have non-Latin alphabets. Your 

browser will translate these Unicode domain names into strings in UTF-8, using the 

punycode algorithm (shown in the last column in the following). This is defined in RFC 

3492, “Punycode: A Bootstring Encoding of Unicode for Internationalized Domain 

Names in Applications (IDNA),” March 2003. For example, the following (believe it or 

not) are syntactically valid URLs (although they do not currently point to real sites):

http://пример.испытание/  Russian  http://xn- - 

e1afmkfd.xn- - 80akhbyknj4f/

http://例子.测试/   Chinese http://xn- - 

fsqu00a.xn- - 0zwm56d/

http://실례.테스트/   Korean  http://xn- 

- 9n2bp8q.xn- - 9t4b11yi5a/

http://例え.テスト/  Japanese http://xn- - 

r8jz45g.xn- - zckzah/

http://उदाहरण.परीक्षा/  Indian  http://xn- - 

p1b6ci4b4b3a.xn- - 11b5bs3a9aj6g/

 NS Resolver
All operating systems today include a DNS client, called a resolver. All network 

applications use the resolver to look up nodenames and obtain their corresponding IP 

addresses, whether those nodes are local (on the organization LAN) or external (out on 

the Internet). The resolver contacts one of the DNS servers specified in their TCP/IP 

configuration (either local or at your ISP). If that server is authoritative for the requested 

domain names, it returns the addresses immediately. Otherwise, that server can either 
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return a hint of where to look (“I don’t have that information. Try here”) or do a recursive 

lookup (“I didn’t have that information, but I went and found it for you”). Of course, the 

lookup could fail (“I couldn’t find that domain name anywhere”).

 DNS Server Configuration
The full process of setting up DNS servers (usually two or more) for an organization 

and populating them with node information is too complicated to cover in this book. If 

you are using the Microsoft DNS server (included free with Windows Server), see their 

documentation for details. If you are using BIND (the freeware DNS server from the 

Internet Systems Corporation), see O’Reilly’s DNS and BIND, fifth edition, for details. If 

you have a DNS appliance, consult their documentation or online help for details.

In general, though, you define both “forward zones” that map nodenames to IP 

addresses and “reverse zones” that map IP addresses onto nodenames. You also have 

to inform all client computers of the IP addresses of at least two DNS servers that they 

can use for resolving nodenames to IP addresses (or vice versa). Client computers 

can be informed of these DNS server addresses either via manual configuration or 

automatically via DHCPv4 or DHCPv6. If your client computer doesn’t know where to 

find DNS servers, you may have full Internet connectivity but no name resolution. You 

can ping (or even surf to) nodes anywhere in the world by specifying their numeric IP 

addresses (e.g., http://64.170.98.32 – try it!). However, most people would consider such 

a computer to not be very useful. This gives you a very good idea of how important DNS 

is to the Internet (even the Third Internet).

 DNS Protocol
DNS is an Application Layer protocol. It uses UDP port 53 (for most queries and 

responses) or TCP port 53 (for zone transfers between DNS servers). It was originally 

defined in RFC 882, “Domain Names – Concepts and Facilities,” November 1983, and 

RFC 883, “Domain Names – Implementation and Specification,” November 1983. Those 

were replaced by RFC 1034, “Domain Names – Concepts and Facilities,” November 1987, 

and RFC 1035, “Domain Names – Implementation and Specification,” November 1987. 

There have been numerous updates to these, including RFCs 1101, 1183, 1348, 1876, 

1982, 1995, 1996, 2065, 2136, 2137, 2181, 2308, 2535, 2845, 3425, 3658, 4033, 4034, 4035, 

4343, and 4592.
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 DNS Resource Records
The data in DNS servers is kept in resource records. In forward zones, it is possible to 

have any of the following resource records (the following list is not comprehensive):

Name Contents

a “a” – Ipv4 address associated with a domain name

aaaa “Quad-a” – Ipv6 address associated with a domain name

MX “Mail eXchange” – domain name of a mail server for the domain

SrV “Service” – domain name of servers for other protocols, such as SIp and LDap

CNaMe “alias” – provide an alternative domain name for another domain name

hINFO “host Info” – any arbitrary info you want to provide about a host

Naptr “Naming authority pointer” – used mostly in eNUM

NS “Name Server” – name of a valid DNS server for this domain

SOa “Start of authority” – start of a zone in configuration files, includes default ttL

SpF “Sender policy Framework” – used in anti-spam technology

tSIG “transaction Signature” – symmetric cryptographic key used in zone transfers

tXt “text” – any arbitrary text information (not interpreted by DNS)

In reverse zones, typically only the following resource records are found:

NS “Name Server” – name of a valid DNS server for this domain

SOA “Start of Authority” – same as in forward zones

PTR  “Pointer Record” – IP address for a specific node, in reverse order

The following examples show how typical resource records look:

ws1  IN A   172.20.0.11

ws1  IN AAAA  2001:418:5403:3000::c

  IN MX   10 ws1.hughesnet.org

11.0.20.172 IN PTR  ws1.hughesnet.org

c.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.3.3.0.4.5.8.1.4.0.1.0.0.2 IN 

PTR  ws1.hughesnet.org
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In general, it is a pain to manually create reverse PTR records, and any change to 

IP addresses (e.g., from changing ISPs) requires changes to all forward and reverse 

resource records in DNS. Here again, an appliance with a GUI can help by automatically 

generating reverse PTR resource records. This is especially useful for IPv6 reverse PTR 

records.

In the Sixscape DNS appliance, you can define named networks for IPv6. When you 

define a network, which will create the associated reverse zone, you can assign that 

network a name, which has the value of the network’s prefix. You can then define node 

addresses in terms of the network name. First, this fills in the first 64 bits of each address, 

which reduces errors and saves time. However, if you ever change ISPs, you can simply 

redefine the prefix for the network, and all forward and reverse resource records created 

from the nodes specified using that network name will be updated with the new prefix. 

This is called instant prefix renumbering. There was an a6 resource record created at one 

point for IPv6 forward resource records that was supposed to accomplish this, but there 

were so many problems with it. It has now been deprecated (you are not supposed to use 

it anymore). It is much better to do this in an appliance that has a GUI and database and 

generates only the standard AAAA resource records.

 DNS Servers and Zones
A given DNS server can have any number of zones defined on it. A given zone can be 

a forward zone (for mapping domain names to IP addresses) or a reverse zone (for 

mapping IP addresses to domain names). There is usually one forward zone for each 

domain for which the DNS server contains information (e.g., hughesnet.org) and one 

reverse zone for each network that the DNS server contains information for (e.g., 

172.20.0.0/16). So the forward zone for hughesnet.org might contain mappings for ws1.

hughesnet.org to 172.20.0.11, for us1.hughesnet.org to 172.20.0.13, and so on. The reverse 

zone for 172.20.0.0/16 might contain mappings from 172.20.0.11 to ws1.hughesnet.org, 

from 172.20.0.13 to us1.hughesnet.org, 172.20.0.91 to us1.v6home.org, and so on.
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Any zone (forward or reverse) can be a primary zone or a secondary zone. A primary 

zone is one of which the DNS administrator manages the contents (either via a GUI 

interface or via editing BIND configuration files). A secondary zone is one whose 

contents are automatically transferred from a corresponding primary zone of the same 

name on a different DNS server (no management is required for a secondary zone, once 

that zone is created). When you create a secondary zone, you specify the IP address 

of the DNS server that contains the corresponding primary zone. Usually there is one 

primary zone (on one DNS server) and one or more secondary zones (each on other 

DNS servers) for a given set of records. A given DNS server can have any mix of primary 

zones and secondary zones. Sometimes the terms primary and secondary are used 

for entire DNS servers, especially if all zones on a server are all primary zones or all 

secondary zones, but technically the terms refer to zones, not servers. The transfer of all 

records from a primary zone on one DNS server to a secondary zone on another DNS 

server is called a zone transfer. Typically, a primary zone is configured to allow zone 

transfers only to secondary zones on authorized DNS servers (by IP address). There is 

also a cryptographic authentication scheme called TSIG that can restrict zone transfers 

to only authorized secondary zones. Otherwise, a hacker could perform a zone transfer 

from one or more of your primary zones and obtain information useful in attacking your 

network (effectively, a “map” of at least part of your network). Typically, zone transfers 

from primary zones to secondary zones are done automatically on a periodic basis. If 

a hacker changes data in a secondary zone, the correct data would be automatically 

restored as of the next zone transfer. If a hacker changes data in a primary zone, the 

hacker’s changes will be automatically and securely transferred to all secondary zones 

via the regular zone transfers. It is very important to secure your primary zones.

It is possible for all the zones on a given DNS server to be accessible by one or more 

clients for performing DNS resolutions (lookups), in which case it is a resolving server. A 

primary server that is not accessible for resolutions by any client (or other DNS servers) 

is called a stealth server. It is only ever used to do zone transfers to secondary servers 

(hence need not be very powerful). Access via UDP port 53 can be completely disabled 

(zone transfers take place over TCP port 53), and even those can be restricted by IP 

address. Use of a stealth server lowers the possibility of hackers being able to attack your 

primary DNS server. There would be no real use for a “stealth secondary server.”
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 Different Types of DNS Servers
There are different types of DNS servers based on how they are populated with data.

 Authoritative DNS Servers
A DNS server that contains a primary zone or a secondary zone is said to be 

authoritative for the domain (or network) defined in that zone. All resolving servers 

cache (temporarily store) the results of any query they perform on behalf of clients.

If a client makes a query of a resolving server that currently has the required 

information (either because it is authoritative or because it has cached it from a previous 

query), it responds with that information to the client immediately. If a resolving server 

is asked for information it does not currently have, it can either return a reference (“I 

don’t know; go ask this server”), or it can do a recursive query on the client’s behalf (“I 

didn’t know, but I went and found out for you by making client queries myself on your 

behalf, and here is what I found”). A recursive query can go through several servers 

before the requested information is finally obtained and returned to the client that asked 

for it in the first place. Any server involved in the process typically caches the retrieved 

information. Every record published by a DNS server has a Time To Live (TTL) defined 

for it. When a record is cached, it is kept on the caching server only for the defined Time 

To Live for that record, after which it is considered stale and is discarded. Once a DNS 

server discards stale information, if it is asked for again, it must do another recursive 

query, at which point it again caches the record. This caching and expiration scheme 

keeps the data current, but means that a change to authoritative information may take 

a while to propagate to all other servers (often 24–48 hours, depending on Time To Live 

values chosen).

When a client obtains information from an authoritative server, it is reported as an 

authoritative answer. When it obtains information that has been cached, it is reported 

as a non-authoritative answer. This doesn’t mean it is any less trustworthy, just that it 

obtained the information at “second hand” (out of some DNS server’s cache) instead of 

directly from the authority on the subject (an authoritative server).
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 Caching-Only Servers
A resolving server that has no defined primary or secondary zones is called a caching- 

only server and typically, once set up and configured, requires little or no management.

 Client Access to DNS
In a typical network, every client should have the addresses of at least two valid resolving 

DNS servers configured. If a connection to one of them fails, the client will automatically 

try the other configured address. This increases the robustness of the network. In a small 

network (e.g., home connection), the specified servers may be located at and managed 

by the ISP. In some cases, the DSL or cable modem might provide a DNS proxy function, 

which allows DNS queries to be submitted to the default gateway address. The modem 

relays such requests to the DNS servers configured in the modem and returns the replies 

to the internal client that made the request.

Any network can have one or more local DNS servers (assuming they can make 

outgoing queries via UDP port 53). To run an authoritative server on a network, that 

server must be accessible by relevant clients and other servers. If any of those clients 

or servers is external, then the authoritative server must have a globally accessible 

“external” IP address (not a private IP address). For example, I run an authoritative 

DNS server for my domain hughesnet.org in my home, on a DNS server that has a valid 

external IP address. I also run other servers (email and web) that have globally accessible 

external IP addresses (in my case, both IPv4 and IPv6 addresses). I can access these 

services from anywhere on the Internet, just like using servers at ISPs. This sort of thing 

is far simpler and less expensive with IPv6 than with IPv4.

 Recursive DNS Queries
A single DNS query (e.g., “lookup the IP addresses for node ws1.hughesnet.org”) can 

actually require several resolutions. If the server already has information for ws1.

hughesnet.org, either because it is authoritative for that information or because it has 

still valid cached information, it returns the requested information immediately (“ws1.

hughesnet.org has an IPv4 address, which is 172.20.0.11, and an IPv6 address, which is 

2001:df8:5403:3000::c”). It is up to the client which of these is used. If it is a dual-stack 

client (supports both IPv4 and IPv6), it should use the IPv6 address by preference.
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If information for ws1.hughesnet.org is not present on the resolving DNS server, that 

server must find the authoritative server for the domain hughesnet.org. The server that 

is authoritative for the domain org can tell it this information. To locate that server, the 

resolving server can ask any root DNS server. To locate a root DNS server, the resolving 

server can look in its root hints file. Any of these things could already be in cache (and 

typically are, if any other nodename ending in .org or hughesnet.org has been looked 

up by any client recently). If none of them are in cache, then first, the resolving DNS 

server will ask a root DNS server “who is authoritative for domain org.” It will cache the 

response it gets and ask the returned server for org “who is authoritative for domain 

hughesnet.org.” It will cache that response also and ask the returned server for hughesnet.

org “what is the IP address of ws1.hughesnet.org.” It will cache that response as well and 

return the answer to the client, who has been patiently waiting. Most DNS servers have 

a way to empty (or “dump”) the cache if you would like to watch all this happen with a 

network sniffer (this would require root-level access on the computer running your DNS 

server).

 The Root DNS Servers
All DNS queries eventually chain up to one of the 13 root DNS servers (or the cached 

data from them). In reality, “DNS anycast” is employed so that there are actually quite a 

few copies of most of the 13 root servers distributed around the world (see the following 

table). The current information on the root servers (from which I made the following 

table) is always available at

    www.root-servers.org

Every DNS server includes a file with the current anycast addresses of the 13 root 

servers (a.root-servers.net to m.root-servers.net), as summarized in the following table. 

A copy of the official current file (in BIND format) can always be found at

www.internic.net/zones/named.root

All DNS server operators from time to time obtain the current copy of this file and 

update their server(s) root hints file with it. The information in this file allows a DNS 

server to locate a root server when it needs one.
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The only thing the DNS root servers publish is the information in a short file that is 

maintained by IANA that helps other DNS servers locate the DNS hierarchy layer just 

below that of the DNS root servers (i.e., the servers that are authoritative for the top-level 

domains such as com, net, org, uk, jp, etc.). All root servers publish the same information, 

so only one ever needs to be asked (typically chosen at random from the 13 available). 

A copy of the current version of this information (in BIND format) can always be found at

    www.internic.net/domain/named.root

Only operators of DNS root servers ever actually need to obtain this file and update 

their DNS root servers with it. In reality, due to DNS caching, the actual root servers are 

only rarely involved in a typical DNS query. A typical non-root DNS server only needs to 

access a root server about once every 48 hours. It would normally have the information 

published by the root servers cached in memory from previous inquiries. Only once 

the Time To Live expires for a given resource record obtained from an actual root server 

would the DNS server have to go back and obtain more up-to-date information from a 

DNS root server (which it would again cache to use in future lookups). Most of the time, 

this new information will just be the same information that just expired.

Current root servers (all in the domain “root-servers.net”)

Name Organization Count IPv4 Address IPv6 Address

A VeriSign, Inc. 6/3 198.41.0.4 2001:503:ba3e::2:30

B Information Sciences 

Inst.

1/1 192.288.79.201 2001:478:65::53

C Cogent Communications 6/0 192.33.4.12 -

D University of Maryland 1/0 128.8.10.90 -

E NASA Ames Research 

Center

1/0 192.203.230.10 -

F Internet Systems 

Consort.

49/22 192.5.5.241 2001:500:2f::f

G US DoD Network Info Ctr 6/0 192.112.36.4 -

H US Army Research Lab 1/1 128.63.2.53 2001:500:1::803f:235

I Autonomica 34/0 192.36.148.17 -

J VeriSign, Inc. 70/6 192.58.128.30 2001:503:c27::2:30
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K RIPE NCC 18/10 193.0.14.129 2001:7fd::1

L ICANN 3/3 199.7.83.42 2001:500:3::42

M WIDE Project 6/5 202.12.27.33 2001:dc3::35

In the preceding table, the first number in the Count field (before the slash) is the 

total number of anycast servers for that name, regardless of IP version. The second 

number (after the slash) is the number of anycast servers for that name that can accept 

queries over IPv6. Currently, all root servers will accept queries over IPv4 (this may not 

always be the case). All root servers can return A and/or AAAA records for the servers 

authoritative for top-level domains. One of the watershed events for IPv6 happened in 

February 2008, when VeriSign enabled IPv6 access on enough of the root servers that a 

client doing queries over IPv6 would always be able to complete a query without having 

to fall back to IPv4. Since then, clients that access DNS over IPv6 (IPv6-only nodes or 

dual-stack nodes) can resolve names to addresses as effectively as IPv4-only nodes 

have been able to since the introduction of DNS. Eventually all root servers will support 

queries over IPv6.

Total root server names = 13

Total root server names that accept connections over IPv6 = 8 (61.5% of names)

Total deployed root servers = 202

Total deployed root servers that accept connections over IPv6 = 51 (25.2% of total)

 MX and SRV Resource Records
In addition to providing nodename to IP address lookup (forward resolution) and IP 

address to nodename lookup (reverse resolution), DNS servers can also advertise the 

preferred servers for various functions, such as email (SMTP), VoIP (SIP), etc.

The MX (Mail eXchange) record can advertise one or more email server names, 

with priorities. Other mail servers when they want to deliver mail to your domain will 

do a DNS query asking for the MX record(s) for your domain. The sending server will try 

to make connections over port 25 (SMTP) to the advertised nodenames, in decreasing 

priority, until it either has a connection accepted (in which case it will deliver all the 

mail it has for your domain) or it runs out of advertised nodenames (in which case it will 

try again on some schedule, until it succeeds or decides your domain is not currently 
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online). Thus, a client can send messages to any name at your domain (fred@hughesnet.

org), and it will be delivered to one of your preferred mail servers, which will then deliver 

it to that person’s mailbox or return it as undeliverable.

The SRV record (defined in RFC 2782,1 “A DNS RR for specifying the location of 

services (DNS SRV),” February 2000) can be used to specify preferred servers for your 

domain for services other than email, such as VoIP (SIP), Jabber Instant Messaging 

(XMPP), and Directory Services (LDAP). In the same style as email addresses, it is 

possible to specify a new style “phone number” as a SIP URI, for example, sip:fred@

hughesnet.org. A good SIP client could take that URI, do a DNS SRV query to determine 

the preferred SIP server for the domain hughesnet.org, and then attempt to connect to 

user fred on that server. The SRV mechanism of DNS will make VoIP as scalable and 

decentralized as the current Internet email system is. The same mechanism would allow 

clients anywhere in the world to contact your Jabber IM client (im:fred@hughesnet.org) 

or retrieve your directory entry from your organization’s external LDAP server.

 ENUM
During the transition from legacy telephony service (using ITU E.164 numeric phone 

numbers) to more general SIP URIs, there is a need for a transition mechanism. One 

has been developed called ENUM (which stands for E.164 Number Mapping, where 

E.164 is the ITU standard for conventional numeric telephone numbers), including the 

international country codes (e.g., +1 for the United States, +63 for the Philippines, +852 

for Hong Kong). ENUM is implemented as a sub-function of DNS.

With ENUM, you do the equivalent of reverse DNS lookups, but from ITU telephone 

numbers to one or more URIs, typically including a SIP URI. This allows people with 

legacy telephone customer equipment that only has a ten-key pad to map E.164 

telephone numbers onto the complex alphanumeric SIP URIs (e.g., sip:fred@hughesnet.

org). In addition to SIP URIs, you can also map a single E.164 number onto other URIs, 

including instant messaging (im:), email (mailto:), web (http:), etc. This would allow a 

smart client that supports unified messaging via various protocols to contact you via any 

of your addresses using a single numeric “phone number.” These URIs are associated 

with an E.164 number using the NAPTR DNS resource record. In theory, the long list 

of various kinds of “addresses” on your business card whereby people can contact you 

1 https://tools.ietf.org/html/rfc2782
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(telephone, fax, email, IM, web, etc.) could be replaced with a single ENUMber. There 

are standalone ENUM clients that can allow someone to simply view the mappings for 

any ENUMber, for use with devices such as legacy telephone handsets.

Essentially, you dial a person’s ENUMber. Then your client (or your VoIP server) 

does a DNS query to map that onto one or more URIs, which it then uses to contact that 

person. ENUM can be run at the national level, typically by a large telco or a government 

agency, using ENUMbers that start with the actual country code. In this case, the general 

public DNS is used to do the mapping. It can also be done on a private basis, using any 

“country code” you want (even made-up ones), but requires clients to specify a custom 

DNS server to do the custom mapping (all ENUM-compliant clients allow specification 

of which DNS server to use for ENUM lookups).

If traditional DNS management is used to manage the URI mappings for a large 

number of people, this could be an enormous workload and lead to long delays in 

making additions or changes to URI mappings. It is better to allow the end users to view 

and modify their own mappings. This requires user authentication, which most often 

would be linked to an existing authentication server, such as Microsoft Active Directory 

(within an organization) or RADIUS (for a telco or ISP).

Because most phones from 3.5G onward will be based on IPv6, it is important that 

an ENUM-capable DNS server supports queries over IPv6. There will be some legacy 

phones that still use IPv4 for some time, so it must also support queries over IPv4. In 

other words, the DNS server used for ENUM must be dual stack.

ENUM is defined in RFC 3761,2 “The E.164 to Uniform Resource Identifiers (URI) 

Dynamic Delegation Discovery System (DDDS) Application (ENUM),” April 2004.

There is more information on ENUM on the following website:

    www.ripe.net/enum

 DNSSEC (Secure DNS)
As mentioned before, it is possible for a hacker to tamper with the information in the 

DNS. You may think you are surfing to your bank’s website, but it could be a clever 

mockup in some hacker’s basement. It will show the correct URI in your browser, but 

anything you input (like your login) can be easily captured by the hacker and then used 

2 www.ietf.org/rfc/rfc3761.txt
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to gain access to your account on the real site. A hacker could also trick people into 

reading fake news stories that appear to be from legitimate websites.

There are some patches to BIND that make it more difficult for a hacker to alter DNS 

data, but the only surefire way to detect it is to add digital signatures into the DNS. The 

following RFCs define such an extension to DNS, which is called DNSSEC:

RFC 3833, “Threat Analysis of the Domain Name System (DNS),” August 2004

RFC 4033, “DNS Security Introduction and Requirements,” March 2005

RFC 4034, “Resource Records for the DNS Security Extensions,” March 2005

RFC 4035, “Protocol Modifications for the DNS Security Extensions,” March 2005

RFC 4431, “The DNSSEC Lookaside Validation (DLV) DNS Resource Record,” 

February 2006

RFC 4641, “DNSSEC Operational Practices,” September 2006

RFC 5074, “DNSSEC Lookaside Validation (DLV),” November 2007

Currently, various parts of the DNS namespace (the org domain, the gov domain, 

various ccTLDs) are being secured with DNSSEC. Once a top-level domain is signed, 

this simplifies signing of domains under it. Eventually the root of the entire DNS tree (“.”) 

will be signed, and this will unify DNSSEC for all domains. Until that time, there will be 

a need for DNS servers to obtain the root key material for any part of the DNS space for 

which you want to verify signatures.

DNSSEC depends heavily on digital signatures and public key digital certificates. 

You will need to understand these concepts to follow this discussion. Basically though, a 

digital signature is created by a cryptographic algorithm that produces a numeric result 

that is derived from a specific plain text (in this case, a single DNS resource record) and 

an asymmetric cryptography private key. These signatures are generated, encoded into 

ASCII characters, and inserted into the BIND configuration files after each resource 

record. When DNS data are retrieved, the digital signatures flow along with the resource 

records. The user’s resolving DNS server can verify the signature of any retrieved records 

by using the public key associated with the private key used to sign the records. Only if 

the signature is verified does the resolving server return the retrieved record(s) to the 

client. If records are compromised, they appear to not be available to the user. Eventually 

all client software will contain code to verify the DNSSEC signatures, in which case the 

resolving DNS server will just return the records and signatures to the client, which 

can notify the user that the records were found but had been compromised (if the 

signature fails).
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Administrators using BIND directly (without a GUI front end) will find that DNSSEC 

is extraordinarily difficult to deploy and requires massive time and effort and extensive 

knowledge of PKI to produce signed resource records, even using the public domain 

PERL scripts. A good DNS appliance (like Sixscape DNS) can totally automate both the 

signing and validation processes, which vastly speeds up signing an entire domain, 

eliminates many possible errors, and requires little or no security or cryptographic 

expertise on the part of the DNS administrator.

Ideally the private key used to sign records should be kept in an HSM (Hardware 

Storage Module), which the private key never leaves. The object to be signed is sent 

into the HSM, the private key is used to do the signing inside the HSM, and the result 

is retrieved and used. For highest security, the HSM should be certified by FIPS 140-2 

or equivalent. FIPS is the US Federal Information Processing Standards. FIPS 140-2 is 

the “Security Requirements for Cryptographic Modules,” May 2001. Most commercially 

available HSMs are quite expensive, and their performance is very low compared with 

doing the same algorithm in software on modern processors (e.g., 1200 signatures per 

second for a very good HSM, as opposed to 12,000 signatures per second in software on 

entry-level hardware). Typically, an HSM is needed only on a signing DNSSEC server.

Digital signature verification (used in DNSSEC validation) uses only the public key 

corresponding to the private key used to create the signatures, so it can be done without 

an HSM, hence at much higher performance. The entry-level model of Sixscape DNS can 

do about 30,000 queries per second without DNS verification or about 27,000 per second 

with DNSSEC verification. Any DNS server can do DNSSEC validation, with no need 

for an HSM.

DNSSEC is not strictly an IPv6 technology and is equally applicable to IPv4. It is 

however being deployed at the same time as IPv6, and of course, it is important that any 

system deployed to support DNSSEC is able to sign and validate both IPv4- and IPv6- 

related resource records and can support queries over both IPv4 and IPv6. DNSSEC is a 

very important part of the Third Internet.

Essentially, DNSSEC introduces trust into the DNS.
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 Summary
Almost everyone uses DNS, but not many people understand how it works. This chapter 

explained how DNS in general works. It has been in use with IPv4 for quite a while.

The good news for IPv6 users is that DNS was extended (with AAAA records) to 

support IPv6 in parallel to IPv4 (which uses A records). The reverse lookups support IPv6 

as well.

You can also configure a DNS server to accept queries over only IPv4, only IPv6, or 

both (dual stack). Of course, the DNS server would need to be in a subnet that supports 

those versions of IP, and the DNS server itself would need to support IPv6 and have an 

IPv6 address configured to allow IPv6 nodes to connect to it. This is one of the first things 

you would do when you migrate from IPv4-only to dual stack (supports both IPv4 and 

IPv6 on your DNS servers).

On client nodes, you can configure both IPv4 and IPv6 addresses for the DNS servers 

in your subnet.

You can publish only the IPv4 address of a server, only the IPv6 address, or both IPv4 

and IPv6. In the latter case, if the client supports IPv6, it will try to connect over that 

first and then fall back to IPv4 if the IPv6 connection fails. There are not currently many 

servers that only publish IPv6 addresses, as there would be no way for users with only 

IPv4 to find them.

For more advanced usage of DNS, DNSSEC (secure DNS) fully supports IPv6 as well.

Just as there are public DNS servers for IPv4 (e.g., 4.2.2.2), there are public DNS 

servers for IPv6 (e.g., 2001:470:20::2).
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CHAPTER 11

The Future of Messaging 
with No NAT
In the Second Internet (the one being used by most people today, based on IPv4), 

most nodes do not have public (globally routable) IP addresses. There are simply not 

enough of these to go around. Those addresses have mostly all been allocated. Today 

most Internet users are second-class netizens, with only private addresses. These are 

addresses that work only in their subnet and cannot accept incoming connections. This 

has a major impact on messaging.

First off, let’s define public and private IP addresses.

 Private IPv4 Addresses
A private IPv4 address is one that is valid only in your own local subnet. It should fall 

within one of the following address ranges (as per RFC 1918 – “Address Allocation for 

Private Internets”):

    10/8         10.0.0.1 – 10.255.255.254

    172.16/12    172.16.0.1 – 172.31.255.254

    192.168/16   192.168.0.1 – 192.168.255.254

Any private Internet can use addresses from any of these three address ranges. 

Any assigned address must be unique within its private Internet, but they need not be 

globally unique. There might be thousands of nodes around the world using the address 

10.1.2.3, in different private Internets. On the other hand, public addresses must be 

globally unique. Only one node in the entire public IPv4 Internet can be using the public 

address 123.45.67.89.
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If your node has an IPv4 address in one of the RFC 1918 ranges (e.g., 172.20.2.1), you 

are a second-class netizen. You can only make outgoing connections from your private 

Internet. You cannot run a server on your node that can be accessed from anywhere in 

the entire IPv4 Internet. You can’t allow people to connect directly to your node (they 

have to do so via intermediary servers). If you had a public IPv4 address, you would be 

a first-class netizen and could do those things. Too bad that public IPv4 addresses are 

pretty much all allocated to other people. Ask your ISP nicely if you can have one please. 

Be prepared for all kinds of excuses. Or they might say, “For only four times the price, 

you can have a commercial account and get ONE public address.” They really don’t have 

many more to allocate. Their source for more IPv4 public addresses (their RIR) has dried 

up. Their RIR’s source for new public IPv4 addresses (IANA) ran out back in early 2011.

A private IPv4 address is similar to an extension in a company phone system (PBX) 

like “x101,” but since private addresses look just like public addresses, they confuse some 

people. They are 32 bits long and are shown in dotted decimal notation. Telephone 

extensions (e.g., x101, x102) look different from “real” telephone numbers, so nobody 

confuses them with real telephone numbers. Before RFC 1918, the preceding address 

ranges WERE public addresses. Those address blocks were repurposed and combined 

with Network Address Translation (NAT) to keep IPv4 alive for a few more years, while 

the real solution (IPv6) was being developed and deployed.

Any company can use the same set of internal extensions (e.g., x100–x199) for their 

extension phones. The company will have few “real” (global) telephone numbers that 

anyone can call, but maybe hundreds or thousands of internal extensions. If you try 

calling a public phone number from your extension phone, you have to dial “9” first, 

which connects you to one of the real company phone numbers (you hear an “outside” 

dial tone). If all your company’s real numbers are already in use, you get a busy signal. 

Otherwise, you then dial the external number. If someone can see the number you are 

calling from (with “caller ID”), it will be one of the real company phone numbers, not 

your extension number. This is similar to outgoing network connections from behind 

NAT. With NAT, all internal users will appear to be connecting from the single public 

IPv4 address on the NAT gateway, not from your private address. This messes up website 

logging and law enforcement tracing of bad guys.

If someone with a real telephone number tried dialing your extension on their real 

phone, how would the phone company figure out which of the possibly thousands of 

x101s in various companies to connect you to? You have to first dial the company’s real 

phone number and then somehow convince a receptionist (live or automated) there to 
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connect you to the extension 101 in that company. Unfortunately, there is no equivalent 

to a receptionist in a NAT gateway. You can’t make incoming connections from the 

public Internet to a node behind NAT. So how does Skype appear to do just that? 

Something called NAT traversal, which is a very bad design.

There is no way packets from a private Internet can be routed globally. If a packet 

with the private address 10.1.2.3 was released onto the backbone, which of possibly 

thousands of private Internets that have a node with that address would it be routed 

to? It’s a moot point anyway since most border routers (between your subnet and the 

backbone) would never let that packet pass onto the backbone. Private addresses are 

local to your private Internet. Occasionally packets with internal addresses do “leak” 

onto the Internet backbone (due to misconfigured border routers). They are like 

lost souls that haunt the Internet for a short while, unable to find any useful routing 

information, until they finally “cross over” (die) when they reach their hop limit, or some 

other backbone router kills them (“what’s THIS doing here?”). This is one reason to 

use only RFC 1918 addresses in private Internets instead of public addresses. If public 

addresses from a private Internet leak onto the Internet backbone, they can cause 

conflicts.

I say private Internet, instead of private subnet, since you can actually have multiple 

subnets behind a NAT gateway, separated from each other by routers (without NAT). 

Those subnets would constitute a private routing domain. Packets from any node in 

any of those domains could be sent to the global Internet via the one NAT gateway, 

and the reply makes its way back to the sender. Within the routing domain, all traffic is 

bidirectional (from any node to any node, regardless of subnet). The one-way limitation 

comes only at the NAT gateway. All these internal subnets use private IPv4 addresses. 

For example, you could have subnets 172.20.0.0/16, 172.21.0.0/16, and 172.22.0.0/16 

connected together with routers, all behind a single NAT gateway.

 Public IPv4 Addresses
There are a few blocks of the IPv4 address space reserved for special purposes:

Loopback         127/8        127.0.0.1 – 127.255.255.255

RFC 1918         10/8         10.0.0.1 – 10.255.255.254

                 172.16/12    172.16.0.1 – 172.31.255.254

                 192.168/16    192.168.0.1 – 192.168.255.254
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RFC 6598 (CGN)    100.64/10    100.64.0.1 – 100.127.255.254

Multicast         224/4        224.0.0.0 – 239.255.255.255

Experimental      240/4        240.0.0.0 – 255.255.255.255

All other IPv4 addresses are public and can be allocated to users. Actually, most of 

these have been allocated.

A packet with a public address can be globally routed. That means it can be delivered 

to any node in the world that is connected to the public IPv4 Internet via a public 

IPv4 address (not through NAT). A node with a public address can make outgoing 

connections to any other node on the public IPv4 Internet that has a public address 

and accept incoming connections from any other node on the IPv4 Internet, even ones 

behind NAT. That is a first-class netizen. Before 1995 or so, everyone was a first-class 

netizen. We had a monolithic global Internet – any node could connect to any other 

node (subject to port blocking by routers or firewalls).

The public IPv4 Internet used to be the entire Internet (before NAT). Today it 

is only a small part of the total IPv4 Internet. It consists of those nodes connected 

directly to the IPv4 backbones, as opposed to via NAT gateways. Every such node has 

a public IPv4 address. The remaining public IPv4 Internet exists mostly in telcos, ISPs, 

hosting facilities, and cloud providers (AWS, Azure) today and in smaller pieces in 

corporate networks. As any example, at home I have ONE public IPv4 address, or about 

0.000000023% of the total theoretical address space. My company has SIX public IPv4 

addresses (for which we have to pay a lot). In comparison, several companies that got 

“class A” blocks in the early days each have about 16.7M addresses, or about 0.39% of the 

theoretical address space (AT&T and HP each have two class A blocks).

 Network Address Translation
If an IPv4 private Internet is connected to the public IPv4 Internet, it must be via a “cone-

mode” NAT gateway, which hides the internal private addresses behind a single globally 

unique public IPv4 address. Basically, a NAT gateway maps private IPv4 addresses to 

a single public IPv4 address for outgoing packets, in a reversible manner, so that the 

gateway can later route the reply back to the internal node that sent the outgoing packet. 

This is why incoming connections don’t work for nodes behind NAT – the NAT gateway 

can’t undo a mapping it never did.
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There is another kind of NAT called “1:1 NAT,” in which a single private IPv4 address 

is mapped (reversibly) to a single public IPv4 address. The reply packets go directly 

to the corresponding private node. Each such mapping requires one of your previous 

public IPv4 addresses. Any external node can make incoming connections to such 

internal nodes, using any port (subnet to port blocking in routers or firewalls). In my 

company, we have a few servers behind 1:1 NAT. They have internal addresses (e.g., 

172.17.0.11), and connections to the associated public address (e.g., 66.96.216.18) get 

relayed to the internal address (e.g., 172.17.0.11). The reply comes from the private 

address but gets mapped to the public address. Outgoing connections from this node 

appear to be coming from the 1:1 public address for this node (66.96.216.18), not the 

general NAT public address.

Yet another kind of NAT called “port mapping” allows me to redirect incoming 

connections to a public address used for NAT, to a specific port, to one internal node. For 

example, I could map port 80 onto internal node 172.17.2.1. A given port (e.g., 80) can 

only be mapped onto a single internal node. But I could map incoming connections on 

port 25 to the same or a different internal node. So even with only a single public IPv4 

address, I could run a server on internal nodes via port mapping. If the WAN interface of 

your ISP router has a private address on it, you are out of luck.

 NAT Gateways Can Run Out of Port Numbers
NAT gateways do their mapping with “port shifting.” For example, let’s assume my node 

is at 172.20.2.1. If the source port on an outgoing packet is 20123, the IP address gets 

changed to the public IPv4 address, and the source port gets shifted to another port not 

currently in use (e.g., 30345). An entry in a NAT table keeps track of that mapping. When 

the reply comes back, the destination IP address will be the NAT public address, and the 

destination port will be 30345. The NAT gateway looks that port up and determines that 

the original packet came from 172.20.2.1 and the source port was 20123. It changes the 

IP address to 172.20.2.1 and the destination port to 20123 and delivers the reply to me.

A given node (in this case, the one running the NAT gateway) has about 30,000 

ports available. Sounds like a lot until you realize there might be 1000 people using the 

NAT gateway (so there are about 30 ports per person). Some recent apps, like Google 

Maps, can use as much as 300 ports for one user (to improve performance). If a lot of 

your users are using such apps, you can use up all available port numbers on the NAT 

gateway. When a NAT gateway can’t find an available port number, it just quietly drops 
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packets. There is no indication to the user or even the NAT gateway admin that this has 

happened. But some of the traffic, for example, some part of the map, just disappears. 

This can be very difficult to debug.

 The Need for Centralized Servers 
in the IPv4+NAT Internet
Since with NAT there are no incoming connections, nodes behind NAT gateways can 

only make outgoing connections, and only to nodes with public IP addresses. This 

means that to allow people in one private Internet to communicate with people in 

another private Internet, we must have intermediary servers that have public IPv4 

addresses.

Alice’s node cannot connect directly to Bob’s if there is a NAT gateway between 

them. More typically BOTH of them are behind NAT; neither one of them can connect to 

the other. But Alice can make an outgoing connection to an intermediary server with a 

public address, and so can Bob. So they both connect to an intermediary server (which 

has a public address) and send messages back and forth through it:

Alice’s Node -> Intermediary Server<- Bob’s Node

Someone has to set up and run that intermediary server, and they must both have 

“accounts” on it. Accounts on intermediary servers are usually not free. Whoever runs 

that server may have access to their traffic (if they don’t encrypt it end to end) and 

may have policies that limit what they can send (amount of traffic, types of traffic, 

etc). They might even charge them based on how much traffic they run through that 

intermediary node.

It’s likely that Alice and Bob do not both have accounts on the same intermediary 

server, so there may be two intermediary servers and three links involved – Alice’s node 

to her server, her server to and from Bob’s server, and Bob’s node to his server:

Alice’s Node -> Alice’s Server <-> Bob’s Server <- Bob’s Node

This is complicated to set up, and it forces centralization on the otherwise 

decentralized Internet. So we wind up with a small number of centralized intermediary 

servers (that may service thousands or millions of users). This affects reliability (if one of 

these servers goes down, it affects a lot of people, and even if they stay up, they can easily 

get overloaded) and privacy (someone could put snooping software on the intermediary 

servers and see all traffic going back and forth). Even if you use TLS to secure the 

links, on the intermediary servers the data is in plain text (unencrypted). You also lose 
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authentication from the original sender to the final recipient. It is possible to do end-

to-end privacy and authentication via multiple links, using S/MIME, but this requires 

issuing client digital certificates to every user and having software that supports S/MIME.

This situation seems “normal” to most people (even network engineers) since we’ve 

been using this approach since the mid-1990s and most people assume that’s the way it’s 

always been and always WILL be.

 Carrier-Grade NAT (NAT444)
Very few Internet users today have global IP addresses on their nodes. At best they may 

have one on their router with all internal nodes hidden behind it with NAT44. Many 

home users now don’t even have one public address in their subnet. They are behind two 

layers of NAT – the first NAT, at their carrier, maps between the public IPv4 Internet and 

a special private Internet using address range 100.64/10 (100.64.0.1–100.127.255.254). 

You might get a private address 100.100.35.72 on your WAN interface. The second NAT, 

at your site, maps from that private address to an RFC 1918 block (e.g., 172.16/16). 

Addresses in 100.64/10 are not public addresses; they are a new type of private address 

that only carriers (ISPs) can use. See RFC 6598,1 “IANA-Reserved IPv4 Prefix for Shared 

Address Space.” This two-layer scheme is called CGN (Carrier-Grade NAT2), or NAT444. 

So outgoing packets go through one NAT mapping to the ISP and another from the ISP 

to the public IPv4 Internet. Replies have to go back through two reverse mappings to get 

to your node. If you are behind CGN, you are not even a second-class netizen; you are a 

third-class netizen.

How do you tell if you are behind CGN? Try to do a traceroute to 4.2.2.2:

C:\Windows\system32>tracert 4.2.2.2

Tracing route to b.resolvers.Level3.net [4.2.2.2]

over a maximum of 30 hops:

  1    <1 ms    <1 ms    <1 ms  fw.sg.sixscape.net [172.17.0.1]

  2     1 ms     2 ms     1 ms  3-193-96-66.myrepublic.com.sg [66.96.193.3]

  3     2 ms     1 ms     2 ms  103-6-148-41.myrepublic.com.sg [103.6.148.41]

  4     2 ms     2 ms     2 ms  116.51.31.45

1 https://tools.ietf.org/html/rfc6598
2 https://en.wikipedia.org/wiki/Carrier-grade_NAT
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  5     2 ms     2 ms     2 ms   ae-8.r20.sngpsi07.sg.bb.gin.ntt.net 

[129.250.4.174]

  6     2 ms     2 ms     2 ms   ae-1.r01.sngpsi07.sg.bb.gin.ntt.net 

[129.250.3.100]

  7     2 ms     4 ms    14 ms   ae-1.a01.sngpsi07.sg.bb.gin.ntt.net 

[129.250.2.240]

  8     *        9 ms    10 ms   ae-0.level3.sngpsi07.sg.bb.gin.ntt.net 

[129.250.8.46]

  9    10 ms     9 ms     9 ms  b.resolvers.Level3.net [4.2.2.2]

Trace complete.

If there is another private IP address after the first hop (from 100.64/10 or the RFC 

1918 address ranges), you are behind CGN. In my case the second hop was to a public 

IPv4 address (66.96.193.3), which is at my ISP. No CGN for me!

 Centralization on the IPv4 Internet
The Internet was designed to be as decentralized as possible. Complexity at the edge, 

simplicity at the core. But with NAT, I can’t connect directly to you. We can both make 

only outgoing connections, so if we want to communicate, we both have to make 

outgoing connections to some intermediary server(s) with a public IPv4 address (es). 

Those servers will relay messages back and forth between us. In some cases, those 

centralized servers may handle thousands or even millions of users. It is expensive to run 

such servers – you need lots of bandwidth and computing power. Today such servers are 

run by ISPs, telcos, and “hosting” companies (e.g., Rackspace).

Centralization creates “single points of failure” that should not be there. If one 

of these centralized servers goes down, a LOT of people might lose service. In a 

decentralized model, if my node goes down, only I (and anyone trying to communicate 

with me) am out of luck. The rest of the world can go on happily communicating with 

each other. Decentralization is good for reliability and availability.

Centralization also makes it easier for certain kinds of people to snoop on 

everyone. Snoops only need probes in the small number of centralized nodes. With 

decentralization, they need to have probes on every node in the Internet (or every 

network segment). This is not practical. They can still monitor traffic on the giant 

backbones, but this requires exotic equipment with massive bandwidth and computing 
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power. And even so, if the traffic in question never goes on the backbones, even they 

can’t see it. With decentralization, traffic between Alice and Bob only needs to go over 

the shortest network path between them. If they both happen to be in the same LAN 

(e.g., working for the same company), that traffic might never leave the local LAN. If 

they are on the same LAN, why would they want to clutter up their company’s link to 

the ISP with traffic going out from Alice and right back into Bob? What if that ISP link 

goes down? With centralized servers, our communication would stop, even if we were 

in the same room. Do you think that Skype is real peer-to-peer? What happens when 

you are chatting with a neighbor in the same LAN and the ISP link goes down? Your chat 

stops. Skype has the illusion of peer-to-Peer messaging (due to NAT traversal) but not 

the reality. With decentralized messaging over IPv6, there would be no need for traffic 

between us to go anywhere but over the shortest network path between us. If the ISP link 

goes down, we can keep communicating!

Centralization can also impact performance. Our ISP connection might be 20 Mbps, 

but our LAN runs at 1 Gbps. With centralized messaging, traffic between Alice and 

Bob has to go from Alice out our ISP connection, to some centralized server, back into 

through our ISP connection, and finally into Bob (or vice versa), even if they are sitting 

next to each other. Throughput between Alice and Bob is limited to the company’s ISP 

speed, or 20 Mbps. If they communicate directly to each other, throughput can be 1 

Gbps. If Alice is communicating with someone in another network, traffic has to go over 

our ISP connection and hence will be limited to 20 Mbps. Of course, bandwidth on the 

ISP link should be reserved for traffic to and from people in other networks, not for traffic 

between people sitting next to each other.

With IPv4 today, only telcos and ISPs have public addresses. Only they can run 

servers for mail, web, chat, etc. They don’t want you to run servers at home, and with 

only a private address, you can’t have a server that accepts incoming connections. You 

also can’t make direct connections to other people in other networks. You can only 

make connections to centralized servers that have public IPv4 addresses. With web 

hosting today, your website might share the same public IPv4 address with hundreds 

or thousands of other websites. They have ways to map a particular nodename onto a 

shared IPv4 public address. But if you have a hosted server, try connecting to it with its 

IPv4 public address. You can’t. It won’t work. With IPv6, the hosting facility could have 

thousands of hosted nodes, each with a real, distinct global IPv6 address. No address 

sharing.
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In particular, phones and other mobile devices with Internet connectivity have never 

had public addresses with IPv4. You can only run client software on them. A server 

requires a public IPv4 address. No phone has ever had a public IPv4 address. By the 

time we started providing Internet connectivity to phones, public IPv4 addresses were 

mostly gone. It would be handy to have an FTP or SFTP server on a phone, so people 

could send you files directly, from anywhere. Sorry, no can do (with IPv4). I can’t have 

my phone connect directly to yours. We both have to make outgoing connections to a 

common server.

But with IPv6 on a phone, I can run servers. I can run user agents (these are apps that 

can make outgoing connections or accept incoming connections). If you have a user 

agent on your phone, I can connect directly to your phone from mine. No need for a 

telco in between.

NAT breaks a lot of protocols, like VoIP, IPsec, and IKE. If you use these protocols 

from behind NAT, you must use NAT traversal.

 But Doesn’t NAT “Protect” My Network?
Many people believe they are “safe” if no one can make incoming connections to 

their nodes through NAT. NAT does not add any security to a network. That is a myth. 

Incoming and outgoing connections are blocked by router or firewall mechanisms that 

block traffic on specific ports. NAT really just complicates this process. All you need to 

breach the NAT “protection” is an “inside man” (NAT traversal). Get someone to run an 

app that makes an outgoing connection to a STUN server, and you can do anything you 

want to their network using that app, from anywhere on the Internet.

Hackers can also hide behind NAT. If they attack someone from behind NAT, there 

might be hundreds or even thousands of other people who appear to be coming from 

the same address. When law enforcement tries to track down the culprit, they can only 

see the public address that the hacker was hiding behind. Which one of the thousands of 

users behind that public address was the culprit? Unless you can log all mappings done 

by the NAT gateway (very difficult to do), it is pretty much impossible to find the hacker 

Chapter 11  the Future oF Messaging with no nat



365

in the haystack. With CGN it is even harder – there could be tens of thousands of people 

behind that one IP address (and two mappings to unravel). NAT is the hacker’s friend. 

Europol (a European version of Interpol) has asked that ISPs stop using CGN.3

Today, NAT is so widely used in the Second Internet it should be called the InterNAT 

(a “top of the hat” to Latif Ladid, president of the IPv6 Forum, who I believe originated 

that term).

 NAT Traversal: How Skype Fakes 
Incoming Connections
So, if IPv4 nodes behind NAT cannot accept incoming connections, how does Skype 

work? It sure looks like I connect from my node to yours, even if you are behind NAT. I 

don’t log into an intermediary server with my copy of Skype.

Skype (and many other similar apps) uses something called NAT traversal4 to fake 

incoming connections.

My copy of Skype makes a long-lasting outgoing connection to a special node called 

a STUN5 server. This server is on the global IPv4 Internet and has a public address. It 

basically allows you to use its public address to accept an incoming connection and then 

relays it through your outgoing connection to the STUN server.

So who owns and runs STUN servers? I didn’t sign up for one when I installed Skype. 

ANYONE can deploy a STUN server – hackers, the Mob, the NSA, pimply faced 14-year-

old kids in their parents' basement, etc. Skype does a DNS SRV lookup and then chooses 

one at random. Your incoming information from other Skype users goes through that 

server. The traffic between your node and the STUN server may be encrypted with TLS, 

but it will be in plain text on the STUN server. Whoever runs and controls the STUN 

server can monitor your traffic all they want. They could even modify it, and you would 

never know. They might even be able to take over the Skype client at the other end of this 

outgoing connection and, from that, take over your entire node. Sounds scary?  

3 www.europol.europa.eu/newsroom/news/are-you-sharing-same-ip-address-
criminal-law-enforcement-call-for-end-of-carrier-grade-nat-cgn-to-increase-
accountability-online
4 https://en.wikipedia.org/wiki/NAT_traversal
5 https://en.wikipedia.org/wiki/STUN
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IT IS. Many companies who are security conscious BAN Skype. It’s not an application; it’s 

a HACKING TOOL, because of NAT Traversal.

This is kind of like robbing a bank by having an inside man, who unlocks the bank 

door to let you in, after hours.

 What if Everyone Had Public Addresses?
If Alice and Bob somehow magically managed to get some of the precious remaining 

public IPv4 addresses, they could connect directly to each other!

Actually, if both of them were in a single private Internet (with no NAT gateway 

between them), they could communicate directly with each other. But neither of them 

could communicate directly with anyone else in any other private Internet (and there are 

millions of private Internets all over the world – one behind every global IPv4 address). 

While interesting, this is probably not very useful. For instance, in a home network you 

would only be able to connect directly to other people in your home.

There is no way to reestablish the pre-1995 monolithic global Internet based on IPv4. 

Once you go to NAT and private Internets, there is no going back. Each year we create 

another billion or so new devices that need IP addresses. There are basically no IPv4 

public ones left. With telephones, if they run out of phone numbers, they add another 

digit to the phone number (e.g., seven-digit to eight-digit numbers). That is basically 

what IPv6 is – only we went from 9-digit numbers to 38-digit numbers in one giant 

leap. There was no simple way to make the 32-bit addresses just a little bigger, without 

changing almost everything at the IP Layer.

And as long as they had the streets dug up making the addresses bigger, they fixed a LOT 

of stuff that could have been done better way back in 1981 when IPv4 was specified. IPv6 

incorporates a great deal of valuable experience in creating and running a global Internet. 

You can think of IPv6 as IPv4++. There are enough global IPv6 addresses for every device 

on earth (or that we will make in the next 500 years) to have one. So anyone in the world 

can communicate directly with anyone else in the world, so long as both of them have IPv6 

service and no router or firewall is blocking the relevant ports between them. The entire 

global IPv6 Internet is now one giant monolithic network with billions of nodes on it. This 

is revolutionary. Today most people don’t “get” the importance of this. In a few years, we 

are not going to believe that we ever got along without IPv6 and decentralized connections. 

Your phone will have servers on it. It will be able to connect directly to any other phone on 

earth or accept incoming connections, without any intermediate server or NAT traversal.
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 IPv6: The NAT-Less Internet
With IPv6, there is no need for NAT (at least for NAT66, mapping IPv6 addresses to 

other IPv6 addresses). The only reason for deploying NAT44 was to extend the lifetime 

of the IPv4 address space for just a few more years despite running out of public IPv4 

addresses, while the successor protocol (IPv6) was designed and deployed. It has 

done a remarkable job of that – we now have more than 20 billion devices connected 

to an Internet that has less than 3 billion public IP addresses. But in the process, it 

has splintered the global IPv4 Internet into millions of private Internets, broken many 

protocols, and made dangerous NAT traversal necessary. It has also greatly complicated 

the design and implementation of messaging apps.

While there is no need for NAT66, there is a potential need for something called 

NAT64,6 which maps IPv6 addresses to IPv4 addresses, to allow IPv6 nodes to access 

legacy (IPv4-only) nodes. Unfortunately, NAT64 has all the problems of NAT44 and 

then some. For one thing it requires a nonstandard version of DNS called DNS64,7 for 

all nodes that use NAT64. Other nodes cannot use DNS64. NAT64 breaks a number of 

protocols also. A lot of people are trying to make NAT64/DNS64 work since then you can 

get rid of IPv4 in the LAN and provide border translation to legacy (IPv4-only) nodes.

Note that the scheme used in NAT64 involves the DNS64 server embedding the IPv4 

address in a fabricated IPv6 address, which the NAT64 server uses to connect to the real 

IPv4 node. This cannot be done in the other direction (“NAT46”) since you can’t fit a 

128-bit address into a 32-bit address.

For the web there are better ways to translate IPv6 to IPv4 and vice versa that don’t 

need DNS64 and don’t have the preceding problems. These involve deploying a reverse 

web proxy in a dual-stack network. The existing A record in DNS is left intact, so IPv4 

traffic goes directly to the legacy server (does not go through the proxy). For IPv6 a 

new AAAA record is created pointing to the reverse proxy. The reverse proxy makes an 

ongoing connection to the legacy server (over IPv4) and returns the reply over IPv6. 

Only IPv6 traffic goes through the reverse proxy. Unlike NAT64, this scheme works 

in both directions – you can make an IPv6-only server dual stack the same way – you 

leave the old AAAA record in DNS but add an A record pointing to the reverse proxy. 

Unfortunately, this approach does not help with non-web protocols.

6 https://en.wikipedia.org/wiki/NAT64
7 https://tools.ietf.org/html/rfc6147
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In IPv6 there is no shortage of public addresses – hence no need to extend the life of 

the IPv6 address space. We can get rid of NAT once and for all for people who have IPv6 

global addresses.

 VoIP and IPv6
VoIP is a bit different from a protocol like SMTP. VoIP involves two protocols: SIP 

and RTP. SIP handles call setup (finding the other party), and RTP handles real-time 

encoding of digitized audio and/or video.

SIP8 (Session Initiation Protocol, RFC 32619) sets up the call. It normally works over 

TCP but can be used over UDP (well-known port 5060). When used over TCP, it can 

be secured with TLS (SIPS, well-known port 5061). In fact, SIP looks and acts a lot like 

SMTP. SIP does not handle any digitized audio.

RTP10 (Real-Time Transport Protocol, RFC 355011) carries the encoded, digitized 

audio or video. RTP works over UDP, so cannot be secured with TLS, but you can use 

SRTP12 to provide encryption and/or authentication of the digitized audio or video. 

Encryption in SRTP uses an AES key exchanged with ZRTP13 or MIKEY.14 There is 

no well-known port for RTP (or SRTP) – the ports used are chosen dynamically and 

communicated via the signaling protocol (e.g., SIP). The IETF recommends ports 

6970–6999.

This two-protocol scheme, and the dynamic allocation of ports in RTP, does not 

work well with NAT. SIP can go through NAT okay, but RTP (or SRTP) can’t be mapped 

like other protocols. Therefore, to cross a NAT gateway, NAT traversal must be used. Of 

course, with IPv6, there is no issue with NAT. There is no need for the clients and the 

servers to be in the same subnet (or private Internet). Setting up the NAT traversal is by 

far the most difficult part of deploying VoIP. It also introduces significant security risks as 

described elsewhere.

8 https://en.wikipedia.org/wiki/Session_Initiation_Protocol
9 https://tools.ietf.org/html/rfc3261
10 https://en.wikipedia.org/wiki/Real-time_Transport_Protocol
11 https://tools.ietf.org/html/rfc3550
12 https://en.wikipedia.org/wiki/Secure_Real-time_Transport_Protocol
13 https://en.wikipedia.org/wiki/ZRTP
14 https://en.wikipedia.org/wiki/MIKEY
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There is also peer-to-peer SIP.15 This does away with any need for “VoIP servers.” 

P2P VoIP clients are not clients in the true sense of the word (only make outgoing 

connections) – they are user agents (can make outgoing connections and accept 

incoming connections). Of course, to accept incoming connections with IPv4 from 

external users, NAT traversal is needed on each user agent. With IPv6, every user agent 

has a public IPv6 address, which allows incoming connections from anywhere on the 

IPv6 global Internet.

If you use VoIP over IPv6 in a client/server model, there are a few clients and a 

few servers that support IPv6 (but many of the most popular ones don’t support IPv6 

currently). This is amazing considering how many of the worse problems with VoIP are 

solved by using IPv6.

One of the most popular VoIP clients (Bria16 from CounterPath) supports IPv6 today. 

This is available for Windows, Android, and iOS.

With VoIP servers, recent Cisco VoIP products17 support IPv6. Two popular 

commercial server products (3CX18 and Ozeki19) do not currently support it. The open 

source Asterisk,20 Kamailio,21 and OpenSIPS22 VoIP servers all support IPv6. It is not 

unusual for open source products to be ahead of commercial products in IPv6 support.

If you want your VoIP clients to be able to make calls to PSTN23 (Public Switched 

Telephone Network) nodes (and accept calls from them), you need to add a SIP Trunk24 

on your VoIP server. There are SIP service providers that can help you connect your VoIP 

server to legacy telephones, for a price. Few if any of these currently support IPv6. The 

good news is that if your VoIP server supports IPv6 and is on a dual-stack server, you can 

support clients over IPv6, but relay the calls to and from the PSTN network over IPv4 via 

an IPv4 trunk. Of course, this means you can’t run your VoIP server on IPv6-only.

15 https://en.wikipedia.org/wiki/Peer-to-peer_SIP
16 https://blog.counterpath.com/ipv6/
17 www.cisco.com/c/en/us/td/docs/ios-xml/ios/ipv6/configuration/15-2mt/ipv6-15-2mt-
book/ip6-voip.html
18 www.3cx.com/
19 www.ozekiphone.com/
20 www.asterisk.org/
21 www.voip-info.org/wiki/view/Kamailio
22 www.opensips.org/
23 https://en.wikipedia.org/wiki/Public_switched_telephone_network
24 https://en.wikipedia.org/wiki/SIP_trunking
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 Skype
Skype is a chat, voice, and video messaging app that uses a proprietary protocol. Its 

protocol is heavily based on IPv4 NAT traversal. It was created by the same people who 

did Kazaa, which was a file sharing app that used NAT traversal to work. On Windows 

if you disable IPv4, Skype stops working and says there is no Internet connection (even 

though there may be a perfectly good IPv6 connection).

 

With iOS 9, Apple required all apps in the App Store to support IPv625 and, with iOS 

10, required them to work on an IPv6-only device. Skype is available in the App Store, 

so they have found some way to make it work over IPv6. That way is NAT64/DNS64, 

which is available in iOS. This allows the phone to map an IPv6 address to IPv4 to make 

outgoing connections to other Skype nodes, via STUN servers. It is not real IPv6 support 

but appears to be close enough that Apple allows it in the App Store. Even though I have 

native IPv6 on my phone (from M1), I cannot verify that Skype for Mobile really works 

over IPv6 myself since I can’t disable IPv4 on my phone or snoop on either end of the 

connection with a network sniffer (like Wireshark).

The NAT64/DNS64 dodge works for iOS 9 because there are still IPv4 addresses on 

a dual-stack phone. The requirement for iOS 10 is a different matter. There are no IPv4 

addresses to map to IPv6 on an IPv6-only phone. Skype is still in the App Store in iOS 10 

(and 11), so perhaps Apple gave them a pass.

25 https://forums.appleinsider.com/discussion/193049/apple-says-all-apps-must- 
support-ipv6-only-networking-by-june
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On Android26 there is a mechanism similar to NAT64/DNS64 called 464XLAT,27 

specified in RFC 6877.28 This can tunnel IPv4 traffic through IPv6 traffic on an IPv6-

only phone. At the phone, 464XLAT maps IPv4 to IPv6, which goes over the IPv6-only 

data path to the telco, where they map it back to IPv4 and route it onto the legacy IPv4 

Internet. So legacy apps that only support IPv4 should work on Android even with only 

IPv6 service. For 464XLAT there is no need for IPv4 addresses on the phone. It does not 

appear that Apple supports 464XLAT.

 WhatsApp
WhatsApp is another widely used chat, voice, and video messaging app that uses 

a proprietary protocol. WhatsApp will work over IPv6 and in fact will work on an 

IPv6- only device. However, it is in the App Store, so it appears that Apple accepts it 

working via NAT64/DNS64. As with Skype, WhatsApp works over IPv6 on Android via 

464XLAT. There is no native WhatsApp application for Windows (only something based 

on web that really uses your WhatsApp account on your phone), so there is no issue with 

the Windows version and IPv6.

 Email over IPv6
Most email clients (e.g., Outlook, Thunderbird) work fine over IPv6 (even from an IPv6-

only node). There are also plenty of email servers that support IPv6 (MS Exchange,29 

open source Sendmail,30 Postfix,31 Dovecot,32 etc.).

Hosted email providers are another matter. Rackspace33 does not currently support 

SMTP or IMAP over IPv6. I can test this by checking the MX records for our domain 

(which is hosted at Rackspace):

26 www.internetsociety.org/blog/2013/11/skype-on-android-works-over-ipv6-on- 
mobile-networks-using-464xlat/
27 https://sites.google.com/site/tmoipv6/464xlat
28 https://tools.ietf.org/html/rfc6877
29 https://en.wikipedia.org/wiki/Microsoft_Exchange_Server
30 https://en.wikipedia.org/wiki/Sendmail
31 https://en.wikipedia.org/wiki/Postfix_(software)
32 https://en.wikipedia.org/wiki/Dovecot_(software)
33 www.rackspace.com/en-sg
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C:\Users\lhughes>nslookup

Default Server:  ws2008a.hughesnet-sg.org

Address:  2001:470:ed3d:1000::11

> set q=mx

> sixscape.com

Server:  ws2008a.hughesnet-sg.org

Address:  2001:470:ed3d:1000::11

Non-authoritative answer:

sixscape.com    MX preference = 20, mail exchanger = mx2.emailsrvr.com

sixscape.com    MX preference = 10, mail exchanger = mx1.emailsrvr.com

mx1.emailsrvr.com       internet address = 184.106.54.1

>

Note that mx2.emailsrvr.com (the secondary MX record for sixscape.com) also 

resolves to only an IPv4 address (173.203.187.2). So mail sent to sixscape.com over IPv6 

has no way of reaching us. Soon that will not be acceptable to many people. It does 

support Webmail over IPv6, so all is not lost.

On the other hand, Gmail via SMTP and IMAP works fine over IPv6.

In general email works great over IPv6. So long as your email server is dual stack, you 

can exchange email with anyone, whether their server is IPv4-only, IPv6-only, or dual 

stack. It is possible for a dual-stack email server to publish MX records that make dual-

stack email work very well. You can advertise two MX records with the IPv6 address of 

your email server as the highest priority (lowest-priority number) and the IPv4 address 

as the lowest priority (highest-priority number). Then other mail servers will try to 

deliver to you first over IPv6 but fall back to IPv4 if they can’t. Currently if you create an 

IPv6-only email server, you will probably not get a lot of messages from others (only from 

those with servers that support IPv6).

 The Future of Messaging on the Third Internet
The good news is that an IPv6-only messaging app is a lot easier to create than Skype or 

WhatsApp was (no need to find ways to get around NAT). It will work much better and 

will not require NAT traversal (so it will be much more secure). Of course, you will only 

be able to communicate with other IPv6 users (some might say those are the only people 
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worth chatting with, but that is currently a minority viewpoint). You could always use 

the legacy apps (Skype or WhatsApp) to communicate with laggards stuck in the Second 

Internet. It’s possible a real IPv6-compliant messaging app could support IPv4 users 

to at least some level, via a dual-stack intermediary gateway. Hopefully, we can finally 

use industry standard protocols that will interoperate with other services (like legacy 

telephones via SIP gateways). This means using SIP for call setup, RTP for encoded 

analog, and SIMPLE for chat. It also opens the door for decentralized end-to-end direct 

messaging (no intermediary servers).

Imagine an IPv6-only messaging user agent app on your home node or even your 

phone. Any other IPv6 user with a compatible user agent would be able to connect 

directly to your node and communicate with you (including file transfer). Even basic 

TLS would be end-to-end secure in that case (since there is only one link involved). With 

Strong Client Authentication with a client certificate during the TLS handshake, this is 

very strong security and mutual authentication. Traffic would only go over the shortest 

network path between the two communicating parties. It could be based on peer-to-Peer 

SIP34 (and SIMPLE35), or I could just deploy a personal SIP server right on my phone for 

handling incoming connections (even more than one connection for group messaging). 

It could include ITU-compliant voice and even video. The same user agent app could be 

designed to also connect to legacy VoIP servers or gateways for when you want to talk 

with (or accept calls from) someone on a legacy phone or app. Of course, most legacy 

phones don’t support video, chat, or file transfer.

And phone numbers36? Those are going away. With SIP, the preferred “address” 

of someone is a SIP URI,37 for example, sip:lhughes@leh.sixscape.com. I can create a 

subdomain under sixscape.com (for free) just for me and publish an SRV record under 

it pointing to my user agent (with IP address and port number). I could even publish 

multiple SRV records, one for each node where I run chat user agents. If there are several 

with the same priority, other user agents could try connecting to all of them until the 

first one answers. When two nodes connect, they could exchange digital certificates (so 

you know for certain who is calling and who answers) and even exchange a symmetric 

34 https://en.wikipedia.org/wiki/Peer-to-peer_SIP
35 https://en.wikipedia.org/wiki/SIMPLE_(instant_messaging_protocol)
36 https://en.wikipedia.org/wiki/E.164
37 https://en.wikipedia.org/wiki/SIP_URI_scheme
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session key so the entire call can be encrypted. And where is the ideal place for your 

certificate and private key? On a computer, in a hardware security token, or on a phone, 

in the SIM!

How will someone reach you from a phone that only has a 12-key dial pad? There 

is a DNS-based scheme called ENUM38 that can map numeric phone numbers to SIP 

URIs. So you can obtain a unique telephone number that can be mapped to your SIP URI 

by an ENUM server. There are VoIP gateways that know how to use ENUM. Again, my 

company has a carrier-grade DNSSEC appliance that supports ENUM.

I can have a personal SMTP server running on my home node or phone. There would 

be a local message store for incoming messages and a personal IMAP server that accesses 

the local message store, so a standard email client can work with it. Unlike traditional 

SMTP and IMAP servers, these need only support a single user. Spam would be a 

problem, so you might want to implement whitelisting (only accept incoming messages 

from a list of addresses – anyone else gets a message to request being whitelisted). Again, 

it would be best to create a personal subdomain for each user, for example, leh.sixscape.

net. The email address could be mailto:lhughes@leh.sixscape.net. You could publish an 

MX record in your personal subdomain pointing to your home node or phone. You could 

optionally provide a secondary MX record to accept incoming messages when your node 

is offline. When you go back online, you could send an ETURN command to the backup 

mail server, which would deliver the held messages to you. There could be a new market 

for telcos or ISPs to provide backup SMTP servers. All SMTP servers will keep trying to 

deliver for several days, so you could just wait until the original server retries. This would 

be completely decentralized, and you would not need to worry about your messages 

being stored on intermediary servers (unless you provide a backup MX record).

I can even deploy a personal FTP or SFTP server running on my node or even my 

phone. Why not? I’ve got a public address and can publish it in DNS. Anyone could use 

standard FTP or SFTP clients (e.g., WinSCP) to send files to my file transfer server or 

retrieve files from my file transfer.

I can publish my name and SIP URI (as well as email address, organization, S/MIME 

certificate, etc.) in LDAP (with fine-grained control over who can access it), and every 

user agent can know how to search a list of LDAP servers for other people’s contact info.

38 https://en.wikipedia.org/wiki/Telephone_number_mapping
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All we need now is a way to securely update your current IPv6 address in DNS. My 

company has created a way to do just that using our Identity Registration Protocol (IRP). 

With that, within seconds of entering a coffee shop that has IPv6 on Wi-Fi, my phone 

would configure a new IPv6 address in their subnet and then securely register that in 

DNS. If I use a short TTL on that registration, within minutes, anyone will be able to 

connect directly to my phone.

 5G: The Grand Convergence of the Internet 
and Telephony
5G39 is coming to a telco near you! It is not just the generation after 4G or just higher-

bandwidth radio – it finally eliminates the legacy telco infrastructure (giant telco 

switches) and protocols (Signaling System 7). The underlying infrastructure for 5G 

telephony is now routers, switches, submarine optical cables, etc. You know, the 

INTERNET. Voice and chat are now done with VoIP (Voice over Internet Protocol). 

On 5G, there is no need for a “voice plan” (or minutes) or “SMS.” You will only get a 

“dataplan.” Everything will be done by apps (on desktop/notebook computers or mobile 

devices).

Historically mobile devices and desktop devices were fairly separate. That is coming 

to any end. With IPv6 in broadband networks, the same app architectures will work on 

both mobile and desktop, and interoperation will improve. You will no longer have apps 

that work only on mobile (like WhatsApp). The Grand Convergence is happening. A VoIP 

app on desktop can easily connect to a VoIP app on mobile. With Xamarin and WPF, it is 

getting easier to create a cross-platform app that covers Windows, MacOS, Android, and 

iOS. And with 5G, they can all have the same basic connectivity.

There is no strict mandate from 3GPP40 to use only IPv6 with 5G, but NAT is an idea 

whose time has passed. VoIP does not work through NAT (without NAT traversal). It 

works great over IPv6. It is becoming more and more difficult and expensive for telcos 

to keep IPv4 alive just one more year. Many telcos (especially in the United States) are 

going to IPv6 (and even IPv6-only). This is saving them significant cost and is far easier 

to manage.

39 https://en.wikipedia.org/wiki/5G
40 www.3gpp.org/
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One of the things holding the telcos back from deploying IPv6 was the problem with 

legacy IPv4-only apps (like Skype) from working on IPv6-only dataplans. 464XLAT and 

NAT64/DNS64 have solved that problem, on Android and iOS, respectively. There are 

many benefits to providing IPv6 to mobile devices. The migration is well underway. See 

the following:

www.apnic.net/community/ipv6-program/ipv6-for-mobile-networks/

www.telecomasia.net/content/china-mobile-outlines-ipv6-migration-plans

www.itnews.com.au/news/telstra-claims-success-with-ipv6-on-mobile-

network-486322

www.apnic.net/wp-content/uploads/2017/01/vzw_apnic_13462152832-2.pdf

www.internetsociety.org/blog/2015/05/verizon-wireless-nears-70-ipv6-att-

crosses-50-more/

www.internetsociety.org/blog/2016/08/facebook-akamai-pass-major-

milestone-over-50-ipv6-from-us-mobile-networks/

www.telecompetitor.com/mobile-ipv6-milestone-more-than-half-of-mobile-

requests-now-ipv6/

Because of NAT, current mobile device IPv4-based apps use a “hub and spoke41” 

design, with centralized servers. With IPv6, that will still work, but is no longer 

required. It is kind of like watching SD content on your new HD television set. As 5G is 

deployed, you will see more and more decentralized apps that go beyond the hub and 

spoke model.

The wireless service providers that adopt pure IPv6 will have significant competitive 

advantages over providers who try to continue supporting IPv4. With 464XLAT and 

NAT64/DNS64, there is no real downside to going with IPv6 only. As decentralized 

“5G-style” apps become popular, those will work only on IPv6 carriers. This will 

accelerate the migration to IPv6 for wireless providers.

 Summary
In this chapter we discussed a number of aspects of messaging that will likely be 

undergoing major changes with the deployment of IPv6.

First, we covered exactly what private and public IP addresses are and why most 

Internet users have only private IP addresses today.

41 https://en.wikipedia.org/wiki/Spoke%E2%80%93hub_distribution_paradigm
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We then covered NAT (Network Address Translation) and NAT traversal (two nodes 

in different subnets connecting despite both subnets being behind different NAT 

gateways). Some messaging apps do support IPv6 today, while some never will (Skype).

We discussed what life is like in the Third Internet (based on IPv6) where there is 

no NAT to cause problems. Every node, including mobile devices, can now have public 

IP addresses and hence can run servers or even connect directly end to end with no 

intermediary servers. Imagine being able to send files securely over FTPS direct from my 

phone to yours.

We introduced 5G, which is much more than just “faster 4G” – it is the Grand 

Convergence of telephone communications and the Internet. Most 5G nodes will have 

full IPv6 support. However, even many 4G nodes already have IPv6 support (as seen in 

Chapter 9).

Face it – so long as you have only IPv4, you are going to be a second-class netizen. If 

you want to use the cool new messaging apps, you’ll need to have IPv6.
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CHAPTER 12

IPv6-Related 
Organizations
There are quite a few international- and national-level organizations involved in making 

this transition from the Second Internet to the Third Internet work. This chapter lists the 

most prominent ones but does not claim to be comprehensive.

 Internet Governance Bodies
The first group of organizations helps govern the Internet. There is no Internet 

Corporation or any UN Internet Authority. The Internet is something quite different from 

the kinds of entities most people are familiar with. Its ownership and management is as 

decentralized and transnational as the physical implementation of the Internet itself. For 

example, what country is the Internet located in? All of them!

Anyone who really wants to can join one of these organizations, and the various 

groups address a variety of aspects of creating the standards that others use to build the 

hardware and software that make up the physical Internet. Other groups help manage 

resources, such as domain names or Internet addresses. Others help resolve disputes 

and set policies that help the millions of owners of the various pieces of the Internet to 

get along and be willing to continue voluntarily connecting their networks to each other. 

Some national governments try to control or regulate the Internet, or the content on it, 

but the highly decentralized nature of it, and the difficulty of even pinning down what 

jurisdiction something on the Internet happened in, makes such control difficult at best. 

Any country whose people are forbidden access to the Internet is missing out on things 

that allow those who do have access to run circles around them competitively. It would 

be like a blind person and a fully sighted one having a sword fight or a race between 

someone on foot and someone in a Ferrari. It would all be over in seconds. China has 

had a very difficult time trying to maintain strict authoritarian communist rule while 
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enjoying the economic benefits of access to the Internet. They have tried to deploy 

what some call “the great firewall of China,” but there are many ways for people who 

understand the technology to gain access to those parts of it that China doesn’t want 

their people to see. If they are really good, they can do it without their government even 

being able to detect it.

So who is in charge? The easy answers are no one or everyone. It is possible to identify 

some organizations that clearly are in charge of some aspects of the Internet. Most of 

them are heavily involved in trying to help the users of the Internet survive a looming 

disaster (the depletion of the IPv4 address space) and migrate smoothly and safely to the 

wonderful new promised land, the Third Internet.

 Internet Corporation for Assigned Names 
and Numbers (ICANN)
ICANN was formed in 1998, as a not-for-profit public-benefit corporation. Participants 

all over the world help keep the Internet secure, stable, and interoperable. ICANN does 

not try to control content on the Internet, stop spam, or control access to the Internet. It 

does do the following things:

• Oversee the generic top-level domain (gTLD) names and the 

country code top-level domain (ccTLD) names. They also oversee 

authorization of Internationalized Domain Names (IDNs) in various 

languages and scripts.

• Oversee operation of the DNS root servers.

• Draw up contracts with each Domain Name Registry.

• Oversee IANA (Internet Assigned Numbers Authority).

• Publish all corporate documents, bylaws, financial information, 

major agreements, policies, operating plan, and strategic plan, at 

www.icann.org/en/documents/.

• Hold monthly meetings of the ICANN board to address issues and set 

policy. The minutes of each meeting are made publicly available at 

www.icann.org/en/minutes/.
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 Internet Assigned Numbers Authority (IANA)
One of the key organizations with regard to both the old IPv4 addresses and the new IPv6 

addresses is the Internet Assigned Numbers Authority (IANA). You can find their website 

at www.iana.org. They do the following things:

• Oversee the DNS Root Zone (creation and management of the 

generic TLDs and ccTLDs), as well as the int domain registry (for 

international organizations) and the arpa zone. The arpa TLD 

has several very important parts of DNS under it, such as the 

reverse zones for both IPv4 (in-addr.arpa) and IPv6 (ip6.arpa), 

plus the ENUM E.164 zones (e164.arpa). Some parts of these 

reverse hierarchies can be delegated to ISPs or even to end-user 

organizations, but IANA is in charge of the overall structure.

• Maintain the Interim Trust Anchor Repository (ITAR) for those parts 

of the Internet’s domain space that have already been signed with 

DNSSEC. This is a temporary role until such time as the root of the 

entire domain space is signed. This is where you can find the public 

keys needed to verify DNSSEC signatures for signed DNS zones.

• Perform the top-level management of IPv4 addresses. IANA allocates 

giant blocks of IPv4 addresses (called “/8s”) with about 16.7 million 

addresses each to the five Regional Internet Registries for the world, 

AfriNIC, APNIC, ARIN, LACNIC, and RIPE NCC. As of this writing, 

only 20 “/8” blocks are left to allocate (about 7.8% of the original 256). 

As we reach the “end days” for IPv4, the IANA will be the first to run 

out. They already have a plan for this. When they get down to five 

remaining “/8” blocks, they will allocate one of those to each of the 

five RIRs and then close shop (as far as allocation of IPv4 addresses 

goes). This will probably happen on or before September 2011, 

by best current estimates. The RIRs will probably run out within 6 

months after that. When they’re gone, they’re gone.

• Perform the top-level management of IPv6 addresses. They perform 

the same basic allocation function with IPv6 addresses that they 

have done for many years with IPv4 addresses. The main difference 

is that there are a lot more IPv6 addresses. They allocate giant 
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chunks of IPv6 addresses to the RIRs as needed. It is unlikely that 

IANA will ever run out, so long as there is something recognizably 

TCP/IP. There are enough IPv6 addresses just in the 2000::/3 block 

marked for allocation for every human alive today to get over 5,000 of 

the standard allocation blocks, which are “/48s.” Each “/48” is large 

enough for the biggest organization on earth.

• Manage AS numbers. AS stands for autonomous systems. It refers to 

complete networks at the top level of the routing hierarchy. Below 

the AS level, Interior Gateway Routing Protocols are used (e.g., RIP2, 

EIGRP, etc.). At the AS level, Exterior Gateway Routing Protocols are 

used (e.g., BGP4 and BGP4+). Each autonomous system network 

has a unique number. They have been using 16-bit numbers (which 

allowed 65,536 possible ASs). Just like with IPv4, we are running 

out of AS numbers, so they are in the process of changing to 32- 

bit AS numbers. That is causing some issues, but nothing like the 

issues related to changing from 32-bit IPv4 addresses to 128-bit IPv6 

addresses. There is no worldwide “32-bit AS number” forum or any 

need for one. The people affected are fairly savvy technically and are 

simply making the changeover quietly.

• Allocate and assign IPv4 and IPv6 multicast addresses.

• Allocate and assign IPv6 anycast addresses.

• Allow people to reserve and register port numbers and other 

assigned numbers related to Internet protocols.

IANA is heavily involved in promoting the adoption of IPv6 throughout the world. 

They know how close they are to the bottom of the barrel with IPv4 addresses. They 

encourage the Regional Internet Registries to promote the adoption of IPv6, and each of 

them is doing this.

 Regional Internet Registries (RIRs)
There are five top-level registries directly below IANA, who set address allocation policy 

for their region and allocate blocks of both IPv4 and IPv6 addresses to ISPs and other 

interested parties. One way to obtain addresses is to join one of the registries and apply 
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for addresses. Some regional registries charge for these; others provide them free. You 

can only obtain addresses from the registry in the region where you reside or where the 

HQ of your organization is based.

Each Regional Internet Registry provides the following services for Internet users in 

their part of the world:

• IPv4 and IPv6 address space allocation, transfer and record 

maintenance.

• Autonomous system (AS) number allocation, transfer and record 

maintenance.

• Provide online directories of registration transaction information 

(WHOIS database).

• Provide online information about routing (Internet Routing Registry).

• Management of reverse DNS for addresses assigned by the RIR.

• Hold periodic meetings and elections.

• Perform education and training on relevant topics (such as IPv6).

• Maintain policy discussions on email lists, conduct public policy 

meetings, and publish policy documents on their website.

The three largest RIRs (ARIN, RIPE NCC, and APNIC) are all aggressively advocating 

for adoption of IPv6. Like IANA, they know how many addresses are left and how rapidly 

they are being allocated. They know that the “end times” for IPv4 allocation are near. All 

are strongly encouraging all ISPs and organizations that obtain addresses from them to 

begin adoption of IPv6 now. If the major oil companies told people that there was not 

going to be any gas for new cars made after a certain date (less than 2 years off), there 

would be a mad scramble to create and sell cars that ran on something else. This is just 

as big a deal and, according to OECD, will have very serious economic consequences for 

every country and organization that has not prepared for the end of IPv4 allocations.

The five Regional Internet Registries and their coverage areas are as follows.

 American Registry for Internet Numbers (ARIN): www.arin.net

ARIN provides services to Internet users in North America (including the United States, 

Canada, plus many Caribbean and North Atlantic islands).
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ARIN runs an IPv6 wiki at www.getIPv6info.info. This site includes book reviews, 

self-education, IPv6 presentations and documents, survey results, planning information, 

management tools, etc.

On May 7, 2007, the ARIN Board of Trustees passed the following resolution:

RESOLUTION OF THE BOARD OF TRUSTEES OF ARIN ON INTERNET PROTOCOL 

NUMBERING RESOURCE AVAILABILITY

WHEREAS, community access to Internet Protocol (IP) numbering Resources has 

proved essential to the successful growth of the Internet; and,

WHEREAS, ongoing community access to Internet Protocol version 4 (IPv4) 

numbering resources cannot be assured indefinitely; and,

WHEREAS, Internet Protocol version 6 (IPv6) numbering resources are available and 

suitable for many Internet applications,

BE IT RESOLVED, that this Board of Trustees hereby advises the Internet community 

that migration to IPv6 numbering resources is necessary for any applications which 

require ongoing availability from ARIN of contiguous IP numbering resources; and,

BE IT ORDERED, that this Board of Trustees hereby directs ARIN staff to take 

any and all measures necessary to assure veracity of applications to ARIN for IPv4 

numbering resources; and,

BE IT RESOLVED, that this Board of Trustees hereby requests the ARIN Advisory 

Council to consider Internet Numbering Resource Policy changes advisable to 

encourage migration to IPv6 numbering resources where possible.

Implementation of this resolution will include both internal and external 

components. Internally, ARIN will review its resource request procedures and 

continue to provide policy experience reports to the Advisory Council. Externally, 

ARIN will send progress announcements to the ARIN community as well as the wider 

technical audience, government agencies, and media outlets. ARIN will produce new 

documentation, from basic introductory fact sheets to FAQs on how this resolution 

will affect users in the region. ARIN will focus on IPv6 in many of its general outreach 

activities, such as speaking engagements, trade shows, and technical community 

meetings.
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 Réseaux IP Européens Network Coordination Centre (RIPE NCC): 
www.ripe.net

RIPE NCC provides services to Internet users in Europe, the Middle East, and Central 

Asia. This includes

• Southwest Asia: Azerbaijan, Bahrain, Cyprus, Georgia, Iran, Iraq, 

Israel, Jordan, Lebanon, Saudi Arabia, Syria, Turkey, UAE, and Yemen

• Central Asia: Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan, and 

Uzbekistan

• Europe: Albania, Armenia, Austria, Belarus, Belgium, Bosnia- 

Herzegovina, Bulgaria, Croatia, Czech Republic, Denmark, Estonia, 

Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, 

Latvia, Lithuania, Macedonia, Moldova, Montenegro, Norway, 

Netherlands, Poland, Romania, Russia, Serbia, Slovakia, Spain, 

Sweden, Switzerland, Turkey, Ukraine, United Kingdom, and 

Yugoslavia

• North America: Greenland

RIPE NCC runs the “IPv6 Act Now” site (www.ipv6actnow.org) with lots of 

information on IPv6 for small businesses, enterprises, ISPs, and governments.

On October 26, 2007, RIPE NCC issued the following warning, which is included here 

verbatim:

During the RIPE 55 meeting in Amsterdam, the RIPE community agreed to issue the 

following statement on IPv4 depletion and the deployment of IPv6.

“Growth and innovation on the Internet depends on the continued availability of IP 

address space. The remaining pool of unallocated IPv4 address space is likely to be fully 

allocated within two to four years. IPv6 provides the necessary address space for future 

growth. We therefore need to facilitate the wider deployment of IPv6 addresses.

While the existing IPv4 Internet will continue to function as it currently does, the 

deployment of IPv6 is necessary for the development of future IP networks.

The RIPE community has well-established, open and widely supported mechanisms 

for Internet resource management. The RIPE community is confident that its Policy 

Development Process meets and will continue to meet the needs of all Internet 

stakeholders through the period of IPv4 exhaustion and IPv6 deployment.
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We recommend that service providers make their services available over IPv6. 

We urge those who will need significant new address resources to deploy IPv6. We 

encourage governments to play their part in the deployment of IPv6 and in particular 

to ensure that all citizens will be able to participate in the future information society. 

We urge that the widespread deployment of IPv6 be made a high priority by all 

stakeholders.”

RIPE NCC issued another warning concerning IPv4 address space depletion, on 

April 10, 2008:

Currently, 180 of 256 blocks of “/8” have already been allocated. Of the remaining 76, 

35 are already reserved for the Internet Engineering Taskforce (IETF) and the remaining 

41 blocks are held in the Internet Assigned Numbers Authority (IANA) pool for future 

allocation to the RIRs.

As IPv6 provides the necessary address space for future growth, RIPE NCC is 

urging business and government leaders to ease the path for wider deployment of IPv6 

addresses. Failure to adopt these new resources could mean a slowing in the pace of 

Internet innovation.

“Now is the time to recognize that sustainable growth of the IPv4-based Internet is 

coming to an end, and that it is time to move on, with IPv6 ready as the successor.

“In order to sustain the impressive speed of Internet innovation and ensure a healthy 

Internet economy for the future, we recommend that content providers make their 

services available over IPv6,” comments Axel Pawlik, Managing Director at RIPE NCC.

“We view governments as key players in Internet growth and urge them to play their 

part in the deployment of IPv6 and in particular to lead by example in making content 

available in IPV6. Ultimately, we urge that the widespread deployment of IPv6 be made a 

high priority by all stakeholders.”

When CIOs make firm decisions to deploy IPv6, the process is fairly straightforward. 

Staff will have to be trained, management tools will need to be enhanced, routers and 

operating systems will need to be updated, and IPv6-enabled versions of applications 

will need to be deployed. All these steps will take time.

The move to IPv6 will provide billions of further addresses through 128-bit 

addressing, which allows 50 billion, billion addresses for every person on the planet. 

Islands of IPv6 are already in use, but RIPE NCC argues that infrastructure support must 

be addressed in time for IPv6 to fulfill its predicted role as the catalyst for the next stage 

of Internet development.
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Pawlik concludes: “We have well-established, open and widely supported 

mechanisms for Internet resource management and we’re confident that our Policy 

Development Process meets and will continue to meet the needs of all Internet 

stakeholders through the period of IPv4 exhaustion and IPv6 deployment. The 

immediate challenge lies in making content available in IPV6 using the processes and 

mechanisms already available to ensure that service providers and content providers 

build adequate experience and expertise in good time.”

Note that this warning was in 2008, and at that time 41 “/8” blocks remained. Today, 

no more /8 blocks are available at the IANA level.

 Asia Pacific Network Information Center (APNIC):  
www.apnic.net

APNIC provides service to Internet users in

• South Asia: Afghanistan, Bangladesh, Bhutan, India, Nepal, Pakistan, 

and Sri Lanka

• Eastern Asia: China, North Korea, Hong Kong, Japan, Macau, 

Mongolia, South Korea, and Taiwan

• Southeast Asia: Cambodia, Indonesia, Laos, Malaysia, Myanmar, 

Philippines, Singapore, Thailand, and Vietnam

• Australia and New Zealand

• Oceania: Various islands in Polynesia, Melanesia, and Micronesia

APNIC is currently running a program called “Kickstart IPv6,” in which anyone that 

owns or obtains an IPv4 address allocation from APNIC can get a free block of IPv6 

addresses. If their IPv4 block is less than a “/22,” then the IPv6 block is a “/48.” For IPv4 

blocks from “/22” and up, the free IPv6 block is a “/32” (this is 4 billion times 4 billion 

times the size of the entire IPv4 address space). You could also look at this as 65,536 

“/48” blocks. These addresses are not tied to any ISP and can be routed from anywhere. 

There is no demonstration of need required for obtaining the IPv6 address block.

APNIC also runs an IPv6 resource site at http://icons.apnic.net/display/ipv6/

Home. The name “icons” stands for Internet Community of Online Networking Specialists.
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 Latin American and Caribbean Network Information Center 
(LACNIC): www.lacnic.net

LACNIC was started in 2002. It provides services to Internet users in

• North America: Mexico

• Central America: Costa Rica, El Salvador, Guatemala, Honduras, 

Nicaragua, and Panama

• South America: Argentina, Belize, Bolivia, Brazil, Chile, Columbia, 

Ecuador, French Guiana, Paraguay, Peru, Uruguay, and Venezuela

• Caribbean Islands: Aruba, Barbados, Cayman Islands, Cuba, 

Dominica, Dominican Republic, Grenada, Haiti, Jamaica, and 

various smaller islands

LACNIC runs an IPv6 resource site at portalipv6.lacnic.net/en/portal- IPv6- 2.

 Africa Region (AfriNIC): www.afrinic.net

AfriNIC provides services for Internet users in the entire African continent. It began in 

April 2005.

They run an IPv6 resource center at www.afrinic.net/IPv6 and an IPv6 virtual lab 

at www.afrinic.net/projects/cvl.htm. This is a test network with public access, with 

primarily Cisco equipment.

 The Number Resource Organization (NRO): www.nro.net
NRO was formed in October 2003 by the four Regional Internet Registries that existed 

at the time, to formalize their cooperative efforts. Its goal is to protect the unallocated 

number resource pool, to promote and protect the bottom-up policy development 

process, and to act as a focal point for Internet community input into the RIR system. 

They run an IPv6 site at www.nro.net/ipv6.

Recently NRO issued the following statement, when the remaining IPv4 address pool 

dropped below 10%:

“This is a key milestone in the growth and development of the global Internet,” noted 

Axel Pawlik, Chairman of the NRO. “With less than 10 percent of the entire IPv4 address 

range still available for allocation to RIRs, it is vital that the Internet community take 
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considered and determined action to ensure the global adoption of IPv6. The limited 

IPv4 addresses will not allow us enough resources to achieve the ambitions we all hold 

for global Internet access. The deployment of IPv6 is a key infrastructure development 

that will enable the network to support the billions of people and devices that will 

connect in the coming years,” added Pawlik.

 Internet Architecture Board (IAB): www.iab.org
The IAB is chartered both as a committee of the Internet Engineering Task Force (IETF) 

and as an advisory body of the Internet Society (ISOC). Its responsibilities include 

architectural oversight of IETF activities, Internet Standards Process oversight and 

appeal, and the appointment of the RFC Editor. The IAB is also responsible for the 

management of the IETF protocol parameter registries.

 Internet Engineering Task Force (IETF): www.ietf.org
The mission of the IETF is to make the Internet work better by producing high quality, 

relevant technical documents that influence the way people design, use, and manage the 

Internet.

The IETF

• Runs numerous working groups on technical topics relevant to the 

Internet that are the main source of RFCs

• Oversees the standards process

• Maintains the Internet Drafts and the RFC Pages

• Holds periodic meetings (fall, spring, and summer, each year)

• Runs various mailing lists, which anyone can subscribe to

 Internet Research Task Force (IRTF): www.irtf.org
To promote research of importance to the evolution of the future Internet by 
creating focused, long-term and small Research Groups working on topics 
related to Internet protocols, applications, architecture and technology.
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 Internet Society (ISOC): www.isoc.org

The Internet Society (ISOC) is a nonprofit organisation founded in 1992 to 
provide leadership in Internet related standards, education, and policy. 
With offices in Washington D.C., USA, and Geneva, Switzerland, it is dedi-
cated to ensuring the open development, evolution and use of the Internet 
for the benefit of people throughout the world.

The Internet Society provides leadership in addressing issues that confront 
the future of the Internet and is the organisational home for the groups 
responsible for Internet infrastructure standards, including the Internet 
Engineering Task Force (IETF) and the Internet Architecture Board (IAB).

The Internet Society acts not only as a global clearinghouse for Internet 
information and education but also as a facilitator and coordinator of 
Internet-related initiatives around the world. For over 15 years ISOC has 
run international network training programs for developing countries and 
these have played a vital role in setting up the Internet connections and 
networks in virtually every country connecting to the Internet during 
this time.

The Internet Society has more than 100 organisational and more than 
28,000 individual members in over 80 chapters around the world.

 IPv6 Forum Groups
There are many groups organized specifically to advocate for the adoption of IPv6, given 

the importance of the issue. There is an international umbrella group, called the IPv6 

Forum, chaired by Latif Ladid, who wrote the foreword to this book. Their website is at 

www.ipv6forum.org.

 Local IPv6 Forum Chapters
There are local chapters of the IPv6 Forum in many countries. Some of these national 

groups use the term Forum (e.g., IPv6 Forum Downunder, at www.ipv6forum.org.au). 

Some use the term Task Force (e.g., North American IPv6 Task Force, at www.nav6tf.

org). Some use the term Council (e.g., the German IPv6 Council, at www.ipv6council.

de). Altogether there are currently 58 national or regional groups under the international 
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IPv6 Forum. These groups advocate within their own country or region for the adoption 

of IPv6 and put on conferences usually called IPv6 summits. There are links to all of 

the chapters on the IPv6 Forum international site (www.ipv6forum.org), as well as 

announcements about coming summits and other IPv6-related events.

 IPv6 Ready Logo Program
Affiliated with the IPv6 Forum is a group whose goal is to do testing of IPv6 equipment 

and applications, ISPs who offer IPv6, and websites that are available over IPv6. This 

testing and issuing of certifications is done under the IPv6 Ready Logo Program. Their 

website is at www.ipv6ready.org. There are three main parts to the IPv6 Ready Logo 

Program: Products, ISP, and website.

 IPv6-Ready Product Testing and Certification

Product testing uses test suites developed by TAHI (part of the Japan WIDE project) 

and IPv6-ready test labs. This is overseen by the IPv6 Ready Logo Committee (v6LC). 

There are both phase 1 (“Silver”) tests, which verify behavior of the MUST clauses of all 

relevant RFCs, and phase 2 (“Gold”) tests, which verify behavior of both the MUST and 

the SHOULD clauses of all relevant RFCs. The hundreds of products that have passed 

these tests are published on the IPv6 Ready site at

• http://cf.v6pc.jp/logo_db/approved_list_ph1.php

• http://cf.v6pc.jp/logo_db/approved_list_ph2.php

There are several categories of test suites currently. The IPv6 Ready Logo can be 

obtained for passing the Core Protocols tests, which include both Conformance and 

Interoperability tests. There are advanced tests in the following areas:

• IPsec: End-Node and Security Gateway

• IKEv2: End-Node and Security Gateway

• Mobile IPv6: Correspondent Node, Home Agent, and Mobile Node

• NEMO: Home Agent and Mobile Router

• DHCPv6: Client, Server, and Relay Agent

• SIP: UA, Endpoint, B2BUA, Proxy, Registrar

Chapter 12  Ipv6-related OrganIzatIOns

http://www.ipv6forum.org/
http://www.ipv6ready.org
http://cf.v6pc.jp/logo_db/approved_list_ph1.php
http://cf.v6pc.jp/logo_db/approved_list_ph2.php


392

• SNMP: Management (SNMP-MIBs) – Agent and Manager

• MLDv2: Multicast Listener Discovery protocol (version 2)

The current test sites include

• BII: Beijing Internet Institute (People’s Republic of China)

• CableLabs (United States)

• CHT- TL: ChungHwa Telecom Labs (Taiwan)

• CNLabs (India)

• IRISA: Institut de Recherché en Informatique et Systemes Aleatories 

(European Union)

• TEC (India)

• TTA: Telecommunication Technology Association (Korea)

• UNH- IOL: University of New Hampshire InterOp Lab (United States)

 IPv6-Enabled ISP and Website Certification

Information on how an ISP or a website can be certified as delivering IPv6-compliant 

service is available at

• www.ipv6forum.com/ipv6_enabled

The ISP certification process was created by the Beijing Internet Institute (BII). 

There is currently a basic level. The advanced level will be introduced shortly. The list of 

certified ISPs is available at

• www.ipv6forum.com/ipv6_enabled/isp/approval_list.php

Notably, Malaysia has taken this even further and has three levels of ISP certification, 

which has been mandated by the Malaysian government:

• Phase 1: Basic network connectivity tests

• Phase 2: Interconnectivity tests

• Phase 3: Commercial and advanced network services

In 2010, 12 ISPs had already passed the first two levels and were working on passing 

the third.
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For websites, again there is a basic level currently available and an advanced level 

coming soon. The list of certified websites is available at

• www.ipv6forum.com/ipv6_enabled/approval_list.php

 Informal IPv6 Network Administration Certification
Hurricane Electric, in addition to providing free tunneled service via 6in4, 6to4, and 

Teredo, has put together an informal, self-administered certification program for IPv6 

network administration. This covers aspects of IPv6 technology and implementation 

on various platforms (Linux, Windows, Cisco routers, etc.). There are several levels. 

At each succeeding level, you must answer harder questions. Several levels involve 

accomplishing actual network administration tasks, such as deploying an IPv6- 

compliant email server. To obtain that level, you must exchange an email with their IPv6 

email server. The site is available at ipv6.he.net/certification/. There are multiple levels, 

including Newbie, Explorer, Enthusiast, Administrator, Professional, Guru, and Sage.

This is not a formal program, like Microsoft or Cisco certification, but it is free and 

very educational. I have already qualified at the top level, as an IPv6 Sage. Here is my 

very cool certification badge:
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 WIDE Project, Japan
Japan was an early leader in IPv6, and a consortium of Japanese IT companies headed by 

Professor Jun Murai has done some very important work that has significantly advanced 

the state of IPv6. These include reference implementations of the IPv6 stack for BSD 

(Kame) and Linux (USAGI), the test suites for the IPv6 Ready testing program (TAHI). 

They also provide IPv6 service to many developing countries in the region, such as the 

Philippines. Their website is available at www.wide.ad.jp.

The Kame project completed its task and has been discontinued, but its website 

(www.kame.net) has been left up, complete with its famous turtle logo (kame is Japanese 

for turtle). If you connect over IPv4, the turtle just sits there. If you connect over IPv6, 

the turtle dances. In the early days of IPv6, it was a rite of passage to verify you had 

accomplished IPv6 connectivity by watching the kame dance.

 Summary
This chapter covered some of the major organizations involved in the management of 

IPv6 addresses and the rollout of IPv6 globally.

IANA is the top-level organization that allocates IPv6 addresses (they ran out of 

public IPv4 addresses in 2011, so they no longer allocate those).

Below IANA are the five Regional Internet Registries (RIRs): APNIC, ARIN, RIPE, 

LACNIC, and AfriNIC. All these have reached end of normal allocation for IPv4 

public addresses. They still provide blocks of IPv6 addresses to telcos, ISPs, and other 

organizations.

There are several other organizations listed (NRO, IAB, IETF, IRTF, etc).

We also covered the IPv6 Forum, which was chartered by the IETF to oversee rollout 

of IPv6 globally and provide testing and training for it. I have been heavily involved with 

them since about 2004.

I finally mentioned a great program for free self-directed IPv6 training provided 

by Hurricane Electric, who also provides free tunneled IPv6 via 6in4 tunneling. Even if 

your ISP is not yet supporting IPv6, you can tunnel it into your network from them. See 

https://tunnelbroker.net.
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CHAPTER 13

IPv6 Projects
There are various projects you can do for free, given the information in this book and 

open source components (or evaluation versions of Microsoft products) readily available 

on the Internet.

It is possible to do the open source implementations based on FreeBSD, NetBSD, 

OpenBSD, or various Linux flavors. Use the platform you are most familiar with. The 

BSD variants have a powerful dual-stack packet filtering component called pf. This 

can be used to add a host-based firewall to any project (to block access via anything 

but the desired protocols) or even to build a multi-NIC router or firewall with complex 

rules. In Linux, the equivalent component is called Netfilter/IP Tables. The BSD and 

Linux packet filtering components have roughly the same functionality, but totally 

different deployment and configuration schemes. Both have one part that lives in the 

Kernel Space and one part that lives in user space. The configuration of the IPv4 and 

IPv6 stacks is done in different ways, but the functionality is almost the same. Both the 

BSD and Linux IPv6 implementations have passed IPv6 Ready Gold testing (at least one 

release, possibly not the most recent). For the most part, other open source components 

(Apache, Postfix, Dovecot, etc.) are pretty much the same regardless of what underlying 

platform is used.

Microsoft Windows since version 7, Windows Server since 2008, and Exchange 

Server each have excellent support for IPv6 and dual-stack operation. You can put 

together a viable testbed network with just Microsoft products if you like (except for the 

gateway router/firewall) or all with just open source or mix and match. It all depends on 

your expertise and requirements.

Some open source components (e.g., SMTP MTA, POP3/IMAP mail retrieval agents) 

are available in a variety of popular implementations (Postfix, QMail, EXIM, Dovecot, 

Cyrus IMAP, etc.). Pretty much all these have support for IPv6, but in some cases, the 

specifics to actually deploy these in dual-stack mode may be difficult to locate. I will 
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recommend components that I have actually deployed and where I have verified  dual- 

stack operation, but if you happen to prefer a different component, chances are the 

necessary configuration information is available online somewhere.

Each project has a basic level of functionality described and various extensions 

that can add more functionality (e.g., a basic router can be enhanced by adding packet 

filtering and/or proxies).

 Accompanying Website
Rather than include these projects in this book, I have put these on the corresponding 

website, at https://thirdinternet.com. You can download the installation guides in 

PDF, and I can update them easily as new operating systems and releases of open source 

projects come out.

These include

• How to deploy a dual-stack firewall with pfSense, including 6in4 

tunneling (I use a version of this in my home network)

• How to deploy Windows Server with dual-stack operation in AWS

• How to deploy FreeBSD with dual-stack operation, both standalone 

and in AWS

• Exploring IPv6 on your phone

 Hurricane Electric IPv6 Certification
I also strongly recommend that you do the projects in the Hurricane Electric IPv6 

Certification sequence. See https://ipv6.he.net/certification/. Among other 

projects, you will do the following:

• Configure IPv6 on your node.

• Connect to the IPv6 Internet.

• Deploy a working website available over IPv6.

• Deploy a working email server that accepts messages over IPv6.

• Deploy a working DNS server that supports IPv6.
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• Configure a reverse DNS record for your IPv6 email server.

• Do network troubleshooting with ping and traceroute with IPv6 

addresses.

They have automated tools to verify that the projects you deploy actually work.

 SixConf
On the preceding website (and on https://ipv6forum.com), you can find a very useful 

free application (for Windows) that allows you to see (and completely control) the 

internal details of IPv6 addresses and configuration called SixConf. Here is a screenshot 

of the main window to give you an idea. A user guide is also available with full details. 

This will help you understand the information in this book. I have used this app when 

teaching IPv6 certification courses and find it really helps the students to understand 

what is going on. It is also useful when deploying IPv6 even in complex networks.

For whatever reason, Microsoft chose to provide configuration tools for IPv6 on 

their operating systems that look and act a lot like the ones for IPv4. This is kind of like 

providing a 747 with controls based on those in a family car. IPv6 is far richer and more 

complex, and this tool provides visibility into and control of these aspects.
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Note We need to provide a way to download this from an apress web page for 
this book.

 Conclusion
If you have done all the exercises on the website, you now have a fairly complete dual- 

stack testbed network and are familiar with many of the things that you will need to do as 

a network administrator. Between the labs and the book, hopefully you now understand 

the following things:

• It is not particularly difficult to obtain free tunneled IPv6 service, 

even using free components. You do not need to wait for your ISP 

to provide IPv6 service to go fully operational. Simple transition 

mechanisms simplify the migration to full dual-stack operation. The 

only problem is you need at least one public IPv4 address to use 6in4. 

Failing that, 6rd is a reasonable substitute, but your ISP must provide 

it to you.

• Most operating systems and many existing network applications 

(BIND, Apache, Postfix, Dovecot, ssh/sshd, etc.) are already 

fully capable of supporting full dual-stack operation. Network 

configuration is not that different from IPv4.

• Most web applications (Apache or IIS based) get a “free ride,” once 

the underlying web server has been migrated to dual stack. In 

addition (although not covered in these labs), most Microsoft “.Net” 

applications get a free ride.

• IPv4 NAT really doesn’t provide any useful function other than 

extending the life of the IPv4 address space, and only then at a very 

high price (in terms of lost capabilities and additional complexity). 

It adds no security in firewall architectures. NAT is a crutch you no 

longer need. IPv6 without NAT actually provides a simpler, better 

firewall architecture (no need for BINAT, proxy ARP, NAT traversal, 

etc.). We are really just returning to the pre-NAT “classical” firewall 

architectures, not something new and untested.
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• There are only a few really new concepts in IPv6 that current network 

administrators need to master, such as tunneling, Application Layer 

gateways, hexadecimal address representation, address scopes (e.g., 

link-local addresses), working without NAT, needing to provide 

Router Advertisement messages (for SLAAC to work), multicast and 

IPsec that actually work, etc. Everything else is remarkably similar to 

working with IPv4.

• The supply of IPv4 public addresses is really almost gone, and there 

is no alternative to this other than migration to IPv6. The timeline 

on this is sooner than most people realize. The four main RIRs have 

ended normal allocation of IPv4 to telcos, ISPs, and cloud providers, 

and the fifth one will soon. You have better be ready to support IPv6 

if you want to keep your job (or have your organization continue 

operation) past that point.

Congratulations, and welcome to the Third Internet as its newest netizen!
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